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Abstract
This paper deals with the problem of predicting the aver-
age intelligibility of noisy and potentially processed speech
signals, as observed by a group of normal hearing listen-
ers. We propose a prediction model based on the hypothesis
that intelligibility is monotonically related to the the amount
of Shannon information the critical-band amplitude envelopes
of the noisy/processed signal convey about the corresponding
clean signal envelopes. The resulting intelligibility predictor
turns out to be a simple function of the correlation between
noisy/processed and clean amplitude envelopes. The proposed
predictor performs well (ρ > 0.95) in predicting the intelligibil-
ity of speech signals contaminated by additive noise and poten-
tially non-linearly processed using time-frequency weighting.
Index Terms: Intelligibility prediction. Mutual information.
Auditory model. Time-frequency weighting. Single-channel
noise reduction.

1. Introduction
Speech intelligibility prediction algorithms aim at predicting the
average intelligibility of noisy and potentially processed speech
signals, as judged by a group of listeners. Robust intelligibility
predictors are of great practical importance, e.g., in guiding the
development process of speech processing algorithms in early
stages of the development phase, and have the potential to lead
to a better understanding of human intelligibility capabilities.

Most existing intelligibility predictors are rooted in the Ar-
ticulation Index (AI) [1], proposed first by French and Steinberg
[2] and later refined by Kryter [3], or the Speech Transmission
Index (STI) [4] proposed by Steeneken and Houtgast [5, 6].

The AI was originally intended for stationary noise situ-
ations. It has later been refined further and standardized as
the Speech Intelligibility Index (SII) [7]. Several extensions of
AI/SII exist, e.g., the Extended SII [8], which was developed
to take into account fluctuating noise sources, and Coherence
SII (CSII) which was proposed to better take into account non-
linear distortions such as peak- and center-clipping [9].

The STI approach [5, 6] extends the type of degradations
to convolutive noise sources. The STI has also seen extensions
to take into account the effects of various non-linear processing
operations, such as dynamic amplitude compression [10], and
envelope clipping [11]. More recently, the class of speech STI
(sSTI)methods [12] were proposed to improve performance for
these processing types.

Generally speaking, existing AI and STI based intelligibil-
ity predictors are less suited for speech signals distorted by non-
stationary noise sources and time-varying and non-linear pro-
cessing, e.g., as in single-channel speech enhancement systems

[13, 14]. Recently proposed intelligibility predictors, however,
have shown promising results for this type of distortion, e.g.,
the STOI measure [15].

In this paper we focus on speech signals contaminated by
additive noise, and potentially processed by a single-channel
noise reduction type of system mentioned above. We use a stan-
dard signal processing model of the auditory periphery1 consist-
ing of a filter bank simulating the bandpass characteristics of
the cochlea, and a full-wave rectification to simulate coarsely
the hair cell transduction in the inner ear. The basic idea is to
compare the resulting critical-band amplitude envelopes of the
clean and noisy/processed signal. Specifically, we hypothesize
that the intelligibility of the noisy/processed signal can be de-
scribed by the amount of information the corresponding ampli-
tude envelopes convey about the clean amplitude envelopes.

The proposed model shows similarities to STOI [15] both
in terms of structure and performance. However, it avoids some
of the heuristically motivated choices made in STOI and may
thus be seen as a better motivated model. It also bears some
similarities to the method described in [18], although the mo-
tivation for the proposed model is quite different: it arises as a
consequence of describing speech information transmission in a
simple model of the auditory periphery, whereas the method in
[18] has a more heuristic foundation in that it replaces the linear
correlation operation used in the STOI model with a generaliza-
tion, namely Shannon mutual information (MI). Furthermore,
the proposed model relies on lower bounds of MI, leading to
simple equations, whereas the method in [18] tries to estimate
MI, which is a harder problem.

