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Modeling of Outdoor-to-Indoor Radio Channels via
Propagation Graphs

Troels Pedersen, Gerhard Steinböck, and Bernard H. Fleury.
Section Navigation and Communications (NavCom), Dept. Electronic Systems, Aalborg University,

Fredrik Bajers Vej 7B, DK-9220 Aalborg, Denmark. Email:{troels,gs,fleury}@es.aau.dk

Abstract—We formulate a model for the outdoor-to-indoor
radio channel in terms of a propagation graph. The model
accounts for outdoor scattering and in-room reverberation. It
is observed from the model how such a scenario results in
channels with several room excitations leading to “clusters” in the
simulated channel impulse responses. Simulation studies further
indicate that the outdoor-to-indoor and inroom channels differ
in terms of spatial envelope correlation.

I. I NTRODUCTION

Outdoor-to-indoor communication is frequently encountered
in modern radio systems and it is therefore relevant to propose
models to describe and simulate such scenarios. However, this
poses the challenge to provide a model structure encompassing
both the outdoor propagation as well as the reverberation
phenomena occurring indoors while still maintaining a com-
putational complexity low enough to make simulation feasible.

A framework for modeling reverberant radio channels has
been developed in [1]–[3]. This framework relies on a so-
called propagation graph in which vertices represent transmit-
ters, scatterers, and receivers and edges represent the prop-
agation conditions between vertices. The propagation graph
formalism yields a closed-form expression for the infinite-
bounce propagation enabling computer simulation of impulse
responses of reverberant channels. Although originally pro-
posed for static in-room channels where reverberation is
particularly relevant, propagation graphs have been applied
by several research groups to a diverse range of scenarios
including works on body area channels [4], high-speed railway
communications [5], distributed antenna systems deployed
in indoors [6], and analysis of the MIMO channel’s rank
properties and capacity [7]. With these diverse applications
in mind, the propagation graph is an attractive approach for
simulation of the heterogeneous outdoor-to-indoor channel.

In this paper we employ the propagation graph terminology
to state a simulation model for the outdoor-to-indoor channel
including the in-room reverberation phenomenon. We show
how the particular outdoor-to-indoor scenario lead to a propa-
gation graph and corresponding transfer function with a special
structure. We simulate the spatial channel correlation at the
in-room receiver and compare to the in-room channel where
transmitter and receiver are placed within the same room.

II. GENERIC PROPAGATION GRAPH FORMALISM

In this section, we outline the graph formalism given
in full detail in [2]. We consider a simple directed graph

G = (V, E) with vertex setV = Vt ∪ Vr ∪ Vs which is
partitioned in a set of transmittersVt = {Tx1, . . . ,TxMt},
a set of receiversVr = {Rx1, . . . ,RxM2}, and a set of
scatterersVs = {S1, . . . , SN}. Here, each input port to a
transmitter antenna count as a “transmitter” and similarlyfor
the “receivers”. Wave propagation between the vertices is
modeled by edges inE . More specifically, if and only if a
wave can propagate directly fromv ∈ V to v′ ∈ V, then
(v, v′) ∈ E . The graph has a particular structure; transmitters
have no incoming edges; receivers have no outgoing edges;
and the graph is loopless, i.e., no vertexv is connected to
itself by an edgee = (v, v). Notice, however, that the graph
can have cycles.

The propagation in the graph is defined by the actions of
scatterers and edges. A scatterer re-emits the sum of signals
impinging via the incoming edges to the outgoing edges. Edge
(v, v′) ∈ E transfers the signal fromv to v′ according to its
transfer functionA(v,v′)(f). We setAe(f) = 0 for e 6∈ E and
define the transfer matrices

D(f) : transmitters → receivers
R(f) : scatterers → receivers
T(f) : transmitters → scatterers
B(f) : scatterers → scatterers.

(1)

Then, the transfer matrixH(f) of the propagation graph can
be expressed in closed form as [1], [2]

H(f) = D(f) +R(f)(I+B(f) +B(f)2 + . . . )T(f)

= D(f) +R(f)(I−B(f))−1
T(f) (2)

provided the spectral radius ofB(f) is less than one.

