
Aalborg Universitet

Adaptive Non-Local Means for Cost Aggregation in a Local Disparity Estimation
Algorithm

Pedersen , Casper; Nasrollahi, Kamal; Moeslund, Thomas B.

Published in:
Proceedings. 22nd International Conference on Pattern Recognition, ICPR 2014

DOI (link to publication from Publisher):
10.1109/ICPR.2014.422

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Pedersen , C., Nasrollahi, K., & Moeslund, T. B. (2014). Adaptive Non-Local Means for Cost Aggregation in a
Local Disparity Estimation Algorithm. In Proceedings. 22nd International Conference on Pattern Recognition,
ICPR 2014 (pp. 2442 - 2447). IEEE Computer Society Press. https://doi.org/10.1109/ICPR.2014.422

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/ICPR.2014.422
https://vbn.aau.dk/en/publications/a5c348d6-6a7f-49aa-9337-9597c3ecf0e5
https://doi.org/10.1109/ICPR.2014.422

Downloaded from vbn.aau.dk on: June 18, 2025

Adaptive Non-Local Means for Cost Aggregation in
a Local Disparity Estimation Algorithm

Casper Pedersen, Kamal Nasrollahi, and Thomas B. Moeslund
Visual Analysis of People Laboratory, Aalborg University

Sofiendalsvej 11, 9200 Aalborg, Denmark
Email:kn@create.aau.dk

Abstract—The overall method used for determining disparity
in a stereo setup is a widely recognized framework consist-
ing of four steps of cost space computation, cost aggregation,
disparity selection, and post-processing. In this paper a cost
aggregation approach for a typical local disparity estimation
method is introduced. The method introduced is built on top
of an existing method called Adaptive Support-Weight using this
known framework. The introduced method improves Adaptive
Support-Weight method by utilizing a larger amount of data
inspired by the method of Non-Local Means. The extra data
is handled in a way that tries to preserve the location of depth
discontinuities in the final disparity map. Experimental results on
Middlebury benchmark database show that the proposed method
suffers from less artifacts compared to state-of-the-art disparity
estimation methods.

I. INTRODUCTION

The task of disparity estimation has been widely researched
for a number of years. It is in almost every case presented as
a task of finding corresponding pixels between two images.
These two images are typically taken by two cameras in a
stereo setup where the cameras are aligned horizontally. The
task of finding the disparity of a pixel in one image can thereby
give the depth of what that pixel is conveying in the scene
indirectly if the baseline between the cameras is known. This
is utilized in many applications.

There are two main approaches that are used for finding per
pixel correspondence between two images. There are global
approaches which try to determine the disparity of more than
one pixel at a time. This is seen in a lot of works where the
focus is on an accurate disparity map, for example in [1], [4],
[11]. In [1] dynamic programming is used for each horizontal
line in one of the images to determine every pixel’s disparity in
this line, based on a number of constraints. In [11] graph trees
and in [4] segment-trees, which are graph trees that represent
group of pixels with similar characteristics, are used for non-
local pixel correspondences. These global approaches are often
computational heavy because they like [1] involve dynamic
programming, graph cut algorithms on so forth. Additionally
these global approaches are often not well adapted to a parallel
programming scheme which we try to utilize in this paper. This
is done as we see a general shift towards more heterogeneous
computing where the vast processing power of the GPU is
utilized. This is done to move algorithms with a lot of similar
instructions closer to real-time.

The other main approach is local approaches which try to
determine the disparity of each pixel individually, like [10],
[9], [2], [6]. These are typically not as computational heavy

as the global approaches as they use a simpler scheme. In two
recent works using the GPU, [10] and [9], we see how a local
approach is divided into four steps of 1. Cost space calculation
2. Cost aggregation 3. Disparity selection 4. Post-processing.
This is a general framework which we also will use. We will
go more into depth with what happens in the different steps in
the Section II. As presented in [10] such a local approach is
well adapted to run on the GPU boosting computational speed
of such an algorithm immensely.

The most important step of this four step framework,
and where local approaches differ most from each other, is
the aggregation step. A lot of works like [8] use support
windows also called kernel windows to do this aggregation. In
[3] a number of different disparity estimation algorithms are
surveyed including [8] of Adaptive Support-Weight which our
algorithm takes basis in. The various algorithms in [3] all use
different kernel windows for the aggregation step and different
methods for weighting pixel inside these kernel windows.

