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SURPASSING THE THEORETICAL 1-NORM PHASE TRANSITION IN
COMPRESSIVE SENSING BY TUNING THE SMOOTHED L0 ALGORITHM

Christian Schou Oxvig, Patrick Steffen Pedersen, Thomas Arildsen, and Torben Larsen

Department of Electronic Systems, Faculty of Engineering and Science
Aalborg University, DK-9220 Aalborg, Denmark

ABSTRACT
Reconstruction of an undersampled signal is at the root of
compressive sensing: when is an algorithm capable of recon-
structing the signal? what quality is achievable? and how
much time does reconstruction require? We have considered
the worst-case performance of the smoothed `0 norm recon-
struction algorithm in a noiseless setup. Through an empirical
tuning of its parameters, we have improved the phase transi-
tion (capabilities) of the algorithm for fixed quality and re-
quired time. In this paper, we present simulation results that
show a phase transition surpassing that of the theoretical `1
approach: the proposed modified algorithm obtains 1-norm
phase transition with greatly reduced required computation
time.

Index Terms— Signal Reconstruction, Compressed
Sensing, Smoothing Methods, Iterative Algorithms

1. INTRODUCTION

The Compressive Sensing (CS) signal acquisition paradigm
asserts that certain signals sampled far below their Nyquist
frequencies can be successfully recovered, if they are sparse
in some dictionary [1]. For example, the Fourier dictionary
may be used with frequency sparse signals. Hence, CS com-
bines the usual sample-and-then-compress setup into a single
efficient step. However, CS requires acquired signals to be re-
constructed which, in the noiseless case, entails a non-convex
optimisation problem of the form [2]:

minimise ||x̂||0
subject to y = Ax̂

(1)

where x̂ ∈ RN×1 is the reconstructed vector, A ∈ Rn×N is a
known measurement matrix, and y ∈ Rn×1 is the measured
vector with n � N . In the CS context, n is the number of
samples sensed whereas N is the number of samples in the
reconstructed signal. We take ||x̂||0 to denote the `0 pseudo
norm [3], i.e. the number of non-zero entries in x̂.
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Several approaches to solving the problem in (1) have
been proposed. One approach substitutes the `1 norm for
the `0 norm thereby relaxing the problem to a linear program
(LP) and enabling the use of existing LP solvers [2]. Another
approach “reverses” the problem by minimising ||y −Ax̂||22
subject to some sparsity-enforcing constraint [4]. These so-
called greedy algorithms include Matching Pursuit [5], Itera-
tive Hard Thresholding [6], Orthogonal Matching Pursuit [7],
and Compressive Sampling Matching Pursuit [8].

Regardless of the approach, reconstruction algorithms
generally provide a trade-off between reconstruction qual-
ity (e.g. SNR), reconstruction capabilities, and required
reconstruction time. A standard measure of reconstruction
capabilities is the phase transition measure [9] (see [4] and
[10] for examples of its use). Phase transitions evaluate the
probability of successful reconstruction versus the indeter-
minacy δ = n/N of the constraints y = Ax̂ and the true
sparsity of x̂. In terms of phase transition, the `1 approach is
superior to greedy algorithms for fixed reconstruction quality
[4]; whereas in terms of required reconstruction time, greedy
algorithms are superior to state-of-the-art LP solvers used
with the `1 approach [11]. Potentially, any algorithm could
be improved by focusing on either reconstruction capabilities,
quality, or time.

In an attempt to match the phase transition of the `1 ap-
proach while reducing the required reconstruction time, the
smoothed `0 norm (SL0) approach approximates the `0 norm
in (1) with a continuous function [12]. We have found that, for
fixed reconstruction quality and time, the phase transition of
SL0 may be dramatically improved by selecting the param-
eters in a way that exploits the known indeterminacy of the
constraints in (1). In this paper, we present a modified SL0
algorithm and provide a set of empirically determined recom-
mended parameters. Furthermore, we support our claim of
a dramatically improved phase transition by results from an
extensive set of simulations.

The paper is organised as follows. In Section 2, we re-
state the SL0 algorithm and present our proposed modifica-
tion. Section 3 describes the setup used for simulations while
Section 4 provides the simulation results. A discussion of the
results is given in Section 5 followed by conclusions in Sec-
tion 6. Finally, Section 7 reviews relations to prior work.