III. PROPAGATION GRAPHS FOROUTDOOR-TO-INDOOR

CHANNELS

We now specialize the propagation graph to a scenario
where an outdoor transmitter communicates to a receiver
located inside a building. As a first step, we approximate the
entire building by a single room with one outer wall.

As in [2] we associate a position vectorrv ∈ R
3 to each

vertex v ∈ V. The considered room is denoted byR ⊂ R
3.

The set of scatterers can be split asVs = Vout∪Vin where the
“indoor scatterers”Vin have positions inR and the “outdoor
scatterers”’ positions are outsideR. We assume that the indoor
scatterers are placed on the boundaries ofR, i.e., on the walls.
Here we also consider the floor and ceiling as walls. Walls are
indexed byw = 1, 2, . . . ,W . The set of scatterers on wallw



is denoted byVw, thusVin = V1 ∪ V2 ∪ · · · ∪ VW . Note that
a scatterer may belong to more than one wall. This occurs if
scatterers are placed on a wall intersection. In the following
we use the arbitrary convention that the outer wall has index
w = 1.

The edges of the graph are also defined considering the
specific geometry of the scenario. Firstly, since transmitters
and receivers are separated by the outer wall, no direct
propagation occurs. Hence,D(f) = 0. We further assume
that the transmitters have edges to outdoor scatterers and to
scatterers at the outer wall. Similarly, outdoor scatterers have
edges to other outdoor scatterers and to scatterers at the outer
wall. We assume that the signal that leaves the room can
be neglected, and thus the indoor scatterers have edges to
other indoor scatterers and to the receivers. Furthermore,in
the case of plane walls, it is reasonable to assume that there
are no edges between scatterers on the same wall. This special
structure of the propagation graph leads to particular forms for
T(f) R(f) andB(f). Suppressing the frequency dependency
for brevity, we have

T =





To

Ti

0



, R =
[

0 Ri

]

, and B =

[

Boo 0

Boi Bii

]

(3)

with submatrices according to

To : transmitters → outdoor scatterers
Ti : transmitters → outer wall scatterers.
Ri : indoor scatterers → receivers
Boo : outdoor scatterers→ outdoor scatterers,
Boi : outdoor scatterers→ indoor scatterers
Bii : indoor scatterers → indoor scatterers.

Insertion into (2) yields

H = Ri(I−Bii)
−1

([

Ti

0

]

+Boi(I−Boo)
−1

To

)

. (4)

Considering single-bounce only scattering for the outdoor
scatterers,Boo = 0, and (4) reduces to

H = Ri(I−Bii)
−1

([

Ti

0

]

+BoiTo

)

. (5)

In this case multiple excitations of the room occur. The first
term in the right-hand bracket is the initial excitation dueto
direct propagation from the transmitter to the outer wall. The
second term represents excitations via the outdoor scatterers.
Each excitation of the room potentially yield a “cluster” in
the channel impulse response. These clusters all have the same
decay rate determined byBii. This effect is in agreement with
observations from measurements such as [8].

IV. EXAMPLE : STOCHASTIC OUTDOOR-TO-INDOOR

MODEL WITH SPECULAR INTERACTIONS

We remark that the propagation graph formalism defined
above is generic in the sense that it is valid for general
edge transfer functions. Thus to apply (5), it is necessary to
specify the edge transfer functions such that all quantities in
(2) can be computed for the frequency range of interest. The
contribution [2] provides an example of how to define the

TABLE I
EDGE DEFINITIONS

Edge type P(e ∈ E) Edge gain,ge Submatrix

Tx-Rx, e ∈ Vt × Vr Pdir
exp(jφdir)

4πfτe
D(f)

Tx-Out, e ∈ Vt × Vout Pto gto To(f)

Tx-Wall 1, e ∈ Vt × V1 Pt1

√

τ
−2
e

4πfµs(Vt×V1)
Ti(f)

Indoor-Rx,e ∈ Vin × Vr Pir

√

τ
−2
e

4πfµs(Vin×Vr)
Ri(f)

Out-Wall 1,e ∈ Vout×V1 Po1

√

τ
−2
e

4πfµs(Vout×V1)
Boi(f)

∗Wall w-Wall w′,
w 6= w′ e ∈ Vw × Vw′ , Pii

gii√
4πfτe

Bii(f)

Other edges types 0 — —
∗)No loops permitted, hence we setP ((v, v) ∈ E) = 0.

edge transfer functions of a propagation graph for an in-room
scenario assuming specular-only interactions. We now adapt
this example model for the outdoor-to-indoor case with one
outdoor scatterer.