The reason for these different kernel windows are that there
are a number of things that makes the task of determining
disparity by finding corresponding pixels difficult. Some of the
most influential factors are for example image noise, uniform
regions in the images and the perspective distortion between
the images in a stereo setup.

The perspective distortion is an important factor that we
cannot control. Between the two images in a stereo setup, par-
allax will enforce this perspective distortion between surfaces
that do not have the same depth. This means that when using a
kernel window in Cost Aggregation, when determining a pixels
disparity, we only want the kernel window to cover pixels of
the same depth or disparity since we then will eliminate the
perspective distortion of the parallax.

This point is tried to be enforced in various ways, in [3]
by for example adapting the kernel window size and shape.
But in [8] the Adaptive Support-Weight does it by weighting
the pixels in a kernel window of a fixed size based on what is
called the gestalt principles. These principles weights pixels in
the kernel window based on similarity and proximity. This is
done based on the thesis that pixel that a similar in color and
close to each other are probable to be belonging to the same
surface. So instead of finding a kernel window that only covers
pixels of the same surface, this method uses a kernel window
and then tries to only take the pixels of the same surface into
account in this kernel window. This method produces very
good results especially by the means of local approaches. The
fact that it is a local approach means that it can be very well

Fig. 1. Parts of two images included by kernel windows and the resulting weights. For the weight images (the second and fourth) brightness corresponds to a
larger weight. The blue squares indicate the pixel under consideration [8].

parallelized which we will do in this paper to compare it to our
novel approach. Our approach tries to make Adaptive Support-
Weight more accurate and robust towards image noise. This is
done by taking more data into account in the weighting process
which is done for the kernel windows, inspired by the approach
of Non-local Means presented in [5]. Furthermore we will
show that this is not straight forward and care must be taken
to ensure the preservation of edges or depth discontinuities in
the image.

The rest of the paper is as follows: first we will in Section
II give a short explanation of the Adaptive Support-Weight
algorithm before we in Section III introduce our approach
called Adaptive Non-Local Means. In Section IV we will
discuss some experimental results, and finally conclude the
paper in Section V.

II. ADAPTIVE SUPPORT-WEIGHT

In [8] the Adaptive Support-Weight algorithm for the Cost
Aggregation step in a local disparity estimation method was
presented. As mentioned it tries to obey the gestalt principles
which are the visual cues of similarity and proximity. These
cues are indicators that pixels belong to the same surface. This
is desirable for the pixels we take into consideration when
doing the Cost Aggregation.

Cost Aggregation is the second step of the framework used
here for the local disparity estimation. The first was as men-
tioned in the previous section Cost Space Calculation which
is measuring similarity between the pixels in the reference
and target image. This is in [8] done by the Sum of Absolute
Differences between the r,g and b channel of the pixel in the
reference image and the possible corresponding pixels in the
target image. The two images are rectified so correspondence
is only in the horizontal direction.

Cost Aggregation uses a set of rectified images and pro-
duces a Cost Space which is a 3D volume with the dimensions
of the images and a third dimension which represents the
disparity range that we want to search. A given entry in the
Cost Space corresponds to a pixel location in the references
image and a pixel location of a potential disparity in the target
image. The kernel windows are what are used to filter each
entry in the Cost Space in the step of Cost Aggregation. They
take neighboring pixels into account when determining the
similarity between pixels. And it is here we as mentioned only
want to take pixels of the same surface into account due to the
perspective distortion. Another way to phrase it is that we only

want to give a high weight to pixels in the kernel windows
which are similar in color to the pixels we are considering
(the center pixel of the kernel windows) and are close to the
pixels we are considering. The pixels we are considering are of
course those that correspond to the entry in the Cost Space we
are filtering for, a pixel in the reference image and a potential
corresponding pixel in the target image.

Mathematically Cost Aggregation can be expressed as:

E(p, pd) =

∑
q∈Np,qd∈Npd

w(p, q)w(pd, qd)e(q, qd)∑
q∈Np,qd∈Npd

w(p, q)w(pd, qd)
(1)

Where p is the pixel under consideration in the reference
image, q is the current pixel in the kernel window of the
reference image which we sum over for the entire kernel
window which is noted Np, pd, qd and Npd

is the same just
for the other image and offset by the disparity, meaning pd
is (x + d, y). e(q, qd) is the original entry in the Cost Space
and E(p, pd) is of course the filtered Cost Space which is the
output from the Cost Aggregation.

