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dq-Frame Cascaded Delayed Signal Cancellation
Based PLL: Analysis, Design, and Comparison

With Moving Average Filter Based PLL
Saeed Golestan, Member, IEEE, Malek Ramezani, Member, IEEE, Josep M. Guerrero, Senior Member, IEEE, and

Mohammad Monfared Member, IEEE

Abstract—To improve the performance of phase-locked loops
(PLLs) under adverse grid conditions incorporating different
filtering techniques into their structures have been proposed in
literature. These filtering techniques can be broadly classified
into in-loop and pre-loop filtering techniques depending on their
position in the PLL structure. Inspired from the concept of
delayed signal cancellation (DSC), the idea of cascaded DSC
(CDSC) has recently been introduced as an effective solution
to improve the performance of the PLL under adverse grid
conditions. However, the focus has been on the application of
CDSC operator as the pre-filtering stage of PLL, and little work
has been conducted on its application as the in-loop filtering stage
of PLL. This paper provides a detailed analysis and design of
dqCDSC-PLL (PLL with in-loop dq-frame CDSC operator). The
study is started with an overview of this PLL. A systematic design
method to fine tune its control parameters is then proposed. The
performance of the dqCDSC-PLL under different grid scenarios
is then evaluated in details. It is then shown that how using
the proportional-integral derivative controller as the loop filter
can improve the response time of dqCDSC-PLL. A detailed
comparison between the dqCDSC-PLL and moving average filter
(MAF) based PLL (MAF-PLL) is then carried out. Through
a detailed mathematical analysis, it is also shown that these
PLLs are equivalent under certain conditions. The suggested
guidelines in this paper make designing the dqCDSC-PLL a
simple and straightforward procedure. Besides, the analyses
performed in this paper provide a useful insight for designers
about the advantages/disadvantages of dqCDSC-PLL for their
specific applications.

Index Terms—Delayed signal cancellation (DSC), phase-locked
loop (PLL), synchronization.

I. INTRODUCTION

The three-phase synchronous reference frame phase-locked
loop (SRF-PLL) is probably the most widely used synchro-
nization technique within the areas power electronics and
power systems [1]. In this PLL, the three-phase voltages
are transformed to the synchronous (dq) reference frame by
applying the Clarke and, subsequently, the Park transforma-
tions. The dq-frame angular position is controlled using a
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feedback loop which forces vq (or vd) to zero in steady-state.
A proportional-integral (PI) controller is typically used as the
loop filter (LF) in the SRF-PLL.

The SRF-PLL can achieve an accurate estimation of grid
voltage phase/frequency when the grid voltage is clean and
balanced; however, its performance tends to worsen under
unbalanced and distorted grid conditions. To improve the
performance of the SRF-PLL under adverse grid conditions,
different approaches have been proposed in literature. These
approaches are mainly based on adding a filtering stage either
within the phase control loop of the PLL (called the in-loop
filtering techniques) or before the input of the PLL (called the
pre-filtering techniques).

The pre-filtering techniques are typically employed when,
in addition to the grid voltage phase and frequency, the
accurate extraction of the fundamental (or even harmonic)
sequence components are also required by the PLL. These
filtering techniques extract the gird fundamental frequency
positive sequence (FFPS) component and feed it to the SRF-
PLL to estimate the grid fundamental phase and frequency.
The estimated phase/frequency is then fed back to make
them frequency adaptive1. In [3], using the dual second order
generalized integrator (DSOGI) is suggested as the SRF-PLL’s
pre-filtering stage. This method works based on the instanta-
neous symmetrical components (ISC) method in the stationary
(αβ) reference frame. The extended version of this filter is
suggested in [4]. Using the complex coefficient filters (CCFs)
as the PLL’s pre-filtering stage can be found in [5], [6]. The
interesting feature of CCFs is that they can make distinction
between the positive and negative sequences for the same
frequency [7]. In [8], using the space-vector discrete Fourier
transform (SVFT) as the pre-filtering stage is suggested. The
low computational burden (if it is implemented in recursive
form) and the effectiveness are the notable features of this
filtering technique. In [2], a simple yet effective pre-filtering
technique is suggested. This method uses a synchronous
reference frame (SRF) structure rotating synchronously with
the grid fundamental frequency and two moving average filters
(MAFs) to extract the FFPS component for the SRF-PLL.

The in-loop filtering techniques are often preferred when the
extraction of the grid fundamental sequence components are
not required by the PLL. In [9]-[14], incorporating one or more

1Sometimes, a secondary phase/frequency estimation algorithm is used to
make the pre-filtering stage frequency adaptive (for example see [2]). The
main reason behind this is to achieve a faster transient response.
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notch filters (NFs) into the PLL control loop is suggested.
The NF is a band-rejection filter that significantly attenuates
the signals within a narrow band of frequencies and passes
all other frequency components with negligible attenuation.
This feature makes the NFs very interesting for selective
cancellation of the desired harmonic components in the PLL
control loop. In [15]-[20], using the MAF in the PLL control
loop is suggested. The MAF is a linear phase filter that can
act as ideal low pass filter (LPF) is certain conditions holds.
In [21], using the repetitive regulators in the PLL control loop
is suggested. The numerical and experimental results in [21]
show that the repetitive regulator can be effective in rejection
of disturbance components in the PLL control loop. To provide
a fast dynamic response and, at the same time, to achieve
a high disturbance rejection capability, incorporating one or
more lead compensators in the PLL control loop is suggested
in [22]. The suggested lead compensators are second order
and have pairs of purely imaginary poles and zeros. So, they
provide the selective cancellation like NFs without lagging
the loop below −180◦ (stability limit). Thus, the PLL can
achieve a high bandwidth (a fast dynamic response) without
jeopardizing the stability and the filtering capability.

Inspired from the concept of delayed signal cancellation
(DSC) [23]-[29], the idea of cascaded DSC (CDSC) has
recently been introduced as an effective solution to improve
the performance of the PLL under adverse grid conditions
[30]-[33]. However, the focus has been on application of
CDSC operators as the pre-filtering stage of the PLL, and
little work has been conducted on its application as the in-loop
filtering stage of the PLL. To be more specific 1) no systematic
design approach to fine tune the control parameters of the
SRF-PLL with in-loop CDSC (hereafter called dqCDSC-PLL)
has been reported yet; 2) no detailed analysis to evaluate
the performance of the dqCDSC-PLL under different grid
scenarios has been performed yet.

This paper provides a detailed analysis and design of the
dqCDSC-PLL. The main contributions of this paper can be
summarized as follows:
• A systematic design approach to fine tune the control

parameters of the dqCDSC-PLL is presented. A PI-type
LF in the PLL is considered. The suggested design
approach has a general theme, so it can be applied to
different versions of the dqCDSC-PLL.