2. SMOOTHED `0 NORM

SL0 approximates the `0 norm using the continuous Gaussian
function fσ(x) = exp

(
−x2/(2 · σ2)

)
[12]. The accuracy of

this approximation is controlled by the parameter σ ∈ R+ as

lim
σ→0

(1− fσ(x)) = ||x||0 for x ∈ R (2)

Using this approximation in (1) yields the problem:

minimise
N∑
i=1

(1− fσ(x̂i))

subject to y = Ax̂

(3)

The SL0 approach to solving the problem in (1) is to solve
the problem in (3) for each σ in a sequence (σi) abiding by
two underlying thoughts: 1) The sequence should be such that
local minima are avoided. 2) The value of σ should gradu-
ally decrease to increase the accuracy of the approximation
in (3). The suggested sequence is the geometric sequence
where σi = σstart ·σiup for i from 0 to the largest integer where
σi > σmin. For each σ, the problem in (3) is solved by repeat-
edly taking an unconstrained gradient step and projecting x̂
back onto the feasible set.

The SL0 algorithm from [12] is stated in Algorithm
1. Notation-wise, A† denotes the Moore-Penrose pseudo-
inverse of the matrix A, x ◦ y denotes the Hadamard product
of the vectors x and y, and

exp(x) = [exp(x1) . . . exp(xN)]
T ∈ RN×1

max |x| = max{|x1| , . . . , |xN|} ∈ R

The best choice of σup and σmin is problem-dependent (with
σup ∈ [ 0.5 ; 1 [ typically) whereas σstart = 2 · max |x̂|,
iteration-count L = 3, and step-size µ = 1 are problem-
independent recommendations given in [12].

For fixed reconstruction quality and time, we have at-
tempted to improve the reconstruction capabilities of Al-
gorithm 1. Specifically, we have carried out an extensive
empirical analysis using the simulation framework presented
in Section 3, with the objective of finding the parameter val-
ues that provide the best phase transition on a worst-case
problem [4]. Through the analysis, we have made three over-
all empirically based observations which have given rise to
successive modifications of Algorithm 1. The three resulting
phase transition curves are shown in Figure 1 alongside the
phase transition curve of Algorithm 1 and the theoretical `1
curve presented in [9]1. In brief, the three observations and
modifications are:

1) A larger σstart is required for smaller δ whereas a
smaller σstart is allowable for larger δ: an inversely pro-
portional relation between σstart and δ is a good model.

1Tabulated values of this phase transition is available at
http://ecos.maths.ed.ac.uk/polytopes.shtml
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Fig. 1: Phase transition curve of the SL0 algorithm alongside the
phase transition curves resulting from three overall observations.
The theoretical `1 curve is included for reference.

In the algorithm, we modify (σi) by introducing the
relation σstart = 1/(2.75 · δ) · max |x̂|, increasing the
value of σup to 0.7, and letting the value of σmin remain
unchanged.

2) A larger L is required as σ decreases, i.e. as the accu-
racy of the Gaussian approximation increases. In the
algorithm, we initially let L = 2 and multiply this with
Lup = 2 after each update of σ.

3) The recommended µ is likely to make x̂ converge to lo-
cal minima when σi ≈ σstart: making µ a step-function
betters this. In the algorithm, we replace the constant
step-size µ with a variable step-size:

µ(σi, i) =

{
µstart i < 4 ∨ σi > σthres
µend otherwise

where σthres = 0.75 ·max
∣∣A†y∣∣, µend = 1.5, and

µstart =

{
0.05 δ ≤ 1/2
0.001 otherwise

To allow a larger value of σup and L without increasing the
reconstruction time, we terminate the inner loop when the
algorithm is sufficiently close to convergence. That is, we
choose to terminate the inner loop when the relative change
||x̂ − x̂prev||2 falls below σ · ε where ε = 0.01. The resulting
modified SL0 algorithm is presented in Algorithm 2.