We assume for simplicity of comparison that the transmitter,
receivers and outdoor scatterer have fixed positions. The
indoor scatterers are placed randomly at the walls. We place
first a single scatterer uniformly and independently distributed
on each wall to avoid “empty walls”. Thereafter we distribute
the remaining scatterers independently on the surfaces of the
room according to a uniform distribution.

Edges are drawn independently with occurrence probabil-
ities defined according to the edge occurence probabilities
listed in Table I. We introduce separate edge probabilitiesfor
each edge type to enable comparison of outdoor-to-indoor and
inroom scenarios. Specifically, in the outdoor-to-indoor case,
Pdir = 0, whereas in the indoor scenario we may then set
Pdir = 1 to consider direct propagation. Notice that since we
consider only one outdoor scatterer, there are no outdoor-to-
outdoor edges, and thusBoo(f) = 0. For simplicity reason,
we set some of these probabilities to the same value, e.g. it
seems reasonable (but is not required) to setPii = Pir.

The transfer function of edgee = (v, v′) ∈ E is of the form

Ae(f) = ge(f) exp(−j2πτef) (6)

with propagation delayτe = ‖rv − rv′‖/c, gain ge(f), where
c is the speed of light. The edge gainsge(f) are defined
following the same principles as in [2] and are detailed in
Table I whereodi(e) denotes the number of edges from the
initial vertex of e to other scatterers and for anyE ′ ⊆ V2,
µs(E ′) = µ(E ′) · s(E ′) with

µ(E ′) =
1

|E ′ ∩ E|

∑

e∈E′∩E

τe, and s(E ′) =
∑

e∈E′∩E

τ−2
e ,

(7)
with | · | denoting cardinality. Edges connecting the transmitter
to the receiver array are assumed to have the same phase,φdir

uniformly distributed on[0, 2π).
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Fig. 1. Illustration of the considered scenarios: The origin of coordinate
system is the lower left corner of the room. The coordinates oftransmitter
positions Tx1–Tx3 are given in Table II. Rx marks the positionof the first
element of the receive array specified in Table III.

TABLE II
SCENARIOS

Scenario Transm. Pos. [m3] Pto Poi Pt1 Pti Pdir

(a) Outdoor-to-Indoor Tx1:[−200, 3.1.5] 0 0 1 0 0

(b) Outdoor-to-Indoor, w.
outdoor scattering

Tx1: [−200, 3.1.5] 1 1 1 0 0

(c) Relay on Wall1 Tx2:[0, 1, 1.5] 0 0 1 1 1

(d) Inroom Tx3:[1.5, 1, 1.5] 0 0 1 1 1

V. SIMULATION STUDY

With the model specified in Section IV channel realizations
are generated using the algorithm described in [2]. We run
simulations for the four scenarios (a)–(d) illustrated in Fig. 1
and specified in Tables II and III. The value ofgii is calibrated
to yield the specified power decay using the method described
in [2], [3]. The four scenarios differ in transmitter positions
and outdoor scattering configurations. To allow for evaluation
of spatial correlation, each scenario is simulated with a uni-
form linear receiver array placed in the considered room in
three different orientations (along thex-, y- andz-axes).

Fig. 2 shows examples of transfer functions and correspond-
ing spatially averaged delay power spectra for the outdoor-
to-indoor scenarios (a) and (b). As expected, in both cases,
the transfer functions are correlated across the receive an-
tennas. The additional outdoor scattering significantly lowers

TABLE III
SIMULATION SETTINGS

Settings Value

Center frequencyfc 2.6GHz
Bandwidth 200MHz
Slope of Exp. Decay -0.4dB/ns
Indoor probability of visibilityPii = Pir 0.8
No. Indoor Scatterers 30
RoomR [0, 5] × [0, 5] × [0, 2.6] m3