• To gain insight into the advantages and disadvantages
of different versions of dqCDSC-PLL, their performance
under different grid disturbances are evaluated in details.

• A simple approach to improve the dynamic response of
dqCDSC-PLL is presented and evaluated.

• To further highlight the advantages and disadvantages of
the dqCDSC-PLL, a detailed comparison between this
PLL and MAF-PLL (SRF-PLL with in-loop MAF) is
carried out. It is also shown that these two PLLs are
mathematically equivalent under certain conditions.

II. OVERVIEW

In the dq-frame, the half-wave symmetry of harmonic
components makes it possible to eliminate them by summing

with their delayed versions. Obviously this process does not
change the dc component in the dq-frame, i.e., the original
FFPS component. This method is known as the dq-frame DSC
(dqDSC) [30], [31].

Application of the dqDSC operator to an arbitrary dq-frame
voltage signal v(t) is defined as

v̄ (t) =
1

2
[v (t) + v (t− T/n)] (1)

where v̄(t) is the output signal of dqDSC operator, T is the
grid voltage fundamental period, and n is referred to as the
delay factor. From (1), the transfer function of the dqDSC
operator can be obtained as

dqDSCn(s) =
v̄ (s)

v (s)
=

1

2

(
1 + e−

T
n s
)
. (2)

By substituting s = jω into (2), and performing some
simple mathematical manipulations, the magnitude and phase
expressions of the dqDSC operator can be obtained as

dqDSCn(jω) =

∣∣∣∣cos

(
ωT

2n

)∣∣∣∣∠− (ωT2n

)
. (3)

Using (3), it can be shown that the dqDSC operator provides
unity gain at zero frequency, and zero gain at frequencies
f = n

T

(
2k ± 1

2

)
in hertz, where k = 0, ±1, ±2, ±3, . . . .

It means that the dqDSC operator passes the dc component
and blocks some specific harmonic components depending
on the value of the delay factor n. For example, selecting
n = 4 enables the dqDSC operator to block all harmonics
of order h = ±2, ±6, ±10, ±14, . . . in dq-frame. Notice
that |dqDSCn(jω)| ≤ 1, so the other harmonic components
(i.e., those harmonic components that are not blocked) are
attenuated or, at most, left unchanged.

Most often a single dqDSC operator is not good enough
to eliminate/attenuate all harmonic components of concern.
So, depending on the grid harmonic type and application in
hand, cascading several dqDSC operators with specific delay
factors is often required [30], [31]. Equation (4) describes
the dqCDSC operator in s-domain where m is the number
of cascaded dqDSC operators.

CDSCn1,n2,··· ,nm
(s) = dqDSCn1

(s)× dqDSCn2
(s)

× · · · × dqDSCnm
(s). (4)

Fig. 1 illustrates the time domain implementation of
dqCDSCn1,n2,...,nm

operator. Notice that to realize the
dqCDSC operator with digital signal processor (DSP) in
practice, the T/ni (i = 1, 2, . . . ,m) signal delays in cascaded
units should be implemented by buffering Ni = (T/ni)/Ts
samples in DSP memories, where Ts is the sampling time.

Incorporating the dqCDSC operator into the PLL control
loop has been proposed in some recent literature [30]-[31].
However, no systematic design approach to fine tune its
control parameters and no detailed analysis to evaluate its
advantages/disadvantages under different grid scenarios has
been presented yet. Fig. 2 shows the basic scheme of the
dqCDSC-PLL in which the LF(s) is the LF transfer function,
ω̂ and θ̂+

1 are the estimated frequency and phase of the grid
FFPS component, respectively, and ωff is the nominal value
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Fig. 1. Block diagram description of dqCDSC operator.

of grid frequency.

Fig. 2. Block diagram description of the dqCDSC-PLL.

III. CONTROL DESIGN GUIDELINES

In this section, a systematic approach to design the control
parameters of the dqCDSC-PLL is presented. The suggested
design approach is based on the small-signal model of this PLL
which is shown in Fig. 3. In this model, D(s) is the Laplace
transform of the disturbance input to the model, and V +

1 is
the amplitude of FFPS component of the grid voltage. Notice
that this model is the same as that of the conventional SRF-
PLL [1], however the transfer function of dqCDSC operator
is also included in the loop. A PI-type LF is considered in the
dqCDSC-PLL.

An issue that may need to be discussed here is the de-
pendence of the PLL dynamics on the amplitude of FFPS
component. As it can be observed in Fig. 3, the amplitude
of the FFPS component appears as gain in the forward path
of the PLL small-signal model. It implies any variation in the
amplitude of the FFPS component affect the PLL stability and
dynamic response [34]. This problem can be simply avoided
by incorporating an amplitude normalization unit into the PLL
structure. This unit can be simply realized by adding another
dqCDSC operator in the d-axis to obtain an estimation of the
FFPS component amplitude, and dividing the LF input signal
by this estimated amplitude.

A. dqCDSC Operator Design

The first step of design procedure is to select the number
of cascaded dqDSC operators and their delay factors in the
dqCDSC operator. This selection depends on whether the grid
harmonic pattern is known or unknown. If the grid harmonic
pattern is unknown, then it should be assumed that all sequence
components of all orders are available in the grid voltage.
In such a case, the dqCDSC2,4,8,16,32 operator is a good
choice [30]. On the other hand, if the grid harmonic pattern

Fig. 3. Small-signal model of the dqCDSC-PLL.

is known, then the dqCDSC operator should be designed
such that all anticipated harmonic components are rejected
and, at the same time, the dqCDSC total delay time (i.e.,
T/n1 +T/n2 + · · ·+T/nm) is as small as possible (it will be
shown later that with increasing the total-time delay introduced
by the dqCDSC operator in the control loop, the PLL band-
width should be reduced to ensure its stability). Based on this
design criteria, the proper dqCDSC operator for different grid
scenarios can be obtained as summarized in Table I. Notice
that in all scenarios the presence of fundamental frequency
negative sequence component in the grid voltage (which may
occur due to asymmetrical grid faults) is also considered. It
is also worth noticing that when the grid harmonic pattern is
unknown, or when the grid is distorted in an asymmetrical
manner2, a same dqCDSC operator, i.e., dqCDSC2,4,8,16,32

operator, should be used.
The last column in table I shows the name assigned to the

different versions of dqCDSC-PLL. Notice that the PLL that is
called the dqCDSC-PLL1 in this Table uses an single dqDSC
operator in its control loop, so it is actually a dqDSC-PLL
(not dqCDSC-PLL). However, for the sake of consistency, we
call it dqCDSC-PLL1.

