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Capacity Optimization of Renewable Energy
Sources and Battery Storage in an Autonomous

Telecommunication Facility
Tomislav Dragičević, Student Member, IEEE, Hrvoje Pandžić, Member, IEEE, Davor Škrlec, Member, IEEE, Igor
Kuzle, Senior Member, IEEE, Josep M. Guerrero, Senior Member, IEEE, and Daniel S. Kirschen, Fellow, IEEE

Abstract—This paper describes a robust optimization approach
to minimize the total cost of supplying a remote telecommuni-
cation station exclusively by renewable energy sources (RES).
Due to intermittent nature of RES, such as photovoltaic (PV)
panels and small wind turbines, they are normally supported by
a central energy storage system (ESS), consisting of a battery
and a fuel cell. The optimization is carried out as a robust
mixed-integer linear program (RMILP), and results in different
optimal solutions, depending on budgets of uncertainty, each
of which yields different RES and storage capacities. These
solutions are then tested against a set of possible outcomes,
thus simulating the future operation of the system. Since battery
cycling is inevitable in this application, an algorithm that counts
the number of cycles and associated depths of discharges (DoD) is
applied to the optimization results. The annual capacity reduction
that results from these cycles is calculated for two types of
battery technologies, i.e. valve-regulated lead-acid (VRLA) and
lithium-ion (Li-Ion), and treated as an additional cost. Finally,
all associated costs are added up and the ideal configuration is
proposed.

Index Terms—Autonomous power facility, batteries, energy
storage system, renewable energy sources, robust mixed-integer
linear programming.

NOMENCLATURE

Parameters

D (t) system demand (kW),
Hmax hydrogen storage capacity (l),
Gch,max

bat maximum battery charging rate (kW),
Gdis,max

bat maximum battery discharging rate (kW),
Hcost hydrogen storage replacement cost (e),
Kbat battery capacity specific cost (e/kWh),
Kfc fuel cell specific cost (e/kW),
Khyd hydrogen to electricity conversion ratio (l/kW),
Kpv photovoltaic panel specific cost (e/kW),
Kw wind turbine specific cost (e/kW),
PV max (t) normalized maximum PV output (kW/kW),
Smin minimum allowed SoC (%),
Wmax (t) normalized maximum wind turbine output

(kW/kW),
ηch charging efficiency of the battery,
ηdis discharging efficiency of the battery.

Variables

cbat total battery storage capacity (kWh),

cfc fuel cell installed capacity (kW),
cpv photovoltaic panel installed capacity (kW),
cw wind turbine installed capacity (kW),
gchbat (t) electricity charged to the battery (kW),
gdisbat (t) electricity discharged form the battery (kW),
gfc (t) fuel cell generation (kW),
gpv (t) PV generation (kW),
gw (t) wind turbine generation (kW),
l (t) curtailed RES output,
nhyd number of hydrogen storage replacements,
s (t) battery state-of-charge (kWh),
vfc (t) consumed hydrogen (l),
xchbat (t) binary variable equal to 1 if battery is being

charged at time period t, and 0 otherwise,
xdisbat (t) binary variable equal to 1 if battery is being

discharged at time period t, and 0 otherwise.

I. INTRODUCTION

ELECTRICITY consumption of remote facilities, such
as telecommunication stations, data centers or secluded

households, is often too low to justify the investments required
to connect them to a bulk power distribution network. In the
past, electrical power supply of such systems was resolved
using a single generating plant, typically a diesel generator
set [1]. However, environmental concerns and the rising cost
of fossil fuels have recently made renewable energy sources
(RES), such as photovoltaic (PV) and wind, an attractive
alternative [2], [3]. This trend has been further underpinned
by rapid improvements in power electronics, which enabled
full controllability of RES, within the constraints imposed by
the natural phenomenon [4]. For isolated systems, due to the
variable production of RES, it is common practice to combine
them with some kind of an energy storage system (ESS),
leading to the concept of microgrid [5], [6], [7], [8].

Over the past decade, intensive research efforts have been
focused on improving real-time performance in both AC
and DC coupled microgrid systems. These include targeting
islanded control [9], energy management [10], stability en-
hancement [11], etc. More recently, methods such as intelligent
control of power quality [12], [13], accurate power sharing be-
tween paralleled units [14], distributed secondary control [15],
plug and play feature [16] and adaptive droop control [17]
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have been proposed. Consequently, microgrids have reached
a higher technological maturity and have become a suitable
option for industrial applications. More than 3,793 MW of
capacity has been installed in microgrids across the globe
according to a recent report [18].

