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Abstract. In analyzing stochastic dynamic systems, analysis of the system uncertainty due to ran-
domness in the loads plays a crucial role. Typically time series of the stochastic loads are simulated
using traditional random phase method. This approach combined with fast Fourier transform algo-
rithm makes an efficient way of simulating realizations of the stochastic load processes. However it
requires many random variables, i.e. in the order of magnitude of 1000, to be included in the load
model. Unfortunately having too many random variables in the problem makes considerable diffi-
culties in analyzing system reliability or its uncertainty. Moreover applicability of the probability
density evolution method on engineering problems faces critical difficulties when the system embeds
too many random variables. Hence it is useful to devise a method which can make realization of the
stochastic load processes with low, say less than 20, numberof random variables. In this article we in-
troduce an approach, so-called ”physical modeling of stochastic processes”, and show its applicability
for simulation of the wave surface elevation.

Introduction

The application of PDEM requires that the stochastic load process and possible uncertain parameter
fields related to the structural model are discretized in terms of a small number of basic random vari-
ables. With this specific problem in mind Li et al. [1] deviseda turbulence model based on so-called
evolutionary phases, which are driven merely a single basicrandom variable. The method generates
time varying random phases for the harmonic components of a spectral decomposition of the turbu-
lence process, which are shown to be mutual independent and uniformly distributed in the interval
[0, 2π]. Hence, the method is stochastic equivalent to the well-known random phase representation of
a turbulence field. In the present paper the same approach hasbeen applied as a stochastic model of
the irregular sea-state impinging on the point absorber.

Next we perform some tests that checks similarity of the outputs of this method to that of the
standard Monte Carlo simulation. In the first step the statistical properties of the time series generated
by this method will be represented which reveals the similarity of this method to the random phase
method. Outcomes of the time series simulated by this methodwill be checked to fulfill the require-
ments for the Monte Carlo simulation. A truncated double exponential distribution is proposed to be
used for the initial evolution time of the phases. Finally, it is shown that the simulated time series
generated by this method fulfill the statistical requirements of the process.
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Fig. 1: One-sided modified JONSWAP auto-spectral density function as a function of the bandwidth
parameterσf , Hs= 3m. —: σf=0.03.- - -: σf=0.1.· · · : σf=0.5.− · − · −: σf=1.0.

Stochastic Wave Load Model

The irregular plane waves are assumed to propagate in the positive x-direction. The surface elevation
at the positionx at the timet is described by the homogeneous and stationary zero mean Gaussian
process{η(x, t) , (x, t) ∈ R2}. The double sided auto-spectral density function of the sea-surface
elevation process at a given position is defined by the following slightly modified double-sided version
of the JONSWAP spectrum, (Hasselmannet al. 1973)
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Tp is the peak period,ωp = 2π/Tp is the related angular peak frequency,Hs is the significant wave
height, andσf is a band-width parameter.β is a normalization parameter to be determined, so the
relationHs = 4.0ση is fulfilled, corresponding to Rayleigh distributed wave heights. The auto-spectral
density function has been shown in Figure 1 for various values of σf . Notice the abscissa has been
normalized with respect to the angular peak frequencyωp, which depends onHs as indicated in the
second relation in (2). The surface elevation field admits the following spectral representation

η(x, t) =

J
∑

j=1

√
2 ηj cos

(

ωj t− kj x− Φj

)

, ωj = (j − 1)∆ω (3)

ηj =
√

2Sηη(ωj)∆ω (4)

whereJ is the number of harmonic components in the spectral decomposition,ηj denotes the standard
deviation of harmonic components with angular frequenciesin the interval]ωj , ωj +∆ω], andΦj are



mutually independent identical distributed random variables, uniformly distributed in[0, 2π]. kj is the
wave number of thejth harmonic wave component. This is related to the angular frequencyωj by the
well-known dispersion relation of linear gravity waves, (Svendsen and Jonsson 1980)

kjh tanh(kjh) =
ω2
jh

g
(5)