2. Mutual Information between Amplitude
Envelopes

Fig. 1 shows a diagram of the proposed model. Let us focus
first on the upper half of the figure where S(n) denotes a ran-
dom process modeling a clean speech input signal2. Band pass
filtered signals S̃(k,m) are obtained by applying the Discrete
Fourier Transform to successive, overlapping analysis frames,

S̃(k,m) =
N−1∑
n=0

S(mD + n)w(n)e−j2πkn/N ,

where k and m denote the frequency bin index and the frame
index, respectively, D is the frame shift in samples, N is the

1This type of model is part of a typical automatic speech recognition
front-end [16], and similar models have been used in speech enhance-
ment systems [17] and for intelligibility prediction purposes [15].

2We use capital letters to denote random processes and variables and
lower-case letters to denote the corresponding realizations.
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Figure 1: Intelligibility of X(n) is estimated as the average
information present in the amplitude envelopes Xi(m) about
the clean amplitude envelopes Si(m).

frame length in samples, and w(n) is an analysis window.
A one-third octave band analysis is performed by grouping

the DFT bins, resulting in clean critical-band amplitudes

Si(m) =

√ ∑
k∈CBi

|S̃(k,m)|2, (1)

where CBi is the frequency index set representing the ith one-
third octave band, i = 1, . . . , L. The upper Voice Activity De-
tection (VAD) block in Fig. 1 identifies signal frames of S(n)
with speech activity; the corresponding frame index set is de-
noted by Zs. Finally, let M be the number of frames in a given
speech sentence, and form random super vectors by stacking
critical-band spectra

S = [S1(1)S2(1) · · ·SL(1)S1(2) · · ·SL(M)]T .

The noisy and potentially processed signal X(n), bandpass fil-
tered signals X̃(k,m), critical-band amplitudes Xi(m), and
corresponding super vector X are found in an analogous way.

We are interested in the average MI (to be defined ex-
actly below) between clean and noisy/processed amplitude en-
velopes, i.e., 1

L|Zs|
I(S ;X ), where | · | denotes set cardinality,

and L|Zs| estimates the number of clean speech-active critical-
band amplitudes. Let us assume that the frame length N is
large compared to the correlation time of the signals in ques-
tion such that the entries in each super vector are statistically
independent [19, 20]. Then I(S ;X ) decomposes into a sum of
MI I(Si(m);Xi(m)) terms

1

L|Zs|I(S ;X ) =
1

L|Zs|
∑

m∈Zs∩Zx

L∑
i=1

I(Si(m);Xi(m)).

The equation follows because summation over the frame index
set m = Zs∩Zx, where both signals S(n) and X(n) are speech
active, excludes I(Si(m);Xi(m)) terms which are all zero.

For notational convenience, we skip the subband and frame
index where possible, and replace Si(m) and Xi(m) by S
and X , respectively. The MI I(S;X) between clean and
noisy/processed critical-band amplitudes is given by [21]

I(S;X) = h(S)− h(S|X) [nats], (2)

where the differential entropy of S is

h(S) =

∫
S

fS(s) ln fS(s)ds,

and the conditional differential entropy h(S|X) is

h(S|X) =

∫
X

∫
S

fS,X(s, x) ln fS|x(s|x)dsdx. (3)

3. Upper Bound on h(S|X)

Estimating I(S;X) in Eq. (2) from limited data with time-
varying statistics is hard. Instead, we lower bound the MI
I(S;X); this turns out to require only second-order statistics
of fS,X(s, x). To do so, we upper bound the conditional en-
tropy h(S|X) in Eq. (2), see [22] for another application of this
procedure.

Let EX(·) denote expectation with respect to the random
variable X, and let μS|x =

∫
y
yfS|x(y|x)dy and σ2

S|x =∫
y
(y − μS|x)

2fS|x(y|x)dy denote the mean and variance, re-
spectively, of the random variable distributed according to the
conditional probability density function fS|x(s|x). Then, from
Eq. (3) it follows that

h(S|X) = −
∫
x

fX(x)

∫
s

fS|x(s|x) ln fS|x(s|x)dsdx

≤ EX

(
1

2
ln 2πeσ2

S|x

)

≤ 1

2
ln 2πeEX

(
σ2
S|x

)
.

(4)

The first inequality holds because the maximum entropy pdf for
a random variable Y with a given variance σ2

Y is the Gaussian
pdf, which has a differential entropy of h(Y ) = 1

2
ln 2πeσ2

Y .
The second inequality follows from Jensen’s inequality [21,
Thm.2.6.2] and the fact that ln(·) is concave.

