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Tab. 1. Physical characteristics of Si and 4H-SiC [1]. 

Property Si 4H-SiC 

Bandgap (eV) 1.12 3.26 
Dielectric constant 11.9 10.1 
Electric breakdown field (kV/cm) 300 2.200 
Saturated electron drift velocity (10

7 
cm/s) 1 2 

Thermal conductivity (W/cm·K) 1.5 4.9 
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Abstract 

Smart PV inverters are essential components of future grids. Beside conventional function-
alities they can communicate with the grid, supports the grid with reactive power and with ac-
tive power from internal battery storage. To maximize internal consumption, a high efficiency 
bidirectional DC-DC converter for the battery storage is necessary, as energy will be pro-
cessed twice. Realisation of the battery converter with silicon carbide (SiC) semiconductors 
offers many advantages compared to Silicon (Si), included higher power density and higher 
efficiency. In this paper the design of a simple high efficiency 3kW hard switching bidirec-
tional converter based on normally-on SiC JFET is presented, 98.5% maximum efficiency 
has been obtained with the prototype and a comparison with SiC MOSFet 1

st
 generation is 

performed. 
  

1. Introduction 

Photovoltaics (PV) is one of those applications that are demanding for power electronics with 
higher efficiency and power density. This is a challenge for Si-based semiconductors and to 
overcome these limitations wide-band-gap (WBG) materials like SiC can be used. The phys-
ical characteristics of Si and 4H-SiC are listed in Table 1. With higher energy bandgap, the 
devices are able to operate at higher temperature, higher breakdown field allows higher dop-
ing density and gives 
smaller drift region re-
sistances (for ´the same 
voltage level), higher drift 
velocity allows faster   
switching devices and al-
low charge in the depletion 
region of diode to be re-
moved faster and thus re-
duce the reverse recovery 
current and shorter the re-
verse recovery time. At last with higher thermal conductivity the generated heat can be re-
moved more effective [1]. All these can simplify the converter design, boost the efficiency, 
reduce the cooling requirement and with higher switching frequency the bulky electrolyte ca-
pacitor can be replaced with the more reliable bipolar film capacitors and extend the service 
lifetime of the products [2]. Aiming for the highest efficiency is the PV industry, where the 
generated energy price is relatively high and to balance the mismatch between generation 
and demand and to support the grid, like Smart PV systems, a battery storage is needed. To 
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Fig. 1. The bidirectional DC-DC converter. 

 
Fig. 2. Conventional cascode. 

utilize the system and reduce the payback time, a high efficiency bidirectional converter for 
battery is essential, due to the energy is processed twice; charging and discharging. 

1.1. Topology and specifications 

The battery converter will be realised with a simple bidirectional boost buck converter as 
shown in Figure 1 and the specifications are listed in Table 1. From left to right, the battery 
voltage boosts to DC bus and from right to 
left it bucks the DC bus to charge the bat-
tery. To generate up to 700V DC which is the 
typical DC bus of a three-phase grid con-
nected PV inverter, 1200V semiconductors 
are often used in order to ensure safe opera-
tion. At this voltage, Si-based semiconduc-
tors like MOSFETs/IGBTs are not able to 

show good performances compared with the 600V devices. The 700V DC bus can be ob-
tained by split technology (±350V) and thus the use of 600V devices is possible [3] but the 
high number of components lead to limited reliability and low power density.  
Building the battery converter with SiC semiconductors can simplify the converter design, 
boosts the efficiency and power density, as it will be demonstrated by a 3 kW converter 
module with >98% max. efficiency. Power capacity can be increased by interleaving of mod-
ules, without reducing the efficiency.  

2. SiC power switches 

Power switches based on SiC such as BJTs, MOSFETs and JFETs (both normally-on and 
normally-off) are now available. Normally-on switches are not easily accepted in power elec-
tronic applications due to system safety requirements, for example during power up or loss 
of gate driver supply. The designing of the normally-off JFETs implies sacrificing some on-
state resistance [4] of the device and to drive normally-off JFETs with the highest static and 
dynamic performances, a dedicate two-stages gate driver is needed. The first stage is opti-
mized for switching and the second stage feeds the gate a constant current to keep the de-
vice on within a specified on-state resistance [5]. For BJTs, the current controlled character-
istic has a negative impact on the efficiency of the converter, especially at few kW power 
ranges. The drawback of normally-on JFET can easily be overcome with cascode configura-
tion, where a low voltage normally-off MOSFET is series connected to the source of the 
JFET as shown in Figure 2. The inherently off behavior is obtained as the JFET is normally-
on and the low voltage MOSFET is normally-off, this lifts 
the potential of the JFET source to the same as at the 
drain. Since the gate of the JFET is tied to the GND, thus 
gate-source potential difference becomes now negative 
and the JFET switches to off-state and the off-behavior is 
obtained. Another advantage of the cascode is the free-
wheeling/rectification functionality without additional anti-
parallel diode, this is possible due to the reverse current 
flow through body-diode of the low voltage MOSFET. The 
voltage at the source of JFET will be negative biased and 
is equal to the voltage drop across the body-diode, posi-
tive gate-source biased of the JFET will turn the JFET on. 