The key to achieving optimal long-term performance in an
actual deployment lies in the planning and design stages of
the project. At these stages, it is essential to properly estimate
the uncertainty and volatility of RES and identify the way
of dealing with those, e.g. by adding an ESS. The principal
role of the ESS is to compensate for the long- and short-term
imbalances between power generation and demand. The ESS
is thus used to transfer energy from periods of high RES output
to periods of power shortage, allowing the system to remain
fully functional over a wide range of operating conditions.
Additionally, a controllable power source may be used as a
last resort. The most common choice is a diesel generator.
However, in order to keep the system environmentally friendly,
fuel cells may be considered. Since different power sources
and technologies are involved, a fundamental question arises:
What is the optimal RES generation and storage mix that
guarantees the supply at minimum cost? The selection of the
optimal RES mix, as well as the ESS capacity should be done
with respect to initial installation and cumulative operating
cost. Also, the solution needs to be validated to ensure that
the required level of reliability of supply is achieved.

A number of papers dealing with the issue of designing
small autonomous power systems are available. A compre-
hensive review of previous approaches to the problem may
be found in [19]. These authors point out several popular
commercial software packages, such as HOMER (Hybrid
Optimization Model for Electric Renewable) and Hybrid2.
They also briefly explain the applicability of other optimization
routines, including the graphic construction method, the proba-
bilistic approach, iterative techniques and artificial intelligence
methods. Recent publications which were not covered by this
review describe the calculation of the optimal capacity of
pumped hydro storage with known wind turbine ratings and
a diesel generator [20], a stochastic approach to a similar
problem, but for a general ESS [21], studies on wind battery
hybrid systems [22], [23], a simulated annealing algorithm
[24] and a biogeography-based optimization algorithm [25].
However, none of these techniques takes advantage of the
features of robust optimization nor considers the gradual loss
of battery capacity over its lifespan. Moreover, full design
flexibility was seldom addressed as the majority of these
papers considers only the problem of sizing an EES when
the capacities of the other components are taken as given.

The sources of uncertainty (load and RES generation)
should be appropriately addressed in the optimization proce-
dure. The most common way of dealing with uncertainty is
stochastic optimization [26], which assumes that the probabil-
ity distribution of uncertainty is known. Stochastic program-
ming provides only a probabilistic guarantee of the quality of
the solution. In practice, it is difficult to quantify accurately the
probability distribution of the uncertainty. Furthermore, a large
number of scenarios is required to obtain a solution with a high
degree of significance [27]. This large number of scenarios

results in a tremendous computational burden. In addition, the
available historical data are often insufficient to generate a
number of unbiased scenarios.

On the other hand, the robust optimization framework
requires less detailed information regarding the uncertainty
[28], which is described using only the range, i.e. upper and
lower uncertainty bounds, rather than a set of scenarios. Fur-
thermore, robust optimization incorporates a tuning parameter
(the budget of uncertainty) that is used to adjust the robustness
of the solution. Since the different values of the uncertainty
budget yield more or less robust solutions, a Monte Carlo
(MC) simulation is needed to find the optimal budget of
uncertainty.

The cost of batteries typically plays a key role in the
installation cost of small autonomous systems [29]. Therefore,
their lifetime may have significant implications on total oper-
ational costs over the long-term, and should not be neglected.
In particular, each charge/discharge cycle causes incremental
reduction of usable battery capacity [30], [31]. It is generally
accepted that once a battery capacity reduces by a certain
percentage, the battery should be replaced as the nominal
reliability cannot be guaranteed any more.

A rainflow counting algorithm is used to count the number
of cycles over the time horizon. This algorithm is commonly
used for fatigue analysis in structural engineering, power
electronic systems and mechanical vibration applications [32],
[33]. In this case, the rainflow counting method considers
the state-of-charge (SoC) data as an input and calculates the
equivalent cycles. The calculated capacity losses are converted
into an additional cost, which is added to the objective function
to identify the optimal battery technology.

This paper proposes an approach to determine the optimal
power supply mix of an autonomous power system, while con-
sidering the detrimental impact of cycling on battery capacity.
The optimization problem is formulated as a robust mixed-
integer linear program (RMILP) that minimizes the total
investment costs. The operation of the autonomous facility is
simulated in order to identify the cheapest investment solution
that satisfies the reliability requirements. For that purpose,
a number of consumption/generation scenarios are generated
based on measurements from an actual remote telecommunica-
tion facility. RES outputs are normalized to the actual output
(kW) per installed capacity (kW), since RES capacities are
decision variables.