B. Approximating the Dynamics of dqCDSC Operator

Incorporating the dqCDSC operator into the PLL con-
trol loop significantly complicates the tuning procedure. So,
approximating its dynamic with a simple transfer function
can be very helpful in tuning procedure. In this section,
the dynamics of dqCDSC operator are approximated with a
simple first-order transfer function. As it will be shown later,
this approximation barely affects the dqCDSC-PLL dynamic
behavior, but significantly simplifies the analysis and tuning
procedure.

Let us start with the simplest case, i.e., a single dqDSC
operator. Approximating the delay term in (2) by the first-

order padé approximation , i.e., e−(T/n)s ≈ 1−( T
2n )s

1+( T
2n )s

, yields
the first-order approximation of the dqDSCn transfer function
(2) as

dqDSCn(s) ≈ 1(
T
2n

)
s+ 1

. (5)

This approximation can be simply extended to the dqCDSC
operator. First, let us assume the dqCDSC operator is con-
sisted of two dqDSC operators with delay factors n1 and n2.
In such a case, according to (2) and (4), its transfer function

2When the grid is distorted in an asymmetrical manners, all harmonic
components of all sequences may exist in the grid voltage [30].



4

TABLE I
DIFFERENT SCENARIOS FOR THE GRID HARMONIC PATTERN AND THE PROPER dqCDSC OPERATOR FOR THESE SCENARIOS.

Grid harmonic pattern Proper dqCDSC PLL name

Known

not distorted dqDSC4 dqCDSC-PLL1
non-triplen odd harmonics of order −5,+7,−11,+13,−17,+19 dqCDSC4,24 dqCDSC-PLL2

symmetrical dqCDSC4,6,24 dqCDSC-PLL3
odd harmonic components dqCDSC4,8,16,32 dqCDSC-PLL4

asymmetrical
dqCDSC2,4,8,16,32 dqCDSC-PLL5Unknown ———-

can be expressed as

dqCDSCn1,n2
(s) =

1

2

(
1 + e−(T/n1)s

)
︸ ︷︷ ︸

dqDSCn1
(s)

× 1

2

(
1 + e−(T/n2)s

)
︸ ︷︷ ︸

dqDSCn2
(s)

.

(6)
Using (5), (6) can be approximated by

dqCDSCn1,n2
(s)≈ 1(

T
2n1

)
s+ 1

× 1(
T

2n2

)
s+ 1

=
1

T 2

4n1n2
s2 +

(
T

2n1
+ T

2n2

)
s+ 1

. (7)

At low frequency range, which is the frequency range of
concern, the underlined term in (7) is negligible. As a con-
sequence, (7) can be further simplified as

dqCDSCn1,n2
(s) ≈ 1

T
2 (1/n1 + 1/n2) s+ 1

. (8)

Following a similar procedure, it can be shown that the
transfer function of the dqCDSC operator can be approxi-
mated in general form as

dqCDSCn1,n2,...,nm
(s)

≈ 1
T

2
(1/n1 + 1/n2 + . . .+ 1/nm)︸ ︷︷ ︸

Td

s+ 1
. (9)

Table II summarizes the approximate transfer functions for
different dqCDSC operators.

To evaluate the accuracy of this approximation, Fig. 4
provides a Bode plot comparison between the transfer function
of the dqDSC2,4,8,16,32 operator and its approximate transfer
function. As expected, the approximate transfer function is
accurate enough in predicting the behavior of the dqCDSC
operator.

C. LF Parameters Design

In this section, a systematic approach to design the LF
parameters of the dqCDSC-PLL is presented. As mentioned
before, the LF is a PI controller, i.e., LF (s) = kp+ki/s, where
kp and ki are the proportional and integral gains, respectively.
The suggested design approach is based on the symmetrical
optimum (SO) method which is a standard design procedure
in various applications [35]-[36].

From Fig. 3, the open-loop transfer function of dqCDSC-

Fig. 4. Bode plots of the dqCDSC2,4,8,16,32 transfer function (black line)
and its first order approximation (gray line).

PLL can be obtained in general form as

Gol(s) =
θ̂+

1

θe

∣∣∣∣∣
D(s)=0

= V +
1 dqCDSCn1,n2,...,nm

(s)LF(s)
1

s
.

(10)
By substituting LF(s) = kp + ki/s into (10), and replacing
the transfer function of dqCDSC operator with its first-order
approximation, we can obtain

GPI
ol (s) ≈ V +

1

1

Tds+ 1

kps+ ki
s

1

s
= V +

1

1
Td

(kps+ ki)

s2
(
s+ 1

Td

) (11)

where the superscript PI denotes that the PLL uses the PI-type
LF. The open-loop transfer function (11) can be rewritten of
the form

GPI
ol (s) ≈ V +

1 kpωp (s+ ωz)

s2 (s+ ωp)
(12)

where ωp = 1/Td and ωz = ki/kp.

The SO method is a standard design method for the
systems having an open-loop transfer function of the form
(12). According to this method, the maximum phase margin
(PM) is achieved if the crossover frequency ωc is at the
geometric mean of the corner frequencies of ωp and ωz , i.e.,
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TABLE II
APPROXIMATE TRANSFER FUNCTION FOR DIFFERENT dqCDSC OPERATORS.

dqCDSC operator dqDSC4 dqCDSC4,24 dqCDSC4,6,24 dqCDSC4,8,16,32 dqCDSC2,4,8,16,32

Approximate transfer function 1
(T/8)s+1

1
(7T/48)s+1

1
(11T/48)s+1

1
(15T/64)s+1

1
(31T/64)s+1

ωc =
√
ωpωz . According to this, it is easy to obtain∣∣GPI

ol (s)
∣∣
s=jωc

= 1⇒ V +
1 kpωp

√
ω2

c+ω2
z

ω2
c

√
ω2

c+ω2
p

= 1

SO method ⇒ ωc =
√
ωpωz

⇒ kp =
ωc

V +
1

(13)
Let us define ωp = b2ωz , where b is a positive design

constant, then according to the equation ωc =
√
ωzωp we

can obtain
ωp = bωc
ωz = ωc/b.

(14)

Using (13) and (14), and remembering that ωp = 1/Td, the
proportional and integral gains kp and ki can be expressed as

kp = ωc/V
+
1 = ωp/

(
bV +

1

)
= 1/

(
TdbV

+
1

)
ki = ωzkp = ω2

p/
(
b3V +

1

)
= 1/

(
T 2
d b

3V +
1

)
.