3. SIMULATION FRAMEWORK

We evaluate the reconstruction capabilities of an algorithm by
use of the phase transition measure [9]. Hence, let k denote
the number of non-zero entries in the true vector x. Define

http://ecos.maths.ed.ac.uk/polytopes.shtml


Algorithm 1 - Smoothed `0 norm (SL0)
1 init: σup = 0.5, σmin = 0.01, L = 3, µ = 1
2 x̂ ← A†y
3 σ ← 2 ·max |x̂|

4 while σ > σmin do
5 for j = 1 . . . L do
6 d ← x̂ ◦ exp

(
−(x̂ ◦ x̂)/(2 · σ2)

)
7 x̂ ← x̂− µ · d # Gradient step
8 x̂ ← x̂−A†(Ax̂− y) # Projection
9 end for

10 σ ← σ · σup
11 end while

the measure of indeterminacy δ = n/N and the generalised
measure of sparsity (density) ρ = k/n. Given a success cri-
terion, the probability of reconstruction is then evaluated on
the phase space δ, ρ ∈ [0, 1]. In general, reconstruction is eas-
ier for larger δ and smaller ρ; it then gets more difficult when
decreasing δ and when increasing ρ. The phase space is, con-
sequently, separated by the phase transition curve into a phase
where reconstruction is likely and one where it is unlikely.

The probability of reconstruction versus ρ for fixedN and
δ may be modelled by a logistic regression [4], [13]. Thus,
we adopt the approach from [4]: estimate the location of the
phase transition curve through logistic regression with the re-
construction success criterion given by:

||x̂− x||22
||x||22

< 10−4 (4)

where x̂ and x are the reconstructed and true vectors, respec-
tively. If the criterion is not met, the attempted reconstruction
is considered unsuccessful. That is, the attempted reconstruc-
tion cannot be considered indeterminate.

For the simulations, we fix N = 800 as proposed in [4].
We then attempt reconstruction on a 4000 points uniform grid
(δ, ρ) in the phase space. The grid is specified by:

δ ∈ {0.025, 0.05, . . . , 1.00} (5)
ρ ∈ {0.01, 0.02, . . . , 1.00} (6)

For each point in the grid, we evaluate 100 different draws of
A and x. This number may be justified as follows. Let the
outcome of an attempted reconstruction, X , in a given point
be a Bernoulli random variable with probability p of success,
i.e. X ∼ Ber(p). The number of successful reconstructions
Y out of M attempts in that point is Binomially distributed,
i.e. Y ∼ Bin(M,p). Using a normal approximation of Y ,
a worst case (at p = 0.5) 95% confidence interval of length
l = 0.2 then results in an upper bound for the required number
of attempts (see e.g. [14]), i.e. M ≤ 1.962/l2 ≈ 100. We
then assume that this is a sufficient precision for the logistic
regression (which takes 100 points on the ρ-axis into account)
to determine the phase transition curve.

Algorithm 2 - Modified smoothed `0 norm (SL0-mod)
1 init: σup = 0.7, σmin = 0.01, L = 2,

Lup = 2, ε = 0.01, i = 0
2 x̂ ← A†y
3 σi ← 1/(2.75 · δ) ·max |x̂|

4 while σi > σmin do
5 for j = 0 . . . L do
6 x̂prev ← x̂
7 d ← x̂ ◦ exp

(
−(x̂ ◦ x̂)/(2 · σ2

i )
)

8 x̂ ← x̂− µ(σi, i) · d
9 x̂ ← x̂−A†(Ax̂− y)

10 if ||x̂− x̂prev||2 < σi · ε then
11 break
12 end if
13 end for
14 σi+1 ← σi · σup; L ← L · Lup; i ← i+ 1
15 end while

We have chosen the distributions of A and x (known as
the problem suite) to be those that are most difficult to ob-
tain good phase transitions on [4]: we draw A from the Uni-
form Spherical Ensamble (USE) [4] and draw the non-zero
entries in x from the Rademacher distribution, i.e. {−1, 1}
with equal probability. To simulate our modified algorithm on
a problem suite which the algorithm has not been optimised
for, we have included the problem suite with A drawn from
USE and the non-zero entries in x drawn from the zero-mean,
unit-variance Gaussian distribution.

For the experiments we used an Intel Core i7 970 6-core
3.2 GHz based PC with 24 GiB DDR3 RAM running 64-bit
Ubuntu 12.04 LTS Linux. Our implementation2 of the tested
algorithms is in Python. The simulations were carried out
in double precision using the Enthought Python Distribution
(EPD) 7.2-2 (64-bit). To validate our simulation results, we
also simulated the IHT algorithm presented in [4].