The paper is organized as follows. Section II presents a
deterministic formulation of the problem and expands it into
a robust model. Section III gives the details of the combined
cycling and depth-of-discharge (DoD) assessment algorithm
based on the rain-flow counting method. In addition, the influ-
ence of these parameters on the incremental capacity reduction
of the two most popular battery types, valve-regulated lead-
acid (VRLA) and lithium-ion (Li-Ion), is investigated analyt-
ically. Section IV explains the solution algorithm. Section V
presents the results of a case study. The conclusions of the
paper and future research directions are provided in Section
VI.
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II. PROBLEM FORMULATION

A. Deterministic Model

The deterministic problem is a mixed-integer linear problem
formulated as follows:

Minimize

cpv ·Kpv+cw ·Kw+cbat ·Kbat+cfc ·Kfc+Hcost ·nhyd (1)

subject to

gpv (t) + gw (t) + gdisbat (t) · ηdis + gfc (t) =

= D (t) +
gchbat (t)

ηch
+ l (t) ∀t ∈ T

(2)

gpv (t) ≤ PV max (t) · cpv ∀t ∈ T (3)

gw (t) ≤Wmax (t) · cw ∀t ∈ T (4)

gchbat (t) ≤ xchbat (t) ·Gch,max
bat ∀t ∈ T (5)

gdisbat (t) ≤ xdisbat (t) ·Gdis,max
bat ∀t ∈ T (6)

xchbat (t) + xdisbat (t) ≤ 1 ∀t ∈ T (7)

s (t) = s (t−1) + gchbat (t)− gdisbat (t) ∀t ∈ T (8)

Smin · cbat ≤ s (t) ≤ cbat ∀t ∈ T (9)

gfc (t) =
vfc (t)

Khyd
∀t ∈ T (10)

T∑
t=1

vfc (t) ≤ Hmax · nhyd (11)

gfc (t) ≤ cfc ∀t ∈ T (12)

The objective function (1) minimizes the overall investment
cost, which includes the PV and wind capacity, total battery
capacity, and the cost of installed fuel cells (including the
hydrogen replacement cost). Equations (2) are power balance
constraints for each time period. The left-hand side of this
equality represents the net generation, while the right-hand
side represents the net load. If the batteries are fully charged,
some RES output might be curtailed, which is represented by
the non-negative slack variable l(t). The PV and wind turbine
maximum outputs are defined by (3) and (4), respectively. The
battery charging and discharging limits for each time period
are imposed by constraints (5) and (6), respectively. Equations
(7) ensure that the batteries cannot be charged and discharged
at the same time. Equations (8) calculate the battery SoC,
while the lower and upper limits on this SoC are imposed
by (9). Constraints (10) are hydrogen volume-to-electricity
conversion factors. The number of hydrogen replacements is
calculated in (11). Finally, equations (12) enforce the limits
on electricity generation by the fuel cell.

B. Robust Model

The formulation (1)-(12) is valid only if all parameters are
deterministic. However, the specific PV output PV max (t), the
specific wind turbine output Wmax (t) and the system demand
D (t) are uncertain. In this paper their values are assumed to
remain within the known boundaries.

In order to design a minimum investment cost system that
is able to supply the load at all times, even during the periods
of low RES output, a robust optimization approach is applied.
The mathematical apparatus for robust optimization proposed
in [28] provides full control of the degree of conservatism
for each uncertain parameter. Robust optimization has already
been applied to the optimization of offering strategies in
electricity markets [34] and to the security-constrained unit
commitment problem [35]. The most salient feature of this
approach is that its solution is feasible even for the worst-case
scenario, which makes it appropriate for defining the optimal
RES generation mix and the optimal storage capacity at a
remote telecommunication facility.

Problem (1)-(12) can be expressed in the following general
form:

Minimize
n∑

j=1

cjxj (13)

subject to
n∑

j=1

aijxj ≤ bi (14)

xj ≥ 0 (15)

where some of the coefficients aij are uncertain. Uncertain
coefficients have values within the interval [aij − âij ] where
âij represents deviation from the nominal value of coeffi-
cient aij . A budget of uncertainty Γi is used to control the
conservatism of the interval [aij − âij ]. Γi takes values over
the interval [0, |J |], where J = {j | âij ≥ 0}. If Γi = 0,
no deviations from the nominal value of uncertain parameter
are considered, which corresponds to the least conservative,
and thus the least expensive solution. On the other hand, if
Γi = |J |, a full deviation is considered, which corresponds to
the most conservative and most expensive case.

As an example, let us consider a case where the wind output
is expected to vary between 100 and 150 kW at a certain time
period. This means that a = 150, â = 50, J = 1. If Γ is
equal to zero, the model will consider the wind output to be
150 kW, resulting in a risky solution because the actual wind
output might be as low as 100 kW (assuming that the given
interval is correct). On the other hand, if Γ is equal to 1, the
most conservative case of only 100 kW wind output will be
considered and the resulting solution will be protected against
this low realization of wind output.