This computation is of course done for every x,y and d
(disparity). The function w is the weighting function which
is done based on the gestalt principles. The calculation of the
weight of one pixel in a kernel window can be expressed as:

w(p, q) = exp(−(
∆cpq
γc

) +
∆gpq
γp

)) (2)

Where p is the pixel under consideration (center pixel in kernel
window), q is the pixel in the kernel window we want to
find a weight for, ∆cpq is the similarity between pixel p
and q measured by the Euclidean distance between the two
pixel colors in the CIELab color space, ∆gpq is the proximity
between pixel p and q measured as the Euclidean distance in
pixel coordinates, and γc and γp are constants.

A visualization of this weighting principle is seen in Figure
1 where the blue box indicates the pixel we are considering
in the kernel window which is the image. The second image
shows the weighting in this kernel window. Bright gray is a
large weight. It is seen how pixel of similar color and close to
the center pixel are brighter in the grey-scale images indicating
a high weight.

After the Cost Aggregation is done, the third step of the
local approach framework is to choose a disparity for each
pixel in the reference image. This is done by a simple Winner-
Takes-All approach where for each pixel the disparity is chosen
as the potential corresponding pixel in the target image with

Fig. 2. The process of finding a weight for one pixel in one of the original kernel windows with both the Adaptive support weight algorithm form the last
section and the introduced adaptive NLM algorithm.

the lowest Cost Space value or similarity measure. No post-
processing is done for the Adaptive Support-Weight algorithm
in [8], though it could possibly be improved by some post-
processing. We will in our approach also omit this step and
concentrate on the Cost Aggregation.

III. ADAPTIVE NON-LOCAL MEANS FOR COST
AGGREGATION

We will divide the explanation of our algorithm into two
steps expanding the Adaptive Support-Weight algorithm. First
we will adapt theory of Non-Local Means to the algorithm
explained in the previous section, and then we will alter this
new approach to preserve edge locations in the produced
disparity map.

A. Non-Local Means in Cost Aggregation

Our approach uses the same framework as Adaptive
Support-Weight. The first step of the Cost Space Calculation is
done in the same way where we simply calculate a Cost Space
of Sum of Absolute Differences also called a SAD volume. The
Cost Aggregation takes as mentioned basis in the approach
explained in the previous section. But it is inspired by the
presentation of Non-Local Means as presented in [5]. Non-
Local Means resembles the method used in Adaptive Support-
Weight for aggregation in terms of using a kernel window
of fixed size and computing weights based on placement and
radiometric features of the pixels. But instead of determining
the similarity based on comparing just two pixels, Non-Local
Means (NLM) uses more data to give a more reliable result. We
adapt this concept which is typically used in image filtering or
as in [5] for Super Resolution to the Cost Aggregation scheme.

In Adaptive support weight we used equation 2 for finding
the weight of one pixel in one kernel window. In equation 3
we introduce an altered version of equation 2 which we use
in our NLM exspansion of the algorithm:

w(p, q) = exp(−(
‖Rp −Rq‖2

γc
) +

∆gpq
γp

)) (3)

Where Rq and Rp are vectors containing values of the pixels
in an area around pixel q and p, CIELab values. This area is a
kernel window. We now have a process of finding weights for
two kernel windows where we also use two kernel windows for
each of these. We therefore choose to call the kernel windows
we are finding weights for the original kernel windows which

Fig. 3. Left) Close up of an edge in the disparity map produced by the
Adaptive Support-Weight algorithm with a kernel window size of 35x35. The
edge from the texture image is preserved and a number of pixels laying right
on the bright side of the edge is marked by green. Mid) Close up of the
same edge in the disparity map produced by the NLM algorithm with an
original kernel window size of 35x35 and a 7x7 kernel window for finding
weights. Right) Close up of the same edge in the disparity map produced by the
Adaptive NLM algorithm with an original kernel window size of 35x35 and a
7x7 kernel window for finding weights. The pixels with the same coordinates
are highlighted in all the three images.

are the ones we use to filter the SAD volume. This means
that the process of finding the weights for one of the original
kernel windows can be depicted as in Figure 2. The example
is for the gray scale case.

