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Abstract. In analyzing stochastic dynamic systems, analysis of tiséesy uncertainty due to ran-
domness in the loads plays a crucial role. Typically timéesenf the stochastic loads are simulated
using traditional random phase method. This approach awedbivith fast Fourier transform algo-
rithm makes an efficient way of simulating realizations af #tochastic load processes. However it
requires many random variables, i.e. in the order of magdeitnf 1000, to be included in the load
model. Unfortunately having too many random variables m phoblem makes considerable diffi-
culties in analyzing system reliability or its uncertainkforeover applicability of the probability
density evolution method on engineering problems facésardifficulties when the system embeds
too many random variables. Hence it is useful to devise a ogetthich can make realization of the
stochastic load processes with low, say less than 20, nuofiib@ndom variables. In this article we in-
troduce an approach, so-called "physical modeling of sisttb processes”, and show its applicability
for simulation of the wave surface elevation.

Introduction

The application of PDEM requires that the stochastic loat@ss and possible uncertain parameter
fields related to the structural model are discretized im$eof a small number of basic random vari-
ables. With this specific problem in mind Li et al. [1] deviseturbulence model based on so-called
evolutionary phases, which are driven merely a single basidom variable. The method generates
time varying random phases for the harmonic components péetsal decomposition of the turbu-
lence process, which are shown to be mutual independentrafatraly distributed in the interval

[0, 27]. Hence, the method is stochastic equivalent to the wellvkn@ndom phase representation of
a turbulence field. In the present paper the same approadtelbasapplied as a stochastic model of
the irregular sea-state impinging on the point absorber.

Next we perform some tests that checks similarity of the oistpf this method to that of the
standard Monte Carlo simulation. In the first step the dtatisproperties of the time series generated
by this method will be represented which reveals the simylaf this method to the random phase
method. Outcomes of the time series simulated by this methibte checked to fulfill the require-
ments for the Monte Carlo simulation. A truncated doubleoggmtial distribution is proposed to be
used for the initial evolution time of the phases. Finaltyisishown that the simulated time series
generated by this method fulfill the statistical requiretseri the process.
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Fig. 1: One-sided modified JONSWAP auto-spectral densiigtion as a function of the bandwidth
parameter ¢, H,=3m. :07=0.03.- - -1 04=0.1.- - -: 04=0.5. :0=1.0.

Stochastic Wave L oad M odél

The irregular plane waves are assumed to propagate in titespasdirection. The surface elevation
at the positionr at the timet is described by the homogeneous and stationary zero meassi@au
process{n(x,t), (z,t) € R*}. The double sided auto-spectral density function of thessetace
elevation process at a given position is defined by the fotigwlightly modified double-sided version
of the JONSWAP spectrum, (Hasselmagtial. 1973)
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T, is the peak periody, = 27/T, is the related angular peak frequeng, is the significant wave
height, ands; is a band-width parametes. is a normalization parameter to be determined, so the
relationH, = 4.00,, is fulfilled, corresponding to Rayleigh distributed waveghgs. The auto-spectral
density function has been shown in Figure 1 for various \&hfer;. Notice the abscissa has been
normalized with respect to the angular peak frequengywhich depends o/, as indicated in the
second relation in (2). The surface elevation field adm#sdfiowing spectral representation

J
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where.J is the number of harmonic components in the spectral decsitiqo, ; denotes the standard
deviation of harmonic components with angular frequenici¢se intervalw;, w; + Aw], and®; are



mutually independent identical distributed random vdgapuniformly distributed if0, 27]. k; is the
wave number of thg¢th harmonic wave component. This is related to the angudauencyw; by the
well-known dispersion relation of linear gravity wavesyé8dsen and Jonsson 1980)
w2h

kjhtanh(k;h) = ? (5)
The phase®; are referred to as the basic variables of the model. The nurhloé these variables
is typically 10> — 10%, which renders the model (28) useless for application inRB&EM. Inspired
by the so-called evolutionary phase approach bgtlal., (Li et al. 2012b) for handling the analog
problem of one-dimensional frozen turbulence processasagating non-dispersive with the mean
wind velocity according to Taylor’'s hypothesis of frozendulence, the following alternative spectral
representation is suggested

J
n(x,t) = Z \/577]' cos (wjt —kjx— (TJJ-) (6)

where
éj = mod(k:jwjnj 1y, 27?) (7)

k;jw;n; Ty is referred to as the evolutionary phases, dne- k;w,n; denotes a characteristic velocity
of the fluid particles in the wave motiofy is an assumed common origin of time for the evolutionary
phases, which is considered a random variable. Since tbespettral density function is determined
by the amplitude of the harmonic components, both repratenst (3) and (6) represent the exact
auto-spectral density,, (w) for arbitrary values of the phasés and®; within an error determined
by the discretization of the spectrum as given by the parandet. The important point is that the
latter representation is generated by merely a single randwiable.