The robust counterpart of the original problem (13)-(15) is
then:

Minimize

n∑
j=1

cjxj (16)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSTE.2014.2316480

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

subject to

n∑
j=1

aijxj − zi · Γi −
n∑

j=1

pij ≤ bi (17)

zi +

n∑
j=1

pij ≥ âij (18)

xj ≥ 0 (19)

A detailed description of this procedure is available in [28].
In the deterministic model (1)-(12) all uncertain parameters

appear in the power balance equation (2). Its robust form is:

gpv (t)−ppv (t)−zpv · Γpv+gw (t)−pw (t)−zw · Γw+

+gdisbat (t) · ηdis+gfc (t) = D (t)+pd (t)+zd · Γd+

+
gchbat (t)

ηch
+ l (t) ∀t ∈ T

(20)

Where ppv (t) is the dual variable of constraint (3), while zpv is
used to obtain linear expressions. These non-negative variables
are used to model the uncertainty of the PV output, which
is controlled by the uncertainty budget Γpv, ranging from 0
(the most optimistic case), to 1 (the most pessimistic case).
The corresponding non-negative auxiliary variables for the
wind turbine output uncertainty are pw (t), the dual variable
of equation (4), and zw, used to obtain linear expressions.
The dual variable of equation (2), pd (t), and the auxiliary
variable zd, used for linearization purposes, are used to model
the demand uncertainty. In order to consider the uncertainty
ranges, the following constraints need to be added:

zpv+ppv (t) ≥
(
PV max (t)− PV min (t)

)
·cpv ∀t ∈ T (21)

zw + pw (t) ≥
(
Wmax (t)−Wmin (t)

)
· cw ∀t ∈ T (22)

zd + pd (t) ≥
(
Dmax (t)−Dmin (t)

)
· cd ∀t ∈ T (23)

Equations (21)-(23) force the auxiliary variables to take
values greater or equal than the base uncertain values plus
the uncertainty range. The distribution of values between them
depends on the uncertainty budgets. For the PV output in (21),
if Γpv is equal to 0, variable ppv (t) will be equal to zero as the
value of the uncertainty range will be assigned to zpv. Since
zpv is multiplied by Γpv in (20), that is 0, equation 20 will
be identical to (2). On the other hand, if Γpv is equal to one,
both ppv (t) and zpv affect equation (20) forcing an increase
in installed capacity. Similar considerations are valid for wind
and demand uncertainty in constraints (22) and (23).

The final RMILP is formulated as follows:

(1)

subject to:
(3)− (12), (20)− (23)

III. THE INFLUENCE OF BATTERY DEGRADATION

In applications where reliability plays an important role, it
is desirable to credibly estimate the health status of critical
devices. The battery of an RES-based autonomous telecom-
munication facility is such a critical device. Since it is used
to balance the load and the RES output, every deviation from
the power equilibrium is reflected in its SoC, which therefore
undergoes repeated charge/discharge cycles of various depths.
The impact of each cycle and its respective DoD on the incre-
mental reduction in battery capacity is well documented and
has been extensively studied for different battery technologies
[36]. A summary of cycling-based capacity deterioration for
two popular battery technologies is given below, and is fol-
lowed by an explanation of how this effect is modeled in this
paper. It should be noted at this point that in objective function
(1), the total, i.e. initial, battery capacity is determined. As time
passes, the actual usable capacity decreases.

A. Impact of Cycling to a Battery Technology

Repeated deep cycling has an adverse effect on the battery
lifetime because it results in a gradual reduction in available
energy storage capacity. The deeper the discharge cycles are,
the more of incremental capacity is lost. Experimental life-
cycle tests are usually carried out by exposing the batteries
to charge/discharge cycles with consistent DoD [37], [38].
The process is repeated until the usable battery capacity falls
below a predetermined percentage of its initial value, which
is considered to be the end of its life [39].

Then, after organizing the recorded data in Ncycle vs. DoD
diagram, the incremental impact of one cycle of a specific
depth may be computed as follows:

Closs

(
%

cycle

)
=

20

Ncycle(DoD)
(24)

where Closs is the percentage of capacity loss per cycle, while
Ncycle(DoD) is the number of cycles which leads to end of
life when the battery is repeatedly cycled to a specific DoD.
The characteristics of the two technologies that dominate the
battery market today, i.e. VRLA and Li-Ion, are examined
below.

1) VRLA: Due to attractive combination of low-price and
relatively good performance, VRLA technology accounts for
well over 70% of telecommunication batteries today [36].
However, this type of battery has several main disadvantages,
namely a narrow temperature operating range and a short life-
time. Thus, even though the application of VRLA technology
generally results in the lowest initial cost, its long-term eco-
nomic viability should be addressed more rigorously. Fitting
the data from [37] into an exponential function and combining
it with (24), the incremental percentage of capacity loss per
cycle for a typical VRLA battery may be expressed as follows:

CV RLA =
20

6188 · e−0.02769·DoDcyc + 13.81
(25)

where DoDcyc is the depth of cycle under consideration.
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Fig. 1. Cycle extraction strategy applied to the exemplary SoC profile.