(15)

So, kp and ki can be simply determined by selecting a proper
value for the design constant b. Remember that the value of
Td is determined according to the selected dqCDSC operator
(see (9) and Table II).

To determine a proper value for b, its effect on the dynamic
response and stability of the PLL should be examined. First,
its effect on the dynamic performance of the PLL is analyzed.
From Fig. 3 and the open-loop transfer function (12), the
phase-error transfer function of the PLL can be obtained as

Ge(s) =
θe

θ+
1

∣∣∣∣
D(s)=0

=
1

1 +GPI
ol (s)

≈ s2 (s+ ωp)

s2 (s+ ωp) + V +
1 kpωp (s+ ωz)

. (16)

Substituting (13) and (14) into (16) and performing some
simple mathematical manipulations yields

Ge(s) ≈
s2 (s+ bωc)

(s+ ωc) (s2 + (b− 1)ωcs+ ω2
c )

(17)

By defining b = 2ζ + 1, (17) can be rewritten as

Ge(s) ≈
s2 (s+ (2ζ + 1)ωc)

(s+ ωc) (s2 + 2ζωcs+ ω2
c )

(18)

As shown, the design constant b determines the damping of the
system. So, it can be selected according to required damping
for the PLL. Most literature recommend ζ = 1/

√
2 for best

damping. This selection yields b =
√

2 + 1.
An important issue that should be analyzed here is the PLL

stability margin. From open-loop transfer function (12), the
PM of PLL can be expressed as

PM ≈ tan−1 (ωc/ωz)− tan−1 (ωc/ωp) . (19)

Notice that (19) approximates the PM of dqCDSC-PLL, be-
cause it is obtained using the approximate open-loop transfer
function (12) . Substituting (14) into (19) and performing some

TABLE III
CONTROL PARAMETERS OF DIFFERENT VERSIONS OF dqCDSC-PLL.

Td (see Table II) kp = 1/
(
TdbV

+
1

)
ki = 1/

(
T 2
d b

3V +
1

)
dqCDSC-PLL1 T/8 165.68 11370.85
dqCDSC-PLL2 7T/48 142.02 8354.09
dqCDSC-PLL3 11T/48 90.37 3383.06
dqCDSC-PLL4 15T/64 88.36 3234.37
dqCDSC-PLL5 31T/64 42.76 757.27

mathematical manipulations, yields

PM ≈ tan−1

(
b2 − 1

2b

)
. (20)

As shown, the PM only depends on the value of b. This result
was expected as the PM is related to the damping of the
system. Substituting the selected value for b (i.e., b =

√
2+1)

into (20) yields PM ≈ 45◦ which ensures the PLL stability.
Table III summarizes the designed values for the control

parameters of dqCDSC-PLL under different grid scenarios
(V +

1 = 1 pu and b =
√

2 + 1 are considered in calculation
of the parameters). Notice that kp and therefore the crossover
frequency (according to (13), the crossover frequency ωc is
equal to kp for V +

1 = 1) decreases with increasing the total
time delay (as shown in (9), Td is equal to half the total
time delay of dqCDSC operator) in the dqCDSC-PLL control
loop. This result was expected as, according to (15), kp is
inversely proportional to Td. Therefore, we expect the fastest
and slowest transient response for the dqCDSC-PLL1 and
dqCDSC-PLL5, respectively.

D. Accuracy Assessment of Suggested Design Method

The suggested design approach in previous section was
based on the approximate open-loop and phase-error transfer
functions of the dqCDSC-PLL, which are obtained by approx-
imating the dynamics of the dqCDSC operator in the PLL
small-signal model with a simple first-order LPF. The aim of
this section is to evaluate the accuracy of this approximation.

Fig. 5 shows the exact open-loop Bode plots of different
versions of dqCDSC-PLL using the designed control parame-
ters (see Table III). It can be observed the PM of all PLLs is
very close to what was predicted by the approximate open-loop
transfer function, i.e., PM = 45◦. It can also be observed that
the crossover frequency corresponds to the peak of phase plot
(maximum PM) for all PLLs. This result was also predicted
by the approximate open-loop transfer function.

According to the approximate phase-error transfer function
(18), the phase-error response of the dqCDSC-PLL when
the grid voltage undergoes a phase-angle jump ∆φ and a
frequency-step change ∆ω can be approximated by (21) and
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Fig. 5. The open loop Bode plots of (a) dqCDSC-PLL1, (b) dqCDSC-PLL2, (c) dqCDSC-PLL3, (d) dqCDSC-PLL4, and (e) dqCDSC-PLL5 using the
designed control parameters (see Table III).

Fig. 6. Approximate phase-error (dashed lines) and actual phase-error (solid lines) responses of the dqCDSC-PLL5 under (a) a phase-angle jump of +40◦

and (b) a frequency step change +3 Hz.

(22), respectively.

θ∆φ
e (t) ≈ ∆φ

ζ − 1

[
ζe−ωct − e−ζωct cos

(
ωct
√

1− ζ2
)]

(21)

θ∆ω
e (t) ≈ ∆ω

(1− ζ)ωc

[
ζe−ωct − e−ζωct

{
ζ cos

(
ωct
√

1− ζ2
)

−
√

1− ζ2 sin
(
ωct
√

1− ζ2
)}]

. (22)

Fig. 6 (a) and (b) compares the approximate phase-error and
actual phase-error responses of the dqCDSC-PLL5 under a
phase-angle jump of +40◦ and frequency step change +3 Hz,
respectively. The approximate plots are obtained using (21)
and (22), and the actual plots are obtained by simulating the
actual dqCDSC-PLL5. It can be observed that the approximate
results can accurately predict the dqCDSC-PLL5 behavior.
Similar results can be obtained for other versions of dqCDSC-
PLL.

According to what was shown in this section, it can be

concluded that the approximation made during the design
procedure and, therefore, the obtained approximate transfer
functions are very accurate in prediction of the dqCDSC-PLL
behavior.

IV. NUMERICAL RESULTS

The aim of this section is to evaluate the performance of
the dqCDSC-PLL under different grid scenarios. To achieve
this goal, all dqCDSC-PLLs are numerically simulated in Mat-
lab/Simulink environment. Throughout the simulation studies,
the sampling frequency is fixed to 14.4 kHz, and the nominal
angular frequency is set to 2π50 rad/s. The other control
parameters can be found in Table III.

A. Phase Angle Jump

Fig. 7 shows the numerical results when the grid voltage
undergoes a phase angle jump of +40◦. It can be observed
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Fig. 7. Numerical results for (a) dqCDSC-PLL1, (b) dqCDSC-PLL2, (c) dqCDSC-PLL3, (d) dqCDSC-PLL4, and (e) dqCDSC-PLL5 when the grid voltage
undergoes a phase angle jump of +40◦.