For comparison, the process of finding one weight in one of
the original kernel windows is shown for both algorithms. We
see how only the pixel we are finding the weight for and the
pixel under consideration is used in Adaptive Support-Weights.
But in our NLM approach two vectors are extracted by two
kernel windows around the pixels. When this has been done for
every pixel in the original kernel windows the result is having
a weight for each pixel in the two original kernel windows and
filtering the entry in the SAD volume, excactly like i Adaptive
Support-Weight. If the size of the kernel windows we use to
extract the vectors is set to zero in radius, the NLM approach
actually reduces to the Adaptive Support-Weights algorithm.

This algorithm is of course not as computational fast as
Adaptive Support-Weights since it must do these extra reads
to extract a vector instead of just one read per pixel to obtain
its value. But the gain should be that the weight computation
process also becomes much more reliable since more data in
taken into account. It will not be as vulnerable to noise and

Fig. 4. a) Example of weights obeying the gestalt principles in one of the original kernel windows, b) Weights of original kernel window using the NLM.
NLM uses two additional kernel windows to extract vectors of pixel color which are subtracted in part of finding the weight, c) Weights in the kernel window
centered at the pixel under consideration. Pixels on the same side of the edge as the center pixel has a large weight, d) Weights in the kernel window centered
at the pixel we are currently finding the weight for in the original turquoise kernel window. The center pixel is on the opposite surface than the pixel under
consideration, e) Weights in the kernel window centered at pixel we find the weight for in the original turquoise kernel window. Pixels on the same side of
the edge as the center pixel has a large weight, and f) The two resulting weights in the original kernel window from the center pixels of Figure (d) and (e).
Obtained by weighting the subtracted pixels in the kernel windows.

thereby more accurate in noisy regions.

Figure 3(left) shows a zoom of a disparity map computed
with Adaptive Support-Weight, and Figure 3(mid) shows the
same region computed with the NLM approach. The green
pixels are to indicate where the edge is in the original image.
We see comparing Figure 3(left) and Figure 3(mid) that the
NLM apporach can in some cases have problems around depth
discontinuities or edges in the image. This can be explained in
theory by the extra data being considered when calculating the
weights. A pixel right on either side of an image edge should
have high weights in its original kernel window corresponding
to that side. This will obey the gestalt principles by only
considering pixels of the same color and thereby of the same
surface. An example of this can be seen in Figure 4(a).

We see how the weight of the pixel on the same side of
the edge as the pixel under consideration is high, indicated by
the large ”W”, in one of the original kernel windows shown
in turquoise. This is of course due to its similarity in color to
the pixel under consideration which is indicated by the dot.
This is opposed to the pixel with the small ”w”. It has a low
weight because it lies on the other side of the edge and thereby
has a different color. It is this principle that Adaptive Support-
Weight tries to make use of. But in the NLM approach we use
more pixels when finding the weights. This makes the weights
more accurate and consequently the disparity estimation more
accurate but in Figure 4(b) we see what can go wrong close
to an edge.

Pixels can obtain a wrong weighting with regards to the
gestalt principles. This is because pixels from the other surface
on the other side of the edge are taken into consideration. In
Figure 4(b) it can be seen how the kernel window for the pixel
under consideration, the pink one, contains four blue pixels
even though it itself lies on the yellow surface. This means
that the pixel we want to find a weight for, the center of the
green kernel window, obtains a large weight indicated by the
large ”W”. This is because the two kernel windows we subtract
to find the weight, the pink and green, are very similar. We
also see the pixel under consideration is not similar to pixels
on the same surface as itself, i.e. the pixel with the small ”w”
which would have a kernel window that only contains one
blue pixel (this kernel window is not shown in Figure 4(b)).
These wrong weightings with regard to the gestalt principles
for the original kernel window can result in the pixel being

misclassified and getting a disparity that results in it to lie on
the wrong side of the image edge.

To improve the novel NLM method further we therefore
introduce Adaptive NLM. In this new algorithm we try to
resolve the above mentioned problem around edges by also
utilizing the gestalt principles when subtracting the two kernel
windows when finding the weights with equation 3.

1) Adaptive NLM: With NLM we have introduced using
kernel windows when determining the weights. We want the
data of these kernel windows, in the example of Figure 4(b)
the pink and green ones, to obey the gestalt principles as
well. Like the original turquoise kernel window does in Figure
4(a) and NLM fails to do in Figure 4(b). Pixels inside the
two kernel windows will be weighted with regards to their
similarity in color and spatially closeness to center pixel of
the kernel window. The center pixel of the two being the pixel
we want to find a weight for in the original kernel window
(center of green kernel window in Figure 4(b)), and the pixel
under consideration (the center of the pink in Figure 4(b)).