How should we interpret σ2
S|x? Recall that the conditional

mean μS|x is equal to the minimum mean-square error (mmse)
estimator ŝmmse(x) of the clean random variable S upon ob-
serving the noisy and/or processed realization x [23]. Then,

σ2
S|x =

∫
y≥0

(y − ŝmmse(x))
2 fS|x(y|x)dy

� Dmmse(x).

(5)

So, σ2
S|x � Dmmse(x) is simply the mean-square error (mse)

resulting from estimating S upon observing x, using an mmse
estimator. Let Dmmse denote Dmmse(x) averaged across all
realizations of the noisy/processed critical-band amplitude x,

Dmmse =

∫
x≥0

fX(x)Dmmse(x)dx. (6)

Inserting Eq. (5) in Eq. (4) and using Eq. (6), we arrive at

hmmse(S|X) �
1

2
ln 2πeDmmse

≥ h(S|X).
(7)

Evaluating the upper bound hmmse(S|X) via Dmmse in Eq. (7)
may be difficult, since the pdf fS,X(s, x) is generally unknown.
Instead we form a looser upper bound by replacing the mmse
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estimator ŝmmse(x) = E(S|x) with the linear mmse estimator
ŝlmmse(x). This results in an mse of

Dlmmse(x) =

∫
y≥0

(y − ŝlmmse(x))
2 fS|x(y|x)dy

≥ Dmmse(x),

with equality for jointly Gaussian (S,X). Furthermore

Dlmmse �

∫
x≥0

fX(x)Dlmmse(x)dx

≥ Dmmse.

It follows that a looser upper bound on h(S|X) based on linear
mmse estimators is given by

hlmmse(S|X) �
1

2
ln 2πeDlmmse

≥ hmmse(S|X).

The quantity Dlmmse is a function of second-order statistics,
rather than the joint pdf fS,X (s, x): let μS = ES(S) and
μX = EX(X) denote expected values of S and X , respec-
tively, and let rSX = ES,X(SX), σ2

S = ES(S
2) − μ2

S and
σ2
X = EX(X2) − μ2

X denote the cross-correlation between S
and X, the variance of S, and the variance of X , respectively.
Finally, let ρSX = rSX−μSμX√

σ2

S
σ2

X

denote the linear correlation

coefficient between S and X. It can be shown that the linear
mmse (lmmse) is given by

Dlmmse = σ2
S

(
1− ρ2SX

)
. (8)

With the derived upper bounds on h(S|X) we have the fol-
lowing lower bound on I(S;X),

Ilmmse(S;X) ≤ I(S;X), (9)

where

Ilmmse(S;X) � max {h(S)− hlmmse(S|X), 0} . (10)

4. Differential Entropy h(S)
The MI lower bound in Eq. (9) depends on the differential en-
tropy h(S) of the clean speech critical-band amplitudes. To
derive an expression for h(S), note that when the frame length
N is large compared to the correlation time of the clean signal
S(n), then the real and imaginary parts of the DFT coefficients
S̃(k,m) can be considered independent zero-mean Gaussian
variables [19, 20]. Assuming further that the DFT coefficients
within the same critical band S̃(k,m), k ∈ CBi are identi-
cally distributed (i.e., the power spectral density is constant),
then Si(m) given in Eq. (1) follows a (scaled) chi-distribution
with k′ = 2|CBi| degrees of freedom.

It can be shown that the differential entropy of the corre-
sponding critical-band amplitude is

h(S) = h(Z)− 1

2
ln σ2

Z +
1

2
ln σ2

S. (11)

Thus, the differential entropy h(S) is a simple function of the
variance σ2

S of the critical-band amplitudes, because the two
first terms in Eq. (11) are functions only of the number of de-
grees of freedom k′ and can therefore be computed offline.

Inserting Eq. (11) in Eq. (10), we find

Ilmmse(S;X) = max

(
c′ +

1

2
ln(1− ρ2SX)−1, 0

)
, (12)

where c′ = h(Z)− 1
2
ln σ2

Z − 1
2
ln 2πe is a signal-independent

constant (but which depends on k′).