2) Li-Ion: The cycling wear-and-tear effect of this battery
technology is much less pronounced than for VRLA because
its electrochemical processes are fundamentally different. In
particular, instead of changing the structure of the electrodes
at every cycle, the charge/discharge process consists mostly of
transferring lithium ions between the positive and the negative
plates. Moreover, the specific energy (150 Wh/kg) and energy
density (400 Wh/l) of Li-Ion batteries outperforms all other
battery types [36]. Consequently, its share of the market has
experienced a rapid growth over the past decade, despite
considerable cost. Data for calculation of the incremental loss
percentage per cycle for Li-Ion battery is taken from [40]
and fitted into an exponential curve. Combined with (24), this
yields the incremental percentage capacity loss per cycle for
a typical Li-Ion battery:

CLi−Ion =
20

33000 · e−0.06576·DoDcyc + 3277
(26)

B. Cycle-Counting Algorithm

In order to calculate the total capacity loss over a given
time horizon, equations (25) and (26) need to be evaluated
for every cycle that occurs. Therefore, the total number of
cycles and their respective DoDs must be computed. To that
end, SoC data must be determined from the dispatch strategy
suggested by the optimization algorithm. However, the SoC
variable should be normalized to adopt values up to 100. Since
the cycle numbering in the proposed method is performed after
the optimization procedure, a classical off-line form of the
rain-flow counting algorithm is applied [41]. This algorithm
pairs local SoC minima and maxima and defines equivalent
half and full cycles. Figure 1 shows an example of the cycle-
counting mechanism applied to an arbitrarily generated SoC
profile (bold black line). The algorithm detects three full cycles
(red, magenta and light blue curves) and four-half cycles (blue,
green, blue and orange curves). Pairs of up and down half-
cycles are approximated as a full cycle. A detailed explanation
of the application of the rain-flow counting algorithm is
available in [41].

IV. SOLUTION ALGORITHM

Figure 2 illustrates the overall solution procedure. The
required input data are solar irradiation and wind speed
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Fig. 2. Solution algorithm.

measurements that need to be converted to power output using
the manufacturer data for the solar panel and the wind turbine.
Since telecommunication equipment demand cannot be fore-
cast, historical data of similar telecommunications facility is
used. The step-by-step procedure is as follows:

1) Based on measurements and historical data define upper
and lower bounds of uncertain parameters, i.e. wind
power output, PV power output and demand.

2) Select the initial battery technology.
3) Set budgets of uncertainty for all three uncertain parame-

ters to zero. This corresponds to the best case scenario,
i.e., load equal to the lower bound, and RES outputs
equal to their upper bounds at all time periods.

4) Apply the RMILP to calculate the solution for these val-
ues of the uncertainty parameters and save this solution.

5) Increase the uncertainty budget of wind power output
in steps of k. Small value of parameter k, e.g., 0.01,
will result in a fine resolution of solutions. However, the
computing time required increases like the cube of the
number of steps in k because this parameter is used for
three uncertain values. On the other hand, large values
of k, e.g., 0.5, will result in large gaps between the
solutions and the final solution will be far away from
the global optimum. Note that different values of k can
be used for each uncertain parameter.

6) If the wind uncertainty budget is less or equal than
one, go to step 4. Otherwise, increase the PV output
uncertainty budget by k, reset the uncertainty budget
for wind power output to zero, and go back to step 4.

7) When the PV uncertainty budget exceeds 1, increase
the demand uncertainty budget by k. If the demand
uncertainty budget did not exceed 1, reset the uncertainty
budgets for wind and PV output to zero, and go back to
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step 4.
8) Based on measurements and historical data generate a

sufficient number of MC scenarios.
9) Run all the RMILP solutions against the MC scenarios.

10) Since the battery significantly degrades when its SoC
is reduced below a certain value [39], identify solutions
with the lowest battery SoC throughout the year being
just above the threshold.

11) Calculate the average battery capacity reduction for the
most promising solutions.

12) Add the cost of battery capacity reduction to the overall
investment cost.

13) Identify and save the optimal solution for the current
battery technology.

14) Choose another battery technology and go to step 3.
If there are no more technologies to consider, compare
the optimal solutions for each technology and choose
the one with the minimum total cost. This is the global
optimum.

Instead of imposing a hard constraint for the minimum
SoC at step 10, one may decide to introduce a penalty
function that would increase the overall cost of solutions
that incur SoC below a predetermined threshold. This would
increase the average battery capacity reduction at step 11 and
would expand the suitable candidates for the optimal solution.
However, deriving such penalty functions for different battery
technologies is outside the scope of this paper.

V. CASE STUDY

A. Input Data

The input data were measured at an actual remotely located
telecommunications facility at 15-minute intervals over three
years. Measured variables were PV an wind generation, and
demand. In order to limit the number of variables and decrease
the computational burden, an hourly averaging was performed.
The comparison indicated that using 1-hour intervals underes-
timated the battery degradation by 2% compared to the results
that would be obtained with a 15-minute resolution. This is
because at a finer time resolution the depth of the captured
cycles becomes smaller. Since the incremental capacity loss
over one cycle depends on its depth, the net impact of shallow
cycles is much smaller than the impact of deep cycles. The
effect of the cycles that were not captured because of this
simplification was shown to be insignificant.