The phasesΦj are referred to as the basic variables of the model. The number J of these variables
is typically 102 − 104, which renders the model (28) useless for application in thePDEM. Inspired
by the so-called evolutionary phase approach by Liet al., (Li et al. 2012b) for handling the analog
problem of one-dimensional frozen turbulence processes propagating non-dispersive with the mean
wind velocity according to Taylor’s hypothesis of frozen turbulence, the following alternative spectral
representation is suggested

η̄(x, t) =

J
∑

j=1

√
2 ηj cos

(

ωj t− kj x− Φ̄j

)

(6)

where

Φ̄j = mod
(

kjωjηj T0 , 2π
)

(7)

kjωjηj T0 is referred to as the evolutionary phases, andϑj = kjωjηj denotes a characteristic velocity
of the fluid particles in the wave motion.T0 is an assumed common origin of time for the evolutionary
phases, which is considered a random variable. Since the auto-spectral density function is determined
by the amplitude of the harmonic components, both representations (3) and (6) represent the exact
auto-spectral densitySηη(ω) for arbitrary values of the phasesΦj andΦ̄j within an error determined
by the discretization of the spectrum as given by the parameter∆ω. The important point is that the
latter representation is generated by merely a single random variable.

Probability distribution of T0

The conventional way to obtain the Probability Density Function (PDF) of theT0 is to measure time
series of the wave surface elevation and perform a backward analysis on each one of them them to
obtain itsT0. Finally an empirical PDF can be fitted to these calculated values. This is performed on
the data obtained from for the buoys installed in Hanstholm,Denmark with the procedure described
in the following. The basic procedure is described in [2]. The basic phase of harmonic wave in the
peak frequency is defined as , and its phase evolutionary velocity of the fluid particle is defined as
Φ(ωp, 0), and its phase evolutionary velocity of the fluid particle isdefined asϑp = kpωpηp. Propa-
gating the wave inversely from the commencement of time history, a series of values of time quantity
T0, whereby the phase valueΦ(ωp, 0) = 2π(n− 1), can be derived from the following equation

T0 =
Φ(ωp, 0)

kpωpηp
+

2π(n− 1)

kpωpηp
, n = 1, · · · , Nu (8)

WhereT0 is a time quantity with positive values;n denotes the number domain of starting-time that
belongs to natural numbers;Nu is limited to be109 due to computational costs. The phase value at a
typicalT0 is solved by

Φ(ωp, T0) = Φ(ωp, 0)− kpωpηpT0 , j = 1, · · · , m (9)

If T0 satisfies the following constraint condition of maximum deviation

| mod {Φ(ωp, T0), 2π} |≤ ε (10)
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Fig. 2: Analysis of the phases of the wave elevations; a) Measured (◦) versus fitted (�) phases of the
time series, b) Histogram and fitted PDF of the measuredT0s.

whereε is the error tolerance. The correspondingT0 is then viewed as the desirable starting-time of
phase evolution. Since the limited lower frequency harmonic waves contain the primary information
and most energy of turbulence, identification of the starting-time of phase evolution is only focused
on the lower frequency domain. In general it is extremely difficult to derive the starting-time in every
frequency point. Hence the phases related to only a limited number of harmonics within the low
frequency range, where most of the energy of the process is concentrated, are used to obtainT0. Here
only 10 phases at high energy part of the surface wave spectrum are used for this purpose.T0 of
totally 2500 measured time series of 800-sec wave elevation(from Hanstholm), whose significant
wave height is about 3m, were identified first. The proposed truncated double exponential distribution
is then fitted to the identifiedT0s. The quality of the fit is shown in figure

Statistical properties of the simulated surface elevations

Three values forT0 are then chosen from the three regions obtained by the previous analysis and time
series of the surface elevation associated to them are simulated. The resulted realizations are shown
in figure 3. It is clear that both for very small and very large values oft0 the realizations of the wave
surface elevation deviates from the way they should look like. Only whent0 is chosen in the calculated
range the realization seems to be correct. The histogram of the generated phases for the samet0 values
used in the previous analysis are shown in figure 4. Again it can be seen that distribution of the phases
shown in figures 4.a and 4.c deviate to some extent from the uniform distribution while figure 4.b fits
better than the former two to the uniform distribution. Here, a truncated exponential distribution (11)
is suggested. The scale parametert3 specifies the mean value (and variance) ofT0. In appendix A it is
shown that the distribution of the phases which theirT0’s are drawn from this family of distributions
asymptotically approaches uniform distribution.