5. Implementation
Signals are resampled to a sampling frequency of 10 kHz, di-
vided into frames of length N = 256 samples, and a Hann anal-
ysis window w(n) is applied. The frame shift is D = N/2 =
128 samples, and a DFT order of N = 256 is used. DFT coef-
ficients are grouped into L = 15 third-order octave bands, with
a center frequency of the lowest band of 150 Hz, and the center
frequency of the highest band set to approximately 4.3 kHz, see
[15]. The VADs in Fig. 1 identify signal frames with energy no
less than ΔE dB of the signal frame with maximum energy.

Let S̄i(m) and X̄i(m) denote critical-band amplitudes with
frame indices m ∈ Zs ∩ Zx. The first- and second-order mo-
ments needed to evaluate I(S̄i(m), X̄i(m)) via Eqs. (12) and
Eq. (8) are estimated using first-order recursive smoothing, i.e.,

r̂SiXi
(m+1) = αr̂SiXi

(m)+ (1−α)S̄i(m+1)X̄i(m+1),

and similarly for the other moments.
Let Î(Si(m);Xi(m)) denote the estimate of

Ilmmse(Si(m);Xi(m)) obtained by replacing expected
values by recursively estimated moments. The average per
sentence MI is finally computed as

Ĩ(S ;X ) =
1

L|Zs|×∑
m∈Zx∩Zs

L∑
i=1

min
(
Î(Si(m);Xi(m)), Imax

)
,

where the upper limit Imax takes into account that at a suffi-
ciently high SNR, generally speaking, a signal is perfectly in-
telligible, and increasing the SNR further cannot increase intel-
ligibility.

The values of the three parameters, α, ΔE , and Imax are
summarized in Table 1. The value of α = 0.95 corresponds
to a time constant of 250 ms. This is in the same range as for
STOI [15] where statistics were computed across time spans of
roughly 400 ms. The value of Imax = 0.2 nats was determined
heuristically. Intelligibility prediction performance appears to
be insensitive to the exact values of any of these parameters.

6. Simulation Results
We evaluate the proposed intelligibility predictor using noisy
speech signals processed with different time-frequency weight-
ing strategies.

6.1. Signals and Processing Conditions

6.1.1. Additive Noise

The first set of signals is from the study described by Kjems et.
al. in [24]. Speech signals from the Dantale II sentence test [25]
are contaminated by four different additive noise sources: sta-
tionary speech-shaped noise, car cabin noise, bottle hall noise,
and two-talker babble noise. While the first two noise sources
are essentially stationary, the last two are highly non-stationary.
Noisy test signals were generated with SNRs from -20 dB to
5 dB in steps of 2.5 dB, and the intelligibility was evaluated

Parameter α ΔE [dB] Imax [nats]
Value 0.95 30 0.2

Table 1: Parameter values in proposed model.
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by 15 normal-hearing subjects. The test included a total of 44
different test conditions. For details we refer to [24].

6.1.2. Ideal Binary Mask Signals

In a second experiment, Kjems [24] processed the noisy signals
from above using the technique of ideal time-frequency segre-
gation (ITFS) [26], and measured the intelligibility of the result-
ing signals for different versions of the ITFS processing. For
each of the four noise types, three different SNRs were used:
two SNRs were selected corresponding to the 20% and 50%
speech reception threshold3, while the third SNR was fixed at
-60 dB. As above, 15 subjects participated. The test encom-
passed a total of 168 test conditions.

6.2. Per Sentence Mutual Information vs Intelligibility

In order to estimate absolute intelligibility, e.g. the proportion
of correctly identified words in an intelligibility test, a mapping
is needed between the outcome of the intelligibility predictor,
and the true underlying intelligibility. This mapping is a func-
tion of many factors, including the noise type, the test type, the
processing applied to the noisy signal, the redundancy of the
speech material, and, obviously, the intelligibility predictor. As
in [27, 15], we use a mapping which is a logistic function of the
outcome Ĩ of the intelligibility predictor

f(Ĩ) =
1

1 + exp(aĨ + b)
,

where a, b ∈ � are test specific model parameters, which are
estimated to fit the intelligibility data.