TABLE IV
SUMMARY OF RESULTS.

dqCDSC-PLL1 dqCDSC-PLL2 dqCDSC-PLL3 dqCDSC-PLL4 dqCDSC-PLL5
Phase-angle jump of 40◦

2% settling time 36.6 ms (1.83 cycles) 43.2 ms (2.16 cycles) 68.8 ms (3.44 cycles) 70.5 ms (3.52 cycles) 146.2 ms (7.31 cycles)
Phase overshoot 14.37◦ (35.9%) 14.16◦ (35.4%) 13.83◦ (34.57%) 13.83◦ (34.57%) 13.72◦ (34.3%)

Peak frequency error 16.47 Hz 14.35 Hz 9.5 Hz 9.49 Hz 4.55 Hz
Frequency step change of +3 Hz

2% settling time 36.3 ms (1.81 cycles) 42.7 ms (2.13 cycles) 68.1 ms (3.4 cycles) 69.6 ms (3.48 cycles) 144.2 ms (7.21 cycles)
Frequency overshoot 1.09 Hz (36.3%) 1.08 Hz (36%) 1.05 Hz (35%) 1.05 Hz (35%) 1.05 Hz (35%)

Peak phase error 5.77◦ 6.74◦ 10.59◦ 10.85◦ 22.52◦

Unbalanced voltage sag
Peak-to-peak phase error (freq.=49 Hz) 0.2◦ 0.16◦ 0.05◦ 0.07◦ 0.03◦

Peak-to-peak phase error (freq.=47 Hz) 0.62◦ 0.51◦ 0.18◦ 0.22◦ 0.1◦

Distorted grid condition
Peak-to-peak phase error (freq.=49 Hz) —— 0.05◦ 0.03◦ 0.01◦ 0◦

Peak-to-peak phase error (freq.=47 Hz) —— 0.15◦ 0.09◦ 0.03◦ 0.01◦

that the dqCDSC-PLL1 and dqCDSC-PLL2 have a rela-
tively fast transient response; the 2% settling time, i.e., the
time after witch the phase error reaches and remains within
0.02 × 40◦ = 0.8◦ neighborhood of zero, is around 2 cycles
of the fundamental frequency for these PLLs. The dqCDSC-
PLL5, however, has a slow transient response; the 2% settling
time is around 7 cycles for this PLL. The dqCDSC-PLL3
and dqCDSC-PLL4 have a moderate transient response; the
2% settling time is around 3.5 cycles for these PLLs. An
important issue that may need to be discussed here is the
transient behavior of the estimated frequency when the phase-
jump happens. From Fig. 7, it can be observed that the
dqCDSC-PLL1 and dqCDSC-PLL5 experience the largest and
smallest transient in the estimated frequency, respectively. The
reason is that the dqCDSC-PLL1 and dqCDSC-PLL5 have the
highest and lowest control bandwidth, respectively. Notice that
increasing the PLL bandwidth increases the coupling between
phase and frequency variables and, therefore, results in large

transients in the estimated frequency during the phase angle
jumps [37]. See Table IV for details.

B. Frequency Step Change
Fig. 8 shows the numerical results when the grid voltage

undergoes a frequency step change of +3 Hz. From the
settling-time point of view, similar results as previous test
can be observed. The 2% settling time, i.e., the time after
which the estimated frequency reaches and remains within
0.02 × 3 Hz= 0.06 Hz of its final value, is around 2 cycles
of fundamental frequency for dqCDSC-PLL1 and dqCDSC-
PLL2, around 3.5 cycles for dqCDSC-PLL3 and dqCDSC-
PLL4, and around 7 cycles for the dqCDSC-PLL5. See Table
IV for details.

C. Unbalanced Voltage Sag
In this test, the steady-state performances of PLLs under

an unbalanced voltage sag (V +
1,a = 0.4 pu, V +

1,b = 1 pu,
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Fig. 8. Numerical results for (a) dqCDSC-PLL1, (b) dqCDSC-PLL2, (c) dqCDSC-PLL3, (d) dqCDSC-PLL4, and (e) dqCDSC-PLL5 when the grid voltage
undergoes a frequency step change of +3 Hz.

and V +
1,c = 1 pu) are evaluated. Since we already know that

the PLLs under study have high filtering capabilities under
nominal frequency condition (see open-loop Bode plots shown
in Fig. 5), off-nominal frequency condition is considered in
this test. Notice that according to the European standard EN-
50160 [38], the grid frequency should be within the range
of 50 Hz −6%/ + 4% (i.e., 47 − 52 Hz). So, 47 Hz can be
considered as the worst case scenario for the grid frequency.

Fig. 9 shows the obtained results. It can be observed that all
PLLs, particularly the dqCDSC-PLL5, show a good detection
accuracy when the grid frequency is close to its nominal value.
However, their performances, particularly the performance
of dqCDSC-PLL1 and dqCDSC-PLL2, tend to worsen with
increasing the deviation of grid frequency from its nominal
value. See Table IV for details.

D. Distorted Grid Condition

In this test, the performances of PLLs are evaluated when
the grid voltage is distorted with harmonics. The numerical
results for dqCDSC-PLL1 are not presented as it has been
designed for unbalanced but not distorted grid conditions
(see Table I). The parameters of distorted input voltage are
summarized in Table V. Notice that the considered values
for the amplitude of harmonic components are the maximum
allowed values according to IEC standards (see Table I in
[39]). For the same reason mentioned in previous test, off-
nominal grid frequency condition is considered in this test.

The obtained results are shown in Fig. 10. It can be observed
that the detection accuracy of all PLLs, particularly dqCDSC-
PLL4 and dqCDSC-PLL5, is good for most applications. See
Table IV for details.

TABLE V
PARAMETERS OF DISTORTED INPUT VOLTAGE

Voltage component Amplitude (p.u.)
Fundamental positive sequence 1
5th harmonic negative sequence 0.06
7th harmonic positive sequence 0.05

11th harmonic negative sequence 0.035
13th harmonic positive sequence 0.03

E. Summary and Recommendations

• The dqCDSC-PLL1 and dqCDSC-PLL2 have a rather
fast transient response, however they suffer from a weak
performance under unbalanced grid conditions when the
grid frequency deviation from its nominal value is high.
So, we recommend to make the dqDSC/dqCDSC op-
erators in these PLLs frequency adaptive particularly
when high variations in grid frequency is expected. It
is worth mentioning that realizing a frequency-adaptive
dqCDSC operator can be achieved in different ways such
as 1) adaptive adjustment of the number of samples per
delay times in the dqCDSC operator, using the linear
interpolation method [28]-[31], using a variable sampling
frequency [18], [19]. The last method is not very popular
since a variable sampling frequency may not be always
allowed or possible.