Tab. 1: Design specifications of the bidirectional DC-DC converter. 
Power Vin Vout Switching topology scheme Target ɳ 

 
3kW 

Boost: 336-448V 
 

Buck: 700V 

700V 
 

336-448V 

Hard switching with  
active freewheel-
ing/rectification 

 
> 0.98 
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Fig. 3. SiC MOSFET driver circuitry. 
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Fig. 4. Capacitive clamped cascode driver. 

The advantages of using MOSFET in this configuration is that of-the-shelf gate driver can be 
used indirectly to drive the JFET. Some other variation of this configuration are, the Capaci-
tive Clamped Cascode, which gives the controllability over the JFET [6] and Direct Driver 
approach, where the MOSFET only switches off during startup and fault situations. During 
normal operation of Direct Driver, the JFET is driven direct by the gate circuitry and thus 
eliminating the additional switching losses of the MOSFET and the possibility of repetitive 
avalanche during switching off. Furthermore the gate driver is integrated in an IC, which 
helps to reduce parasitic components in the gate circuitry [7-8]. 
SiC MOSFETs are also well suited and off-the-shelf driver can be used to drive directly. From 
the gate driver point of view, the main difference compared to Si is a wider gate voltage 
swing, where driving with 20V is recommended to have optimal on-state performance [9]. 

2.1. SiC MOSFET vs. Capacitive clamped cascode with normally-on JFETs 

Two solutions will be used for comparison, those are CMF2012D SiC MOSFET against 
SJDP120R085 normally-on Vertical Trench JFET (VJFET) with BSC059N04LSG Si 
MOSFET. Some key parameters are shown in Table 2 and the driver circuitry for MOSFET 
and for VJFET are shown in Figure 3 and Figure 4, respectively. 

 

 
Both driver circuits are simple and easy to design as it is for the case of Si based.  
In Capacitive clamped cascode, to prevent voltage spikes that can lead the low voltage 
MOSFET into avalanche, the switching speed of JFET can be controlled by adjust the 
clamped capacitor. From Table 2, the conduction losses of the devices are roughly the same, 
but the switching losses of the JFET is lower than the SiC MOSFET. Thus in high switching 
frequency applications, this JFET will give lower losses and the capacitive clamped cascode 
with VJFET will be implemented to demonstrate the high efficiency.  
 

Tab. 2. Key parameters of CMF2012D and SJDP120R085 + BSC059N04LSG [9-11]. 
Parameter CMF2012D SJDP120R085 + 

BSC059N04LSG  
VDS, min. 1200V 1200V 

IDS@25ᴼC, max. 42A 27A 
IDS@100ᴼC, max. 24A 17A 
IDS degradation 42.9 % 37.1% 

RDS(on) @25ᴼC, typ. 80mΩ@20A IDS 75mΩ + 4.8mΩ@17A IDS 
RDS(on) @100ᴼC, typ. - 110mΩ + 6.2mΩ@17A IDS 
RDS(on) @135ᴼC, typ. 95mΩ@20A IDS - 
RDS(on) @150ᴼC, typ. - 147mΩ + 7.5mΩ@17A IDS 

Operation temperature -55
ᴼ
C - 135

ᴼ
C -55

ᴼ
C - 150

ᴼ
C 

RthJC, max. 0.7K/W 1.1K/W 
Qg, typ. 90.8nC 32nC 

Etot@25ᴼC, typ. 859uJ@800V,@20A IDS 290uJ@600V,@17A IDS 
Diode Voltage drop@25ᴼC, typ. 3.5V@10A IF 0.88V@50 A IF 

 



 

 
Figure 5: Bidirectional DC-DC converter with Normally-on JFETs. 
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3. Converter design 

When the low voltage MOSFETs are switched on during freewheeling/rectification and using 
low ESR capacitors in the converter as shown in Figure 5, the dominant sources of losses 

are: core and copper losses in the inductors and switching and conduction losses of the 
semiconductors. Thus optimize the magnetic is also essential for high efficiency. As shown in 
Table 1, the converter will process 3kW. The inductor is used in both modes; buck and boost 
and is designed for boost mode, where it is used to store energy, which is defined as [12]: 

Where L is the inductance and I is the rms current.  
Multiplying Eq.(1) with the switching frequency, fsw, the stored power is calculated. By solving 
Eq. 2 for the battery window voltage, the first design constraint is defined: 