fT0
(t) =



















exp
(

− t−t1
t3

)

t3

(

1− exp
(

− t2−t1
t3

)) , t ∈ [t1, t2]

0 , t /∈ [t1, t2]

(11)

Next we try to check the distribution of the samples of the generates surface elevations using Monte
Carlo simulation. Here we have used 5000 samples with different randomly chosent0’s in the de-
fined range. It is expected that the generated realizations of the wave surface elevation are Gaussian
distributed in every time instant. It is seen that the estimated histogram fits acceptably to the normal
distribution with the analytical variance of the wave elevationσ2

η = H2
s/4. Moreover since the process
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Fig. 3: Samples of the wave elevation time series for different values oft0; a) t0 = 103 b) t0 = 1010

c) t0 = 5× 1018.
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is stationary, the distribution of the samples could be achieved by ergodic sampling. Figures 5.a and
5.b show the estimated PDF and QQ-plots of samples of one realization of wave surface elevation
by ergodic sampling respectively. Figures 5.c and 5.d show the estimated PDF and QQ-plots of the
samples of 5000 realization of wave surface elevation at a certain time using Monte Carlo simulation
respectively. Finally the covariance function of the samples generated by the introduced method are
shown in figure 6. The covariance of the samples of the processare estimated as ensemble average
of 100 samples of the process simulated by the introduced method. For both too small and too large
values oft0 the covariances in the non zero time lags underestimated thecovariance of the process.
All figures confirm that distribution of the samples is well matched with that of Gaussian. As verified
by these results theη(x, t) becomes zero-mean and normal distributed, if the sample values ofT0 is
drawn from a finite interval[t1, t2]. Under this condition (6) becomes stochastically equivalent to (3).

Concluding Remarks

A new method for modeling wave surface elevation is represented in the article. The concept of the
method is similar to that of the random phase. The advantage of the method is that it binds all the
random phases of the problem into one by some technique. It isuseful in view of applying PDEM
on stochastic dynamic systems where appreciably high number of random variables are associated in
analysis. Normally most of these random numbers come from the stochastic loads of the model i.e.
wave loads or seismic loads. Dynamic analysis of structuralsystems excited by such loads involves
thousands of random variables which is out of reach of PDEM. Hence such a method which can
decrease the number of the random variables appreciably is necessary to be used in this regards. It is
shown in the paper that this method fulfills the statistical requirements of the stochastic process i.e.
uniform distribution of random phases and Gaussian distribution of the samples of the process and
correct power spectrum.
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Appendix

Distribution of the random phases generated by the proposedmethod is committed here. Assumet0
is distributed as

fT0
(t0) =

1

t3β
e
−

t0−t1
t3 , β = 1− e

−
t2−t1

t3 (12)

according to figure 7 we have

FΦj
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wherecjt1 = 2(k1 − 1)π +mod(cjt1, 2π) andcjt2 = 2(k2 − 1)π +mod(cjt2, 2π). Then
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Next, the characteristic function ofΦj can be calculated [3]
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substituting (12) into (15) results
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whereγ = iω − 1
cjt3

andΩ = exp(− 2π
cjt3

). As a special case assumet1 → 0 and t2 → ∞ then
k1 → 0, k2 → ∞ andβ → 1. For this case we have

fT0
(t0) =

1

t3
e
−

t0
t3 ⇔ SΦj

(ω) =
1

cjt3γ

e2πγ − 1

1− Ω
(17)

As cjt3 → ∞
lim

cjt3→∞

SΦj
(ω) =

ei2πω − 1

i2πω
(18)

(18) proves that theT0 will be distributed uniformly between0 and2π asymptotically ascjt3 → ∞
for the proposed distribution.
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