Outside Scatterer Pos. [−50, 50, 1.5] m
Receiver Antenna uniform linear array
No. receiver antennas,Nr 80
Antenna spacing λ/20
Receiver Array Pos. (first element) [2.5, 2.5, 1.5] m
Antenna orientations according to positivex, y, z directions.

the coherence bandwidth which can be observed as a more
rapidly fading transfer function. Furthermore, the addition of
the outdoor scatterer gives rise to the onset of an additional
“cluster” with an exponentially decaying tail in the delay
power spectrum. It can be noticed that the first and second
“clusters” have the same power decay rate (slope). This effect
agrees well with [8] where the slopes of “clusters” are ob-
served to coincide in measurements. We remark that “clusters”
appear in the present model due to repeated excitations of
the reverberation in the entire room and cannot be directly
attributed to interactions with a single scatterer.

We now consider the envelope correlation of the transfer
functions as a function of receiver displacement for the four
scenarios. The envelope correlation coefficient for Rx1 and
Rxk is defined as (suppressing the explicit mentioning of
frequency):

ρ(dk) =
Cov(|H1|, |Hk|)

√

Var(|H1|) ·Var(|Hk|)
, (8)

whereHk denotes the transfer function for receiverk and
dk = ‖r

Rx1
− r

Rxk
‖ is the distance between Rx1 and Rxk.

Fig. 3 reports envelope correlations obtained by Monte
Carlo simulation for the four scenarios, where we have aver-
aged over the generated ensembles of transfer functions. For
the outdoor-to-indoor scenarios (a) and (b), the envelope cor-
relation differs for the three array orientations. Specifically, the
correlation is stronger when the array is in thex-direction, i.e.
perpendicular to the outside wall. This effect occurs because
the scatterers at the outer wall are the most strongly illumi-
nated by the transmitter and outdoor scatterer. Displacement
in the x-direction changes the relative phases of the signal
contributions from the outside wall slower than displacement
in the y and z directions do. Consequently, the envelope
correlation function drops more rapidly for displacementsin
y- and z- than it does for thex-direction. For comparison,
the envelope correlations for the two in-room scenarios (c)
and (d) show very modest differences in thex, y- and z-
directions. This is the expected behavior for an inroom channel
where the reverberant signal component dominates the direct
component and there consequently is no particular dominant
direction from which the signal energy is impinging.

VI. CONCLUSION

The proposed propagation graph formulation for the spe-
cial case of outdoor-to-indoor channels essentially leadsto
a certain structure of the corresponding weighted adjacency
matrix. This structure can be used to reduce the computational
complexity in simulation but also brings an important insight
into how clusters may appear in the outdoor-to-indoor channel.
The simulation study reveals that the envelope correlationfor
the channel may depend on the specific orientation of the
considered array.

ACKNOWLEDGMENT

This work was supported by the EU FP7 Network of
Excellence in Wireless COMmunications NEWCOM# (Grant
agreement no. 318306).



10
lo
g 1

0
(|
H
(f
)|
2
)

[d
B

]

Frequency [GHz]
2.5 2.55 2.6 2.65 2.7

−120

−110

−100

−90

−80

−70

(a)

10
lo
g 1

0
(|
H
(f
)|
2
)

[d
B

]

Frequency [GHz]
2.5 2.55 2.6 2.65 2.7

−120

−110

−100

−90

−80

−70

(b)

 

 

O2I Cluster
O2I

10
lo
g 1

0
(E
(|
h
(τ
)|
2
))

[d
B

]

Delay [ns]
LoS 700 750 800 850 900 950

−80

−60

−40

−20

0

20

(c)

Fig. 2. Transfer functions corresponding to five array elements withλ/10 spacing (inx-direction) are given for the outdoor-to-indoor channel without outdoor
scatterer (a) and with one outdoor scatter (b). The averagedsquared magnitude of the related impulse responses obtained for a Hann pulse with 200MHz
bandwidth are depicted in (c).
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Fig. 3. Simulated envelope cross correlations for receiver arrays inx-, y- andz-directions obtained as an average of 5000 Monte Carlo runs at f = 2.6GHz.
Scenarios: (a) Outdoor-to-indoor, (b) Outdoor-to-indoorwith outdoor scatterer, (c) Inroom with transmitter on wall,and (d) In-room channel.
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