4. EXPERIMENTAL RESULTS

Three algorithms have been simulated: 1) SL0 which is the
algorithm stated in Algorithm 1. 2) SL0-mod which is the
modified algorithm stated in Algorithm 2. 3) IHT which is the
Iterative Hard Thresholding algorithm described in [4]. The
experimental results are presented in Figures 2 and 3. Figure
2 shows the phase transitions for Rademacher distributed non-
zero entries in x whereas Figure 3 shows the phase transitions
for zero-mean, unit-variance Gaussian non-zero entries in x.
In both figures, the theoretical `1 curve from [9] is included
for reference. To validate our simulation results, Figure 2 also
shows the IHT phase transition curve points listed in [4].

2The source is available at:
http://dx.doi.org/10.5278/VBN/MISC/D4U3SF7B

http://dx.doi.org/10.5278/VBN/MISC/D4U3SF7B
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Fig. 2: The phase transition curves for the original SL0 algorithm
and our modified SL0 algorithm. The theoretical `1 curve and the
phase transition curve for the IHT algorithm are included for refer-
ence. IHT∗ is from table II in [4]. Problem suite: USE/Rademacher.
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Fig. 3: The phase transition curves for the original SL0 algorithm
and our modified SL0 algorithm. The theoretical `1 curve and the
phase transition curve for the IHT algorithm are included for refer-
ence. Problem suite: USE/Gaussian.

5. DISCUSSION

We have attempted to improve the reconstruction capabili-
ties of the SL0 algorithm without impairing the reconstruction
quality and time. We claim that the reconstruction quality is
fixed since the phase transition measure uses the static recon-
struction success criterion in (4). Furthermore, we claim that
the reconstruction time is unimpaired based on the reconstruc-
tion times of successful reconstructions, ts, measured in the
experimental results; mean(ts) = 71ms and std(ts) = 27ms
for SL0-mod whereas mean(ts) = 78ms and std(ts) = 23ms
for SL0.

The phase transition curves in Figures 2 and 3 show that
the reconstruction capabilities have been improved signifi-
cantly. However, there exist other attempts at optimising the
SL0 algorithm such as the attempt which produced the phase
transitions presented in [10]. For Rademacher non-zero en-
tries in x, our proposed algorithm provides significantly im-
proved phase transition. However, for Gaussian non-zero en-
tries in x, our proposed algorithm provides a slightly poorer
phase transition for δ < 0.25. It should be noted that the fo-
cus of [10] is not on the SL0 algorithm and, consequently, it
is unclear how the algorithm has been modified.

This simple comparison stresses the importance of defin-
ing the optimisation criteria and selecting a set of problem
suites. Whereas both the optimisation criteria and selected
problem suites of [10] are unknown, we have emphasised re-
construction capabilities and tuned for the USE/Rademacher
problem suite used in Figure 2. In that respect, our proposed
algorithm outperforms the original algorithm as well as the
modified algorithm used in [10]. To achieve similar results
for another problem suite, the algorithm should be tuned for
that problem suite.

6. CONCLUSIONS

We have obtained a significantly improved phase transition
for the SL0 algorithm without impairing its reconstruction
quality and time. Moreover, our modified SL0 algorithm is
applicable to any reconstruction problem since no assump-
tions are made about the signals involved. A large set of sim-
ulations based on the USE/Rademacher problem suite have
shown that the phase transition curve of our modified SL0 al-
gorithm surpasses the theoretical `1-curve. A very significant
result since USE/Rademacher is a worst case problem suite.
This result addresses those compressive sensing reconstruc-
tion problems, requiring `1 reconstruction capabilities, which
have previously been rendered infeasible by the required re-
construction time of `1 based methods: the proposed modified
SL0 algorithm has a required reconstruction time comparable
to that of greedy algorithms while surpassing the theoretical
1-norm phase transition.

7. RELATION TO PRIOR WORK

The present work outlines a modification to the compressive
sensing reconstruction algorithm “smoothed `0 norm” (SL0)
studied in [12], [15], and [16]. The modification exploits
the known problem indeterminacy in an attempt at optimis-
ing the reconstruction capabilities of SL0 when evaluated in
the phase transition framework discussed in [4]. The result is
a highly improved empirical phase transition for fixed recon-
struction quality and time. While a phase transition curve has
been presented for SL0 in [10] (with an unknown set of pa-
rameters), our obtained phase transition is superior and even
surpasses that of the theoretical `1-curve given in [9].
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