The lower and upper bounds of three uncertain parameters
at each hour of the year are set to the minimum and maximum
of the measured values. The RES output values are scaled to 1
kW of installed capacity. The average capacity utilization fac-
tors of the wind and PV generations are 21.4% and 19.1%. In
Figure 3, the RES output values are scaled to 1 kW of installed
capacity, while the demand curve shows actual values. For a
small number of days, the maximum demand exceeds 1 kW.
The demand uncertainty range is almost constantly around 300
W. The wind generation duration curve has a similar shape,
with higher uncertainty ranges at higher power outputs. The
maximum PV output curve is much steeper because the PV
output is zero during the night.
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Fig. 3. Duration curves of maximum and minimum load, and wind and PV
generation.

The budgets of uncertainty for each uncertain parameter
range from 0 to 1 in steps of 0.1. In order to solve all the
combinations, 11x11x11=1331 RMILPs were solved.

MC simulations were performed to assess which of the so-
lutions performs best in practice. 10 scenarios were generated
using the random forest algorithm [42] for each uncertain pa-
rameter, resulting in 1000 MC scenarios. Features of the three
year historical data were the baseline to build the classification
and regression tree used to generate MC scenarios.

VRLA and Li-Ion batteries cost 280 e/kWh and 800
e/kWh, respectively. Both charging and discharging efficien-
cies are set to 0.9. Batteries are considered to be 90% charged
at the start of the simulation horizon and are required to end
up charged beyond this level at the end of the simulation
horizon. The wind turbine specific cost is 2,300 e/kW, and
PV specific cost is 750 e/kW. Fuel cell specific cost is 6,300
e/kW, reservoir capacity is 100 l, reservoir replacement cost
600 e, and the hydrogen to electricity conversion ratio is taken
as 660 l/kWh. The costs for batteries and distributed generation
technologies are based on invoices of equipment purchased for
installation at an actual telecommunications facility.

The minimum SoC threshold is set to 20%. The reasoning
behind the selection of this particular value is the maximum
allowable discharge conditions for different types of batteries.
To that end, it is a common principle in practical applications
to deploy an over-discharge protection based on the minimum
voltage threshold. Once the battery reaches this value, it
is strongly recommended to stop its discharge immediately
because it may otherwise experience significant damage [36].
Since a detailed electrical modeling of the battery is outside
the scope of this paper, and knowing that the relationship
between SoC and steady state battery terminal voltage is a
monotonically increasing function [36], a SoC threshold was
used instead of a voltage threshold.

Motivated by industrial standards and recommendations, we
assume that a reduction of battery capacity to 80% implies
the end of its economic life. Due to requirements for high
reliability in autonomous applications relying on batteries,
this boundary has been steadily increasing over the past few
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Fig. 4. Battery capacity (kWh) in case of VRLA batteries for different
budgets of uncertainty.

decades before finally being set at 80% [43]. The reason
behind selecting this particular value is the fact that long-term
cycling tests have shown that both Li-Ion and VRLA batteries
start to degrade at a much faster rate once the usable capacity
falls below this value [44], [45]. Nevertheless, the proposed
algorithm is able to accommodate any other capacity boundary
value. This will be reflected only in step 12 of the proposed
solution algorithm.

B. Results

Figures 4 to 6 show the optimal battery, wind turbine and PV
capacities for the VRLA batteries, while Figures 7 to 9 show
in parallel the same results for Li-Ion batteries. Each of these
4-dimensional graphs shows the results for all the combina-
tions of wind, PV and demand uncertainty budgets that were
considered. The lower left corner of each chart shows less
conservative results (low wind and PV uncertainty budgets),
while the upper right corner shows more conservative results,
corresponding to higher wind and PV uncertainty budgets.
Additionally, the demand uncertainty budget grows towards
the top of each column, generally resulting in higher installed
capacities. The required battery, wind and PV capacities are
visualized using different colors. Finally, larger capacities are
represented by wider columns.

For the VRLA battery technology, the highest battery ca-
pacity is needed when the wind uncertainty is high. A wind
uncertainty budget greater than 0.7 requires at least 21 kWh of
battery storage, regardless of the PV and demand uncertainty.
For wind uncertainty budgets lower than 0.5, the required
battery capacity is not much affected by the PV’s budget of
uncertainty because of the low required PV capacity (left-hand
side of Figure 6). If both wind and PV budgets of uncertainty
are high, the model will rely more on PV generation, supported
by high battery capacity (right-hand side of Figure 4). For
wind uncertainty budgets lower than 0.6, almost all installed
RES capacity is in the wind power (left and middle parts of
Figure 5). It is only for high budgets of wind uncertainty that
large amounts of PV are needed (right-hand side of Figure 6).
The maximum required wind and PV capacities are 5.6 and
19 kW, respectively. Fuel cells are not used because of their
high price.
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Fig. 5. Wind capacity (kW) in case of VRLA batteries for different budgets
of uncertainty.
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Fig. 6. PV capacity (kW) in case of VRLA batteries for different budgets
of uncertainty.
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Fig. 7. Battery capacity (kWh) in case of Li-Ion batteries for different budgets
of uncertainty.