For numerical performance evaluation of intelligibility pre-
dictors, we use the linear correlation coefficient ρ between av-
erage intelligibility scores obtained through listening tests, and
the outcomes of the intelligibility predictors, and the root mean-
square prediction error σ [15]. Let Ĩk denote the intelligibility
prediction for the kth processing condition, and let SIk denote
the average across listeners in the corresponding intelligibility
test. Furthermore, let μf(Ĩ), and μSI denote the averages of
f(Ĩk) and SIk, respectively, across listening test conditions,
and let K denote the number of test conditions. The linear cor-
relation coefficient is then defined as

ρ =

∑
k

(
f(Ĩk)− μf(Ĩ)

)
(SIk − μSI)√∑

k

(
f(Ĩk)− μf(Ĩ)

)2 ∑
k (SIk − μSI)

2

,

and the root mean-square prediction error σ is defined as

σ =

√
1

K

∑
k

(
f(Ĩk)− SIk

)2

.

Finally, cross-validated values ρ̄ and σ̄ are computed using n-
fold (n = 4) cross-validation. Specifically, for each data set,
the set is randomly divided into n = 4 equal size subsets, the
free parameters a, b in the logistic function are fitted to the n−1
subsets, after which ρ and σ are computed based on the remain-
ing subset. This procedure is repeated for each subset, and the
averages, ρ̄ and σ̄, of the resulting ρ and σ values are computed.

3The x % SRT is defined as the SNR at which the average listener
correctly identifies x percent of the test words.

Method Name Remarks
STOI [15] The short-time objective intelligibility

measure (STOI).
CSII-MID [9] The mid-level coherence SII.
CSII-BIF [28] The coherence SII with signal-

dependent band importance functions
(named CSIImid, W4, p = 1 in [28]).

STI-NCM [12] The normalized covariance speech trans-
mission index.

NSEC [29] The normalized subband envelope corre-
lation method.

Table 2: Intelligibility predictors for comparison.
.

6.3. Comparison to Other Intelligibility Predictors

We compare the performance of the proposed intelligibility pre-
dictor, which will be abbreviated SIMI (Speech Intelligibility
prediction based on Mutual Information), to several methods
from the literature, see Table 2.

Table 3 summarizes the intelligibility prediction perfor-
mance in terms of ρ̄ and σ̄. For additive noise all intelligibil-
ity predictors work well (ρ̄ > 0.93). For the ITFS processed
signals, SIMI and STOI work well, resulting in ρ̄ > 0.95 and
σ̄ < 9.0, while NSEC shows reasonable performance. The re-
maining methods fail in this situation. The results of Table 3 are
in general agreement with the results reported in [30, 15].

Test Add.Noise ITFS Proc.
ρ̄ σ̄ ρ̄ σ̄

SIMI 0.975 8.95 0.957 8.49
STOI 0.969 9.45 0.966 8.20

CSII-MID 0.943 12.72 0.352 27.45
CSII-BIF 0.978 7.95 0.517 25.73
STI-NCM 0.934 13.41 0.613 20.56
NSEC 0.951 11.48 0.834 14.59

Table 3: Performance of intelligibility predictors in terms of
cross-validated linear correlation coefficient ρ̄, and root mean-
square prediction error σ̄.

7. Conclusion
We propose that intelligibility could be monotonically related
to the mutual information between amplitude envelopes of the
clean and the noisy/processed speech signal. We derive lower
bounds on the mutual information which turn out to be simple
functions of the linear correlation between these amplitude en-
velopes. Interestingly, the use of linear correlation coefficients
is not a heuristically motivated choice, but follows as a conse-
quence of the assumed auditory model (and the hypothesis that
intelligibility is related to mutual information); this is in con-
trast to existing intelligibility predictors, e.g. STOI [15], where
the use of linear correlation is less well motivated. Simula-
tion experiments with the proposed method show that it is able
to reliably estimate the average intelligibility of speech signals
contaminated by stationary and non-stationary noise sources as
well noisy speech processed with the ideal time-frequency seg-
regation (ITFS) technique [26]. Future research includes evalu-
tation of the proposed intelligibility predictor for other types of
signal distortions.
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