• the dqCDSC-PLL3, the dqCDSC-PLL4, and, particularly,
the dqCDSC-PLL5 have a good performance under un-
balanced and distorted grid conditions, but they suffer
from a rather slow transient response. So, frequency
adaptability of dqCDSC operators in these PLLs are not
required. To overcome the problem of slow transient
response, a solution is presented in the next section.
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Fig. 9. Numerical results under an unbalanced voltage sag and during off-
nominal grid frequency conditions.

V. IMPROVEMENT OF RESPONSE TIME

This section deals with improving the response time of
dqCDSC-PLL3, dqCDSC-PLL4, and the dqCDSC-PLL5. No-
tice that the response times of dqCDSC-PLL1 and dqCDSC-
PLL2 are fast enough for most applications, so further im-
provement may not be required.

A. Proposed Approach

It was shown before that with increasing the total-time
delay introduced by the dqCDSC operator in the control loop,
the dqCDSC-PLL bandwidth should be reduced to ensure
its stability. So, the PLL bandwidth (response time) can be
increased (reduced) by compensating the delay introduced
by the dqCDSC operator. To this end, we recommend to
use a proportional-integral-derivative (PID) controller as the
LF. Compared to the PI controller, the PID controller has

Fig. 10. Numerical results under harmonically distorted and off-nominal
frequency conditions.

an additional zero which enables the designer to further
compensate the phase-delay in the control-loop.

The transfer function of the PID controller is considered of
the form

PID(s) = kp

(
1 + τis

τis

)(
1 + τds

1 + βτds

)
(23)

where kp is the proportional gain, and τi and τd are the integral
and derivative time constants, respectively. Notice that the
derivative action of the PID controller is filtered by a high
frequency pole, i.e., s = −1/ (βτd). For this reason, β (β < 1)
is typically referred to as the derivative filter factor. The value
of 0.1 is a typical choice for this factor.

B. Design Guidelines
As shown in (10), and repeated here for convenience, the

open-loop transfer function of the dqCDSC-PLL is in general
form as

Gol(s) =
θ̂+

1

θe

∣∣∣∣∣
D(s)=0

= V +
1 dqCDSCn1,n2,...,nm

(s)LF(s)
1

s
.

(24)
By substituting LF(s) = PID(s) into (24), and replacing
the transfer function of dqCDSC operator with its first-order
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approximation, we can obtain

GPID
ol (s) ≈ V +

1

(
1

Tds+ 1

)
kp

(
1 + τis

τis

)(
1 + τds

1 + βτds

)
1

s
(25)

where the superscript PID denotes that the PLL uses the PID-
type LF.

From (25) it can be observed that the phase delay introduced
by the dqCDSC operator can be compensated by selecting the
derivative time constant τd equal to Td. With this selection,
and neglecting the derivative filter (which is a high frequency
pole), (25) can be approximated by

GPID
ol (s) ≈ V +

1 kp

(
1 + τis

τis2

)
. (26)

Using (26), the closed loop transfer function can be obtained
as

GPID
cl (s) =

GPID
ol (s)

1 +GPID
ol (s)

≈ V +
1 kps+ V +

1 kp/τi

s2 + V +
1 kp︸ ︷︷ ︸

2ξωn

s+ V +
1 kp/τi︸ ︷︷ ︸
ω2

n

(27)

which is a standard second order transfer function, but with
a zero. According to (27), the control parameters kp and
τi can be determined by selecting proper values for the
damping factor ζ and natural frequency ωn. In most literature
ζ = 1/

√
2 is recommended to achieve the best damping, while

selection of ωn depends on the required control bandwidth.
Here the shortest possible response time (the widest possible
bandwidth) is needed, so ωn should be chosen as high as
possible. The question that arises immediately is: how we
should determine the upper limit for ωn? The answer is: using
the minimum required stability margin. In order to better
visualize this fact, Fig. 11 shows the PM variations of the
dqCDSC-PLL3, and dqCDSC-PLL4, and dqCDSC-PLL5 as a
function of ωn. The exact (no approximate) open-loop transfer
functions of these PLLs are used to obtain these plots. As
expected, for all PLLs the PM decreases as ωn increases. So,
the required stability margin limits the natural frequency ωn.

Most often, a PM within the range of 30◦ − 60◦ is good
enough to ensure the system stability. In this paper, a PM in
the middle of this range, i.e., PM = 45◦, is selected which
corresponds to selecting ωn = 2π22.85 rad/s, ωn = 2π21.92
rad/s, and ωn = 2π10.5 rad/s for the dqCDSC-PLL3 and
dqCDSC-PLL4, and dqCDSC-PLL5, respectively.

The suggested design procedure can be summarized as
follow

1) Select the derivative time constant τd equal to Td.
2) Select β = 0.1.
3) Define kp = 2ζωn/V

+
1 , and τi = 2ζ/ωn.

4) Select ζ = 1/
√

2.
5) Select ωn as high as possible without jeopardizing the

PLL stability margin.
6) Calculate kp and τi from definitions of step 3.
According to this design procedure, the control parameters

of these PLLs can be calculated as summarized in Table VI.
Fig. 12 shows the open-loop Bode plots of the dqCDSC-

PLL3, dqCDSC-PLL4, and dqCDSC-PLL5 when using the
PID-type LF. By comparing these Bode plots with those shown

TABLE VI
DESIGNED VALUES FOR THE PLLS CONTROL PARAMETERS WHEN USING

THE PID-TYPE LF.

kp = 2ζωn/V
+
1 τi = 2ζ/ωn τd = Td

dqCDSC-PLL3 203.04 0.00985 0.00458
dqCDSC-PLL4 194.77 0.01027 0.00469
dqCDSC-PLL5 93.3 0.02144 0.00969

in Fig. 5(c), (d), and (e), it can be observed that the PID-
type LF makes it possible to achieve a higher bandwidth and
therefore a faster transient response than that achievable using
the PI-type LF without jeopardizing the PLL stability.

C. Numerical Results

The effectiveness of the PID-type LF in improvement of
the response time of the dqCDSC-PLL3, dqCDSC-PLL4, and
dqCDSC-PLL5 is evaluated in this section. Similar to previous
numerical study, the nominal grid frequency is set to 50 Hz,
and the sampling frequency is fixed to 14.4 kHz.