Similar observations are valid for Figures 7 to 9. Since Li-
Ion technology is more expensive, the optimal battery capacity
in Figure 7 is lower than the one in Figure 4. This lower
battery capacity is balanced by a higher wind capacity, as
shown in Figure 8. The maximum required wind and PV
capacities are 7.8 and 16.4 kW, respectively. As compared
to the VRLA technology, the model that uses Li-Ion battery
technology relies more on wind power, with the lower use of
PV, as can be seen when comparing Figures 6 and 9. This
indicates that PV generation requires higher battery capacities
than wind generation. The required PV capacities are high only
for high wind uncertainty budgets, as shown in the right-hand
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Fig. 8. Wind capacity (kW) in case of Li-Ion batteries for different budgets
of uncertainty.
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Fig. 9. PV capacity (kW) in case of Li-Ion batteries for different budgets
of uncertainty.
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Fig. 10. Investment cost (e) in case of VRLA batteries for different budgets
of uncertainty.

side of Figure 9. Fuel cells are again not used.
Figures 10 and 11 show overall investment costs for dif-

ferent budgets of uncertainty in case of VRLA and Li-Ion
battery technology, respectively. Expectedly, investment cost
increases from lower to higher uncertainty budget in all three
dimensions.

Figure 12 shows the maximum number of hours with
SoC below 20% over all MC generated scenarios and the
average curtailed energy produced by RES as functions of
the investment cost for both VRLA and Li-Ion batteries,
considering total battery capacity. Clearly, the number of days
where the SoC drops dangerously low decreases as the level of
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Fig. 11. Investment cost (e) in case of Li-Ion batteries for different budgets
of uncertainty.
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Fig. 12. Maximum number of hours with SoC below 20% in MC simulations
(blue curve for VRLA, and green curve for Li-Ion technology) and average
curtailed wind energy (red curve for VRLA, and orange curve for Li-
Ion technology) for the initial (100%) battery capacity, all as functions of
investment cost.

investment increases, while the amount of spilled renewable
energy follows an opposite trend. Moreover, the valleys of
blue (green) curves correspond to the peaks of red (orange)
curves and vice versa. In order for a solution to be feasible,
the maximum number of hours at the with SoC below 20%
over all test scenarios has to be 0, which yields the minimum
investment of 18,196 e for VRLA batteries and 27,505 e
for Li-Ion batteries. Table I provides a more detailed analysis
of these solutions.

For VRLA batteries the optimal solution is obtained for the
following uncertainty budgets: Γd = 0.1, Γpv = 0.2 and Γw =
0.8. The optimal generation mix consists of 18.04 kWh of
VRLA battery capacity, 9.49 kW of PV capacity and 2.62 kW

TABLE I
RESULT COMPARISON

VRLA Li-Ion
Γd/Γpv/Γw 0.1/0.2/0.8 0.4/0.1/0.8
ESS capacity 18.04 kWh 14.65 kWh
PV capacity 9.49 kW 6.51 kW

Wind turbine capacity 2.62 kW 4.74 kW
Investment cost 18,196 e 27,505 e

Annual wind curtailment 9,178 kWh 8,652 kWh
Annual battery capacity reduction 5.5% 1.2%
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Fig. 14. Annual cumulative loss of Li-Ion battery capacity.

of wind turbine capacity. The investment cost is 18,196 e and
average annual RES curtailment is 9,178 kWh. Applying the
cycle counting algorithm to all MC scenarios, the annual loss
of capacity ranges from 4.88% up to 6.07%. The cumulative
capacity loss for these two extreme scenarios is plotted in
Figure 13. Based on the average of all scenarios, the expected
battery capacity reduction is 5.5% per year. This means that
the usable battery capacity will drop to 80% in 3.9 years, when
the battery stack will need to be replaced. This adds additional
cost of 1,295 e/year.