Probability distribution of Tj

The conventional way to obtain the Probability Density Riorc(PDF) of theT, is to measure time
series of the wave surface elevation and perform a backwaalysis on each one of them them to
obtain its7;. Finally an empirical PDF can be fitted to these calculatddesa This is performed on
the data obtained from for the buoys installed in Hansth@smmark with the procedure described
in the following. The basic procedure is described in [2]eTHasic phase of harmonic wave in the
peak frequency is defined as , and its phase evolutionargitelof the fluid particle is defined as
®(w,, 0), and its phase evolutionary velocity of the fluid particleléfined as), = k,w,n,. Propa-
gating the wave inversely from the commencement of timehysa series of values of time quantity
Ty, whereby the phase valdgw,,0) = 27(n — 1), can be derived from the following equation

O (wy, 0) N 2n(n —1)

T, =
kpwpnp kpwpnp

; TLZI,"',NU (8)

WhereTj is a time quantity with positive values;denotes the number domain of starting-time that
belongs to natural numberd;,, is limited to be10° due to computational costs. The phase value at a
typical Tj is solved by

D (wy, To) = P(wp, 0) — kpwpn, Ty, j=1,---,m (9)
If T}, satisfies the following constraint condition of maximum idéion

| mod {®(w,, Tp), 27} |[< e (10)
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Fig. 2: Analysis of the phases of the wave elevations; a) Meake) versus fitted[(J) phases of the
time series, b) Histogram and fitted PDF of the meassd

wheree is the error tolerance. The correspondifigis then viewed as the desirable starting-time of
phase evolution. Since the limited lower frequency harmevaves contain the primary information
and most energy of turbulence, identification of the stgrtime of phase evolution is only focused
on the lower frequency domain. In general it is extremelfidift to derive the starting-time in every
frequency point. Hence the phases related to only a limitedber of harmonics within the low
frequency range, where most of the energy of the processiteotrated, are used to obtdin Here
only 10 phases at high energy part of the surface wave specra used for this purposé; of
totally 2500 measured time series of 800-sec wave elevéfiom Hanstholm), whose significant
wave height is about 3m, were identified first. The proposatcted double exponential distribution
is then fitted to the identified;s. The quality of the fit is shown in figure

Statistical properties of the smulated surface elevations

Three values foff}, are then chosen from the three regions obtained by the preaioalysis and time
series of the surface elevation associated to them are aieaulThe resulted realizations are shown
in figure 3. It is clear that both for very small and very largdues oft, the realizations of the wave
surface elevation deviates from the way they should loak @nly wher, is chosen in the calculated
range the realization seems to be correct. The histograne@fénerated phases for the sagwalues
used in the previous analysis are shown in figure 4. Agaimitaseen that distribution of the phases
shown in figures 4.a and 4.c deviate to some extent from tiferamdistribution while figure 4.b fits
better than the former two to the uniform distribution. Hexd¢runcated exponential distribution (11)
Is suggested. The scale parametespecifies the mean value (and variancejofin appendix A it is
shown that the distribution of the phases which tfigis are drawn from this family of distributions
asymptotically approaches uniform distribution.