From the left hand side, both inductance and switching frequency can be adjusted to fulfill 
the right hand side of Eq. 2. By increasing the inductance with the same core, more turns are 
added and the copper loss will increase, but this allows the switching frequency to be re-
duced, which lower the switching losses of the semiconductors and core losses and vice 
versa. Furthermore the converter could operate in continuous conduction mode (CCM) with 
small current ripple; Iac << IDC. Due to this, the skin effect is reduced, copper loss can also be 
reduced by using thicker copper wire and core losses is reduced follow by less utilization of 
the B-H hysteresis. The ripple current can be calculated as:  

Both the inductance and switching frequency appear in Eq. 2 and Eq.3, thus an optimisation 
process is necessary. In practical design, starting with high permeability and high saturated 
flux density core is a reasonable approach. Switching frequency of 80 kHz is selected and 
applying this to Eq. 2 gives an inductance of 950µH. Based on this, a 3” toroidal power core 
of type 200C with -63D material is selected [13].  An extra turn is added as a safety margin 
and the design data of the 969µH@10A inductance is listed in Table 3. 

Notice that the inductor is responsible for roughly 1% of losses at rated power, thus a better 
core or more winding can be added to improve the efficiency. 

Tab. 3. Design data for the boost inductances. 
Inductance Stacking turns Winding DCR Core loss Copper loss 

969µH 2 85 30 x 0.2mm litz 218mΩ 12.3W 21.8W@40
ᴼ
C 
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Fig. 6. The estimated efficiency of the bidirectional DC-DC converter. 

 
 

Fig. 7. The prototype of the battery converter. 

At 80 kHz switching frequency, bipolar film capacitors are more preferred than electrolytic 
capacitors due higher reliability and higher power density [2]. The main selection criteria here 
are the rated voltage and ripple current capability. In worst case the ripple current can be as 
much as the peak current for the inductor during the boost mode, which is: 

Based on this, a 20µF/1100V MKP film capacitor selected, which can handle 12 A and with 
ESR of 3.5 mΩ [14], the ESR losses can be neglected. 
To estimate the efficiency of the converter, power losses of the semiconductors must be cal-
culated. Losses estimation formulas for MOSFET can also apply for JFET. Due to the strong 
dependency of junction temperature, the losses functions can be complex. Take advantages 
of the datasheets, the conduction and switching losses of the devices can be inserted in 
look-up tables and using software to calculate the power losses. The implementation is done 
in PLECS and simulated in the case where the JFETs are mounted on a single heat sink of 
3.2ºK/W and operate at 25ºC ambient temperature. The efficiency based on the inductor and 
semiconductors losses is plotted in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
The target efficiency of 98% at rated power is obtainable in boost mode as well in buck mode 
and a prototype will be built to verify the high efficiency. 

4. Experiment results 

The prototype is shown in Figure 7, without optimization the physical size is 11.5 x 28.5 x 8 
cm and weigh 1.5 kg, out of this the inductor weigh 1 kg and the heat sink is 230 g.  

The efficiency measuring was carried out in a cabinet at 30
º
C with the Newtons 4th PPA5530 

precision power analyzer with accuracy <0.15% up to 400 Hz, as shown in Figure 8. Thermal 



 

 
 

Fig. 8. The test setup. 

 
 

Fig. 9. Thermal picture of top side of the converter. 

 
 

Fig. 10. Thermal picture of the bottom side. 

 
 

Fig. 11. The recorded efficiency of the prototype. 

pictures of the converter in boost mode at 3 kW are shown in Figure 9 and Figure 10, where 
both pictures indicate a stable temperature of the JFET as well as the low voltage MOSFETs. 

 

The measured efficiency is plotted in Figure 11 and compare to the simulation this is a devia-
tion of roughly 1% at 0.6kW and 0.5% at rated power, which is equivalent to 6W and 15W, 
respectively.  



 

 
Fig. 12. The scope waveform in boost mode (448V) at 3.1 kW. 

With the Capacitive Clamped driver scheme, the switching speed of the JFETs can be con-
trolled and thus avoid stressing the low voltage MOSFETs. The scope waveform verify that 
the 40V (low voltage) MOSFET are far away from its breakdown voltage as shown in Figure 
12, where channel 1(yellow) is across LVDrain-Source boost MOSFET, channel 2(green) is 
across LVSource to boost JFETDrain, channel 3(cyan) is across LVDrain-Source buck MOSFET and 
channel 4(magenta) is across LVSource to buck JFETDrain. Furthermore fast switching can be 

obtained with SiC as shown here for this JFET, where the switching transition (0-100%) is 
over after approximate 40ns.  

5. Conclusion 

There is a demand for power electronics with higher efficiency and/or higher power density, 
smart PV inverters is one of them. WBG semiconductors like SiC have higher breakdown 
voltage and superior statics as well as dynamic characteristics can meet these challenges. In 
this paper a simple bidirectional DC-DC converter using SiC normally-on JFET has been 
demonstrated that fast switching and high efficiency can be obtained with relatively little ef-
fort, as up to 98.5% efficiency has been recorded for a 3kW module, which can be interleav-
ed control to get higher power output. 
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