One must not be confused by the fact that we are now using
weights of two kernel windows to determine the weights of one
of the original kernel windows. The process is of course done
for every pixel in both original kernel windows, the one in the
target image and the one in the reference image. By weighting
pixels in the kernel windows of the NLM approach, we solve
the problem at edges described earlier.

It is here shown in different steps. In Figure 4(c) we see
that the pixels inside the kernel window of the pixel under
consideration are weighted high if they are of similar color,
i.e. on the same side of the edge 1.

The same is the case for the kernel window belonging to
the pixel we want to find the weight for in the original kernel
window, as seen in Figure 4(d). By examining both Figure 4(c)
and Figure 4(d), we notice that out of the pixels that are to be
subtracted only the centers share a large weight and the two
centers are not of the same color. This results in a low weight
in the original kernel window when subtracting the two kernel
windows as can be seen in Figure 4(a).

1The weighting of the spatial proximity is not taken into account when
illustrating the weights as it is not the important point here

Figure 4(e) shows the same as Figure 4(d) but for a
different pixel inside the original kernel window. Here some
of the pixels that have a large weight are to be subtracted from
pixels which also have a large weight from Figure 4(c). This
will result in a large weight in the original kernel window since
the pixels sharing large weights in the kernel windows are of
the same color.

The results explained when subtracting the windows of
Figure 4(d) and Figure 4(e) from the kernel window in Figure
4(c) and using equation 3 can be seen in Figure 4(f).

We see that because of the weighting inside the kernel
windows the final weighting of the original kernel window
stays true to the gestalt principles like in Figure 4(a) and unlike
in Figure 4(b). It is shown directly in Figure 3(right) where we
see the same region of a disparity map as we saw in Figure
3(left) and Figure 3(mid) but computed with the Adaptive
NLM approach. We see that the edge of the disparity map lies
at the green pixels as was the case in Figure 3(left). The new
weight determination process can be described mathematically
as:

wANLM(p, q) = exp(−(
‖Rp −Rq‖′2

γc
) +

∆gpq
γp

))

‖Rp −Rq‖′2 =

√∑
p′∈Rp,q′∈Rq

wasw(p, p′)wasw(q, q′)(p′ − q′)2∑
p′∈Rp,q′∈Rq

wasw(p, p′)wasw(q, q′)

(4)

Where wasw is the weighting from Adaptive Support-Weight in
equation 2, p′ and q′ are the pixels inside the kernel windows
used for finding weights. The rest of the entities have been
introduced previously.

This new weighting can now be used directly in equation
1 which was the filtering of the SAD volume with what we
have called the original kernel windows but with new weights.

IV. EXPERIMENTAL RESULTS

We will just look at results comparing our Adaptive NLM
method to what it took basis in, the Adaptive Support-Weight
algorithm. This is to show that making a robust weight
computation will improve the final disparity map. The image
pair which was tested on is seen in Figure 5 (a) and (b). The
left image is chosen as the reference image so the results shown
in this section is disparity maps of this image.

We have simply executed the two algorithms on the image
pair with parallel implementation which has been done. We
have utilized the OpenCL framework to execute the algorithms
on the GPU. An algorithm like Adaptive NLM would not be
relevant to execute as a CPU implementation since number
of pixel reads is so big that it would take in the matter of
hours to produce a disparity map with the algorithm given a
reasonable image resolution. Using the power of modern GPU
and tools like OpenCL is what is starting to make algorithms
like Adaptive NLM relevant.

In Figure 5(c) we see the disparity map computed by
Adaptive Support-Weight of [8] with a kernel window size
of 35x35. We see that with this kernel window size there are
some artifacts which a the black areas where the disparity is
not rightly determined. However, if we look at the result of the

Adaptive NLM in figure 5(d) computed with the same original
kernel window size and with a 5x5 kernel for the weight
computations in Cost Aggregation these areas of misclassified
disparity are reduced.

This is of course due to the fact that weighting process
is more robust due to the extra data used resulting in a better
obedience with regards to the gestalt principles. The same point
is seen comparing Figure 5(e) and Figure 5(f) where a larger
original kernel window size is used. Because of this the number
of faulty disparity are lower. But we see the improvement again
in Figure 5(f) which has a lower number of artifacts.