Fig. 13 shows the numerical results when the grid frequency
undergoes a frequency step change of +3 Hz. Table VII
summarizes the obtained results. It can be observed that the
PID-type LF reduces the settling times of all PLLs to almost
half of those obtained using the PI-type LF (compare the
results of table VII with those of table IV for frequency-step
change test). So, effectiveness of PID-type LF in improvement
of PLL response time is confirmed.

Unfortunately, the response time improvement brought by
the PID-type LF is at the cost of degrading the filtering capa-
bility of the dqCDSC-PLL when the grid frequency deviation
from its nominal value is high. To illustrate this fact, Fig. 14
shows the performance of PLLs under harmonically distorted
grid conditions (see Table V for the parameters of distorted
input voltage). The detailed results are summarized in Table
VII.

According to these results, we recommend to use the PID-
type LF in the dqCDSC-PLL3, dqCDSC-PLL4, and dqCDSC-
PLL5 only when small variations in grid frequency is ex-
pected. For the case high variations in the grid frequency
is expected, using the PID-type LF in these PLLs makes
it necessary for them to have frequency-adaptive dqCDSC
operators, which increases their complexity and computational
burden due to the high number of dqDSCs they have in their
dqCDSC operators.

VI. COMPARISON WITH MAF-PLL
To highlight the advantages/disadvantages of the dqCDSC-

PLL, a detailed comparison between this PLL and MAF-PLL
(SRF-PLL with in-loop MAF) is carried out in this section.
First, a brief overview of MAF and MAF-PLL is presented.

A. Overview

MAF, also known as the rectangular window filter (RWF),
can be described in s-domain as

MAF(s) =
1− e−Tws

Tws
(28)
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Fig. 11. PM variations of (a) dqCDSC-PLL3, and (b) dqCDSC-PLL4, and (c) dqCDSC-PLL5 as a function of ωn.

Fig. 12. Open loop Bode plots of (a) dqCDSC-PLL3, (b) dqCDSC-PLL4, and (c) dqCDSC-PLL5 when using the PID-type LF (see Table VI for parameters).

Fig. 13. Numerical results for (a) dqCDSC-PLL3, (b) dqCDSC-PLL4, and (c) dqCDSC-PLL5 when the grid voltage undergoes a frequency step change of
+3 Hz. All PLLs use PID-type LF.

TABLE VII
SUMMARY OF RESULTS FOR dqCDSC-PLL3, dqCDSC-PLL4, AND dqCDSC-PLL5 WHEN USING PID-TYPE LF.

dqCDSC-PLL3 dqCDSC-PLL4 dqCDSC-PLL5
Frequency step change of +3 Hz

2% settling time 34.2 ms (1.71 cycles) 34.6 ms (1.73 cycles) 71.3 ms (3.56 cycles)
Frequency overshoot 1.21 Hz (40.33%) 1.22 Hz (40.67%) 1.21 Hz (40.33%)

Peak phase error 4.16◦ 4.37◦ 9.12◦

Distorted grid condition
Peak-to-peak phase error (freq.=49 Hz) 0.48◦ 0.17◦ 0.1◦

Peak-to-peak phase error (freq.=47 Hz) 1.58◦ 0.5◦ 0.23◦
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Fig. 14. Numerical results for dqCDSC-PLL3, dqCDSC-PLL4, and dqCDSC-
PLL5 under harmonically distorted grid condition. All PLLs use PID-type LF.

Fig. 15. Block diagram description of the MAF-PLL.

where Tw is the window length of MAF.
By substituting s = jω into (28), and performing some

simple mathematical manipulations, the magnitude and phase
expressions of the MAF can be obtained as

MAF(jω) =

∣∣∣∣ sin(ωTw/2)

ωTw/2

∣∣∣∣∠− ωTw/2. (29)

From (29), it can be noticed that the MAF provides unity gain
at zero frequency and zero gain at frequencies f = k/Tw (k =
±1, ±2, ±3, ...) in hertz. It means that the MAF passes the dc
component and completely blocks the frequency components
of integer multiples of 1/Tw in hertz. Two different values for
the MAF’s window length are typically suggested: Tw = T
and Tw = T/2. The former blocks all harmonic components,
and the latter blocks only even order harmonic components.

Incorporating the MAF into the PLL control-loop has been
recommended in many literature [15]-[20]. The block diagram
description of the MAF-PLL is shown in Fig. 15. Notice that
the MAF-PLL is exactly the same as the dqCDSC-PLL (see
Fig. 2), but the dqCDSC operator is replaced with MAF. It is
shown in next section that the MAF-PLL and dqCDSC-PLL
are equivalent under certain conditions.

B. Equivalence of dqCSDC-PLL and MAF-PLL
From trigonometric identities, we know that

sin(X) = 2 sin(X/2) cos(X/2)
sin(X/2) = 2 sin(X/4) cos(X/4)
...
sin(X/2m−1) = 2 sin(X/2m) cos(X/2m)

(30)

where X is an arbitrary signal, and m is a positive integer.
Using (30), sin(X) can be expressed as

sin(X)= 2m sin(X/2m) [cos(X/2) cos(X/4) . . . cos(X/2m)]

= 2m sin(X/2m)

m∏
i=1

cos(X/2i). (31)

As m tends to infinity, the underlined term in (31) tends to
X . According to this, (31) can be rewritten as

sin(X)

X
=

∞∏
i=1

cos(X/2i) (32)

and therefore ∣∣∣∣ sin(X)

X

∣∣∣∣ =

∞∏
i=1

∣∣cos(X/2i)
∣∣. (33)

Using (33), and considering that the arbitrary signal X can
be expressed as a geometric progression with a factor of 1/2,
i.e.,

X/2 +X/4 +X/8 + . . .︸ ︷︷ ︸
∞∑
i=1

X/2i

=
X/2

1− 1/2
= X (34)

we can obtain∣∣∣∣ sin(X)

X

∣∣∣∣∠−X =

∞∏
i=1

{∣∣cos
(
X/2i

)∣∣∠− (X/2i)}. (35)

Substituting X = ωTw/2 into (35), yields

MAF(jω)︷ ︸︸ ︷∣∣∣∣ sin(ωTw/2)

ωTw/2

∣∣∣∣∠− (ωTw/2)

=

∞∏
i=1

{∣∣cos
(
ωTw/2

i+1
)∣∣∠− (ωTw/2i+1

)}
. (36)

Notice that the left hand side of (36) is the same as (29).
As mentioned before, there are two typical choices for MAF

window length: 1) Tw = T , and 2) Tw = T/2. These two
cases are examined in the following.