For the Li-Ion technology, the optimal mix consists of 14.65
kWh of Li-Ion battery capacity, 6.51 kW of PV capacity and
4.74 kW of wind turbine capacity. This solution was obtained
for the following uncertainty budgets: Γd = 0.4, Γpv = 0.1
and Γw = 0.8. Due to the higher cost of this technology, the
battery capacity is 19% lower than for VRLA. PV capacity
is reduced by 31%. This is compensated by an increase in
wind turbine capacity of 81%. The investment cost is 27,505
e and the average annual RES curtailment is 8,652 kWh.
The expected annual battery capacity reduction was calculated
using the same method as for the VRLA technology. Figure 14
shows minimum and maximum battery capacity loss scenarios.
An average loss of capacity of 1.2% per year indicates that the
batteries will need to be replaced in 18.5 years. This yields an
additional annual cost of 634 e/year. Although the cost of Li-
Ion batteries is much higher than VRLA batteries, significantly
lower battery degradation yields much lower additional annual
cost. The overall cost, depending on the facility lifetime,
is shown in Figure 15. If the telecommunication facility’s
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Fig. 15. Overall cost of supplying the telecommunications facility depending
on its lifetime.

lifetime is longer than 14 years, Li-Ion battery technology is
cheaper than VRLA technology.

C. Influence of Cycling

The SoC analysis in Figure 12 assumes the initial bat-
tery capacity throughout the year. However, this capacity
is monotonously decreasing as the batteries cycle. Figure
16 shows the maximum number of hours with SoC below
20% over all MC scenarios and the average curtailed energy
produced by RES as functions of the investment cost, but in
the case of usable battery capacity of 80%, simulating battery
operation towards the end of their lifetime. The graphs in this
figure are almost identical to the ones in Figure 12, which
indicates that the reduction in battery capacity due to degra-
dation does not significantly decrease their expected minimum
SoC during operation. Figure 17 shows the maximum number
of hours with SoC below 20% in MC simulations for a usable
battery capacity of 80% for solutions that had zero days with
SoC below 20% for the initial case. In other words, Figure 17
shows the increase in forbidden SoC for investments that were
not forbidden in Figure 12. The optimal solution for VRLA
battery technology now has at most 12 hours with a minimum
SoC below 20% (the first point of the red graph), while the
optimal solution for the Li-Ion battery technology now has
at most 4 hours with the minimum SoC below 20% (the
first point of the blue graph). Since batteries are considered
to be towards the end of their lifetime, this violation should
be tolerated. Moreover because the investment cost would be
19,775 e for the VRLA technology (an increase of 8.7%), and
32,641 e for the Li-Ion technology (an increase of 18.7%)
if one would want to keep SoC above 20% even towards the
end of battery lifetime.

D. Computational Issues

The RMILP was solved using CPLEX 12.1 under the
GAMS 23.7 environment on an Intel i7 1.8 GHz processor
with 4 GB of memory. Depending on the uncertainty budget,
each RMILP computation required from 1 to 4 min. Since the
RMILP was solved 1331 times, it took almost 2 days to obtain
the results for each battery technology.
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Fig. 16. Maximum number of hours with SoC below 20% in MC simulations
(blue curve for VRLA, and green curve for Li-Ion technology) and average
curtailed wind energy (red curve for VRLA, and orange curve for Li-Ion
technology) for 80% usable battery capacity, all as functions of investment
cost.
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Fig. 17. Maximum number of hours with SoC below 20% in MC simulations
for usable battery capacity of 80% for solutions with zero days with SoC
below 20% for the initial case.

Running RMILP solutions against a set of scenarios is not
an issue since the first time a SoC below a given limit, e.g.
20%, is detected, that solution is immediately discarded. For
the purpose of this paper, a complete set of 1.3 million scenario
checks was run in both Microsoft Excel and Matlab, which
lasted for 26 hours in Matlab and 3 days in Microsoft Excel.

Since the battery capacity reduction is calculated only for
the most promising solutions, its computational burden is
negligible.

VI. CONCLUSION

This paper has presented a procedure for minimizing in-
vestments in supplying an autonomous remote facility based
on RMILP. The advantage of this technique is its flexibility
in terms of solution accuracy and computational burden, both
being controlled by the number of uncertainty budgets used.
The model identifies the optimal RES and ESS mix based on
the telecommunications facility lifetime, as the attractiveness
of various battery technologies depends on it.

The results of the case study indicate that when facility
lifetime is longer than 14 years, the high cost of frequent
replacements of VRLA batteries might result in a higher total
cost than when Li-Ion batteries are used. Although Li-Ion bat-
teries have a higher investment cost, infrequent replacements
make this technology more attractive. Additionally, as shown

in Figure 17, the SoC of Li-Ion batteries suffer less violation
towards the end of the battery lifetime.

ESS and RES capacities were considered to be continuous
variables in this case study. In real-world applications, with
predetermined manufacturer for each type of equipment, these
variables might be integers. However, this would have a
negative effect to the computational time.

Solving this problem requires a significant amount of com-
puting resources. However, this should not be an issue since
this type of simulation is performed off-line only once in the
design stage of the project.

The off-line computation of the influence of battery degra-
dation surely results in a suboptimal solution. Future research
should therefore aim to incorporate the cycle counting algo-
rithm actively rather than treating it as endogenous.
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