Finally, we show the results of comparing the proposed
Adaptive NLM algorithm against two more state-of-the-art
aggregation methods on Middlebury benchmark database [7].
These two methods are taken from [11] and [6]. There results
are shown in Figure 6. It can be seen that the results obtained
by our proposed algorithm suffers from less artifacts compared
to these two methods as well as the method of [8] (Figure 5).

Fig. 5. a-b) The horizontal image pair we will do Depth map Estimation
testing on, c) Disparity map computed by Adaptive Support-Weight (Kernel
window size 35x35) [8], d) Disparity map computed by Adaptive NLM
(Original kernel window size 35x35 and weight kernel window size 5x5),
e) Disparity map computed by Adaptive Support-Weight (Kernel window size
75x75) [8], f) Disparity map computed by Adaptive NLM (Original kernel
window size 75x75 and weight kernel window size 5x5).

V. CONCLUSION

Inspired by the method of non-local means this paper
has introduced a method for Cost Aggregation for disparity
estimation in a stereo setup. It has been shown that using a
kernel window to extract the data which is used to calculate

Fig. 6. Comparing the results of the proposed algorithm against two more state-of-the-art methods using two sample pair images from Middlebury benchmark
database [7]: a-b) pairs used for calculating the disparity of the first sample, c-d) pairs used for calculating the disparity of the second sample, and disparity
maps obtained by: a local guided image filter based cost aggregation taken from [6] (e and g), a non-local cost aggregation method taken from [11] (f and h),
the proposed algorithm using a 35x35 kernel (i and j), and the proposed algorithm using a 75x75 kernel (k and l). The results of (e)-(h) are taken from [11].

the weights of the kernel window used for Cost Aggregation
is preferable over just using single pixels. It has also been
shown that this data must also be selected on the basis of
the gestalt principles to ensure that pixels do not obtain the
wrong disparity around edges. Experimental results on Mid-
dlebury benchmark database show that the proposed method
suffers from less artifcats compared to state-of-the-art disparity
estimation methods.

ACKNOWLEDGMENT

The authors would like to thank Thorbjoern Vynne from
Solution57 ApS for his support towards this work.

REFERENCES

[1] Antonio Criminisi, Jamie Shotton, Andrew Blake, Carsten Rother, and
Philip H.S. Torr, Efficient dense-stereo and novel-view synthesis for gaze
manipulation in one-to-one teleconferencing, International Conference
on Computer Vision, 9th IEEE, 2003.

[2] L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza, Linear stereo
matching, International Conference on Computer Vision,13th IEEE,
1708-1715, 2011.

[3] Minglun Gong, Ruigang Yang, Liang Wang, and Mingwei Gong, A
performance study on different cost aggregation approaches used in real-
time stereo matching, International Journal of Computer Vision, 75(2):
283-296, 2007.

[4] Xing Mei, Xun Sun, Weiming Dong, Haitao Wang, and Xiaopeng Zhang,
Segment-Tree based Cost Aggregation for Stereo Matching, Computer
Vision and Pattern Recognition, IEEE Conference on, 313-320, 2013.

[5] Matan Protter, Michael Elad, Hiroyuki Taleda, and Peyman Milanfar,
Generalizing the non-local means to super-resolution reconstruction,
Image Processing, IEEE Transactions, 18(1): 36-51, 2009.

[6] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, Fast cost-
volume filtering for visual correspondence and beyond, Computer Vision
and Pattern Recognition, IEEE Conference on, 3017-3024, 2011.

[7] D. Scharstein and R. Szeliski, Middlebury stereo evaluation,
http://vision.middlebury.edu/stereo/eval/

[8] Kuk-Jin Yoon and In So Kweon, Adaptive support-weight approach for
correspondence search, Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(4): 650-656, 2006.

[9] Giovanni Visentini, and Amit Gupta, Depth estimation using Open
Compute Language (OpenCL), International Conference on Latest Com-
putational Technologies, 2012.

[10] Christian Weigel, and Niklas Treutner, Flexible OpenCL accelerated
disparity estimation for video communication applications, 3DTV Con-
ference: The True Vision-Capture, Transmission and Display of 3D
Video, 1-4, 2011.

[11] Q. Yang, A non-local cost aggregation method for stereo matching,
Computer Vision and Pattern Recognition, IEEE Conference on, 1402-
1409, 2012.