o (_%> .t E [ty 1]
fro(t) = ¢ t; (1 — exp (—m> ) (11)

t3
0 .ttt

Next we try to check the distribution of the samples of theggates surface elevations using Monte
Carlo simulation. Here we have used 5000 samples with differandomly chosety’s in the de-
fined range. It is expected that the generated realizatibtieeavave surface elevation are Gaussian
distributed in every time instant. It is seen that the est@adistogram fits acceptably to the normal
distribution with the analytical variance of the wave eléwao; = [ /4. Moreover since the process
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Fig. 3: Samples of the wave elevation time series for diffex@lues of; a)t, = 10® b) t, = 10"
C)typ =5 X 1018,
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Fig. 4: Histogram of sampled phasés H, = 3 m,o; = 0.1, J=2048; a}, = 10% s, b)t; = 10'° s,
C)to=5x 10%s,
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Fig. 5: Statistical properties of the simulated time selbgghe proposed empirical PDF; a) PDF
of the surface elevation(t) obtained as ensemble average of one realization, b) Cosopadf
histogram of samples of one realization with Gaussian itligion N ~ (0,037), c) PDF of the
surface elevatiom(t) obtained as ensemble average at the time 732 s of 5000 time-series, d)
Comparison of histogram with Gaussian distributidn~ (0, o72).

is stationary, the distribution of the samples could beeadd by ergodic sampling. Figures 5.a and
5.b show the estimated PDF and QQ-plots of samples of oneagah of wave surface elevation
by ergodic sampling respectively. Figures 5.c and 5.d st@nestimated PDF and QQ-plots of the
samples of 5000 realization of wave surface elevation attaiogime using Monte Carlo simulation
respectively. Finally the covariance function of the sagspienerated by the introduced method are
shown in figure 6. The covariance of the samples of the pramessestimated as ensemble average
of 100 samples of the process simulated by the introducebladefor both too small and too large
values oft, the covariances in the non zero time lags underestimatecotregiance of the process.
All figures confirm that distribution of the samples is wellteteed with that of Gaussian. As verified
by these results the(z, t) becomes zero-mean and normal distributed, if the sampleesaifT is
drawn from a finite intervalt,, t2]. Under this condition (6) becomes stochastically equiviie (3).

Concluding Remarks

A new method for modeling wave surface elevation is represem the article. The concept of the
method is similar to that of the random phase. The advanthgeeanethod is that it binds all the
random phases of the problem into one by some techniqueusieful in view of applying PDEM
on stochastic dynamic systems where appreciably high nuaflvendom variables are associated in
analysis. Normally most of these random numbers come frastbchastic loads of the model i.e.
wave loads or seismic loads. Dynamic analysis of strucaysiems excited by such loads involves
thousands of random variables which is out of reach of PDERNnde such a method which can
decrease the number of the random variables appreciabgcessary to be used in this regards. It is
shown in the paper that this method fulfills the statistiegjuirements of the stochastic process i.e.
uniform distribution of random phases and Gaussian digioh of the samples of the process and
correct power spectrum.
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Fig. 7: Schematic representation of the phases generatig physical modeling method.
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Appendix

Distribution of the random phases generated by the propostdod is committed here. Assumge
is distributed as

frlto) = —e B, B=l—c & (12)
t3
according to figure 7 we have
ko \
Fq>j (gbj) = p(CI)] < gb]) = Z p(2k’ﬂ' < Cjto < 2km + ¢])
. = (13)
2 2k + ¢, 2km
5 ((222) - ()
k=k € €
1 J



wherec;t; = 2(k; — 1)m + mod(c;t1, 2m) ande,ty = 2(ky — 1)m 4+ mod(c,ts, 2m). Then

o (6) = f; R o (2’” 2+ 9 ‘Z’]) (14)
S — €
Next, the characteristic function @f; can be calculated [3]
2T S )
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Cj / I ( Cj 1

substituting (12) into (15) results

k=k1

k2

Sy, (w) = otaB /exp (zwgbj 2kn +Cj5;3_ Cjtl) do,
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wherey = iw — c— and() = exp(— ) As a special case assue— 0 andt, — oo then
J J
ki — 0, ks — oo andf — 1. For this case we have

1 _n 1 e —1
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(18) proves that th&; will be distributed uniformly betweef and2r asymptotically as:;t; — oo
for the proposed distribution.

References

[1] J.Li, J. Chen, Stochastic Dynamics of Structures, 1stiéd Wiley, 2009.

[2] J.Li, Y.Peng, Q.Yan, Modeling and simulation of fluctugt wind speeds us-
ing evolutionary phase spectrum, Probabilistic EngimegriMechanics (0) (2013) -.
doi : 10. 1016/ . pr obengmech. 2013. 01. 001.

[3] Y. K. Lin, G. Cali, Probabilistic Structural Dynamics, \&caw-Hill, 2004.


http://dx.doi.org/10.1016/j.probengmech.2013.01.001