By substituting Tw = T into (36), and considering the
magnitude and phase expressions of dqDSC operator in (3),
we can obtain

MAF(jω)|Tw=T =

∞∏
i=1

dqDSC2i(jω) (37)

or equivalently

MAF(s)|Tw=T = dqCDSC2,4,8,16,32,···(s) (38)

which means the MAF with window length of Tw = T is
mathematically equivalent with dqCDSC2,4,8,16,32,··· operator.
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Fig. 16. Bode plots of (a) MAF (Tw = T/2) and dqCDSC4,8,16,32 operator, and (b) MAF (Tw = T ) and dqCDSC2,4,8,16,32 operator.

Following a similar manner it can be shown that the MAF with
window length of Tw = T/2 is mathematically equivalent with
dqCDSC4,8,16,32,··· operator. In order to illustrate this fact,
Fig. 16(a) compares the Bode plots of MAF (Tw = T/2) and
dqCDSC4,8,16,32, and Fig. 16(b) compares the Bode plots of
MAF (Tw = T ) and dqCDSC2,4,8,16,32 operator. As expected,
they have a close frequency response.

According to above analysis, it can be concluded that the
dqCDSC-PLL4 (which uses the dqCDSC4,8,16,32 operator)
is practically equivalent to MAF-PLL(Tw = T/2), and the
dqCDSC-PLL5 (which uses the dqCDSC2,4,8,16,32 operator)
is practically equivalent to MAF-PLL(Tw = T ).

C. Numerical Results and Comparison

In previous section, the equivalence of dqCDSC-PLL4 and
MAF-PLL(Tw = T/2), and equivalence of dqCDSC-PLL5
and MAF-PLL(Tw = T ) was shown through a mathematical
analysis. To verify this finding, some numerical results are
presented in this section. In all PLLs, the PI controller is
considered as the LF. The PI controller’s gains for dqCDSC-
PLL4 and dqCDSC-PLL5 can be found in Table III. The
PI controller’s gains for MAF-PLL(Tw = T/2) and MAF-
PLL(Tw = T ) are the same as those for dqCDSC-PLL4 and
dqCDSC-PLL5, respectively.

Fig. 17 shows the numerical results when the grid volt-
age undergoes a phase-angle jump of 40◦. As expected, the
dqCDSC-PLL4 and MAF-PLL(Tw = T/2), as well as the
dqCDSC-PLL5 and MAF-PLL(Tw = T ) show well-matched
results. Similar well-matched results can be obtained under
distorted and unbalanced grid conditions, however these results
are not shown here for the sake of brevity.

It is worth mentioning that from the computational effort
point of view there is also no appreciable difference between
the dqCDSC-PLL4 and MAF-PLL (Tw = T/2) and between
the dqCDSC-PLL5 and MAF-PLL (Tw = T ).

D. Discussion

To highlight the advantages/disadvantages of the dqCDSC-
PLL compared to the MAF-PLL, some issues are discussed in
this section.

As mentioned before, to realize the dqCDSC with DSP in
practice, the T/ni (i = 1, 2, · · · ,m) signal delays in cascaded
units are realized by buffering Ni = (T/ni)/Ts samples in
DSP memories. In practice, it is almost impossible to make
every Ni (i = 1, 2, · · · ,m) in cascaded dqDSC operators
an integer as the DSP sampling frequency is determined by
factors other than the dqCDSC-PLL operator. For example, if
the dqCDSC-PLL operator is a part of the control of a grid-
connected voltage source converter (VSC), factors such as the
pulse width modulation (PWM) scheme, switching losses, etc.
determines the sampling frequency [28]. In such a case, every
non-integer Ni should be rounded to the nearest integer which
results in discretization error. Another approach is to use the
linear interpolation method, reducing the discretization error
at the cost of increased computational effort [28], [29].

Contrary to the dqCDSC operator, realization of MAF does
not require multiple time delays with different lengths (there
is only one time delay with length of Tw). So, it is more likely
to achieve an ideal discretization in implementation of MAF
with a given sampling frequency. It is the main advantage of
MAF over dqCDSC operator and therefore the MAF-PLL over
the dqCDSC-PLL.

The dqCDSC operator (dqCDSC-PLL) offers much higher
design flexibility than the MAF (MAF-PLL). The reason is that
in designing the MAF there is only one degree of freedom (i.e.,
the MAF window length), while in designing the dqCDSC
operator there are multiple degrees of freedom (i.e., number
of cascaded dqDSC operators and their delay factors). Thanks
to this flexibility, the designer can avoid unnecessary computa-
tional effort and achieve the shortest possible response time in
some grid scenarios, particularly when selective cancellation
of some specific disturbance components in the PLL control
loop is required. It is the main advantage of dqCDSC operator
over the MAF and therefore the dqCDSC-PLL over the MAF-
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Fig. 17. Numerical results for (a) dqCDSC-PLL4 and MAF-PLL(Tw = T/2), and (b) dqCDSC-PLL5 and MAF-PLL(Tw = T ) when the grid voltage
undergoes a phase angle jump of +40◦.

PLL.

VII. CONCLUSION

In this paper, a systematic approach to fine tune the control
parameters of dqCDSC-PLL (when PI-type LF is used in
the PLL) is proposed. This approach, which is based on
approximating the dynamics of dqCDSC operator with a firdt-
order LPF and using the SO method, has a general theme so
it can be applied to different versions of the dqCDSC-PLL.
Then, through extensive numerical results, the performance
of different versions of dqCDSC-PLL under different grid
scenarios are examined. These results provide a helpful insight
for designer about the advantages/disadvantages of different
versions of dqCDSC-PLL for their specific application.

To further improve the response time of some versions of
dqCDSC-PLL, using the PID controller (instead of the PI
controller) as the LF is suggested. A systematic approach to
design the control parameters is then proposed. Through Bode
plots and numerical results, it is shown that the PID-type LF
enables the dqCDSC-PLL to obtain a higher bandwidth (and
therefore a faster transient response) than that achievable using
the PI-type LF. However, this improvement is at the cost of
degrading the filtering capability of dqCDSC-PLL when large
variations in grid frequency happen. So, we recommend to use
the PID-type LF only when small variations in grid frequency
expected.

To further highlight the advantages/disavantages of
dqCDSC-PLL, a detailed comparison between this PLL and
MAF-PLL is carried out. It is shown that the dqCDSC-PLL
offers a higher design flexibility than the MAF-PLL, however
it may suffer from discretization error (due to non-ideal
sampling frequency) in some practical cases. Through a
detailed mathematical analysis it is also shown that the
dqCDSC-PLL and MAF-PLL are equivalent under certain
grid conditions. This finding is also confirmed through some
numerical results.
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