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Learning/Repetitive Control for Building Systems with Nearly Periodic
Disturbances

Kasper Vinther, Vikas Chandan, and Andrew G. Alleyne

Abstract— In this paper, learning/repetitive control is pro-
posed for improvement of existing feedback control loops for
temperature regulation in buildings. A single zone office build-
ing is used as an example, with real weather data for Phoenix
Arizona and realistic occupancy load schedules. Simulations
have shown a decrease in the average set point tracking error
of more than 50%, even without additional energy consumption.
This can be achieved in situations where the load disturbances
have enough repeatability and a repeatable-to-nonrepeatable
ratio can be computed to determine if learning should be
used and at which frequencies. Furthermore, the increased
tightness in reference tracking could be used to lower energy
consumption by moving the reference set point closer to the
boundaries of the allowable temperature range.

I. INTRODUCTION

Temperature control in buildings is important for various
reasons. It could be used to improve occupancy comfort in
commercial and residential spaces, to maintain good quality
of products in cold storage rooms or for safety reasons in
pharmaceutical processing facilities. The temperature is often
controlled with a heating ventilation and air-conditioning
(HVAC) system using either on/off type hysteresis control
or variations of PI/PID control due to their simple imple-
mentations [1], [2]. However, they seldom perform well at all
possible operating conditions because the control is typically
tuned only for a selected nominal situation; also the control
might not be tuned properly in the first place [2], [3], [4].

Model based control can improve the performance over
on-off or PID control, but obtaining a sufficiently accurate
model of the building and the HVAC system is a time
consuming and costly process and the uncertainty of these
models can be quite severe due to several reasons. Firstly,
certain parameters are expected to be time varying, such
as the thermal capacities, and therefore are hard to obtain.
Secondly, there will be uncertainty in the estimation of
load disturbances, which are dictated by several factors such
as weather conditions, occupancy, appliances, lighting, etc.
Although weather can be included in the control [5], the
exact contribution of factors such as occupants, appliances,
and thermal infiltration is difficult to predict accurately.

This paper investigates the use of learning type control
such as iterative learning control (ILC) and repetitive control
(RC) for improvement of existing feedback controllers in
buildings such as the ones mentioned above. A survey on
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ILC is provided in [6] and RC is covered in references
such as [7], [8], which also show the similarity of these
methods. The basic concept of these types of learning control
methodologies is that feedforward signals are generated and
updated based on previous errors and they do not require the
costly process of identifying system models. However, they
do need repetitiveness in the tracking error and disturbances.

Buildings experience repetitiveness in load disturbances
on a daily and a seasonal basis due to the weather. A good
prediction of the weather tomorrow is that it will most
likely be close to what it was today. Also, the occupancy
and appliance loads will often repeat themselves on a daily
basis governed by actions such as people going to work,
having lunch, supermarkets opening and closing, etc. The
assumptions about the repetitiveness of various disturbances
will not always hold true, but the idea in learning is that
the control adapts to changes based on past experience. This
means that we only need nearly periodic disturbances, in the
sense that they are allowed to change, but on average they
will show periodicity. The authors in [9] have provided a way
to calculate the Repeatable-to-Nonrepeatable Ratio (RNR),
which can be used to determine if the repeatable part of the
tracking error or disturbance is larger than the nonrepeatable
part for each frequency. A ratio above zero means that there
is potential for applying learning type control.

A single zone office building is provided as an exam-
ple case study to show the possible tracking performance
improvement with learning/repetitive control. A MATLAB
Simulink model of this building is derived using lumped
parameter modeling with resistive-capacitive networks and
quasi periodic disturbances such as real weather data and
occupancy load schedules are used. This model allows us to
simulate an entire year or even longer and makes it possible
to compare different control strategies, which would not be
possible in a real building. The proposed steps to improve
tracking performance in an already existing stable feedback
system are to: (i) Collect error data for an appropriate time
window. (ii) Calculate RNR. (iii) Use RC or ILC to design a
learning filter that corresponds to the RNR findings and thus
improve tracking performance at appropriate frequencies.

This paper first introduces a simple modeling framework
for buildings and provides a description of the model of a
single zone office building. A temperature controller is then
designed in Section III, which provides a comparative case
for analysis. Then, the learning/repetitive control design is
described in Section IV, followed by results in Section V,
from simulations on the single zone building spanning an
entire year. Finally, conclusions are drawn in Section VI.



II. MODELING

A. Lumped Parameter Modeling of Buildings Using
Resistive-Capacitive Networks

A commonly used method of modeling the thermal dy-
namics of buildings is using lumped resistive-capacitive
networks [10], [11], [12]. In this paper, each room (zone)
is considered as a single capacitance and each wall is
represented with 3 resistors and 2 capacitors also referred
to as the 3R2C modeling approach [11]. Fig. 1 illustrates
the 3R2C network, where Rwo,i is the thermal resistance
between the outer wall surface of wall i and ambient, Rwi,i

is the resistance between the inner wall surface and ambient,
and Rww,i is the resistance between the inner and outer wall
surfaces. The states in the model are the temperatures of the

Rwo,i

Connection
to ambient

Connection
to ambient

Rww,i Rwi,i

Cwo,i Cwi,i

Two,i Twi,iTao,i Tai,i

Fig. 1. 3R2C network model of a wall.

inner wall surfaces Two,i, the outer wall surfaces Twi,i, and
the room/zone temperatures. The ambient temperatures Tao,i
and Tai,i could be zone temperature, outside air temperature,
or ground temperature, where outside air (Tair) and ground
(Tgnd) temperatures are considered inputs to the system.

The zones have controllable inputs, which are the heat
transfer rates Q̇hvac supplied by the HVAC system (positive
when heating and negative when cooling). A discrete state
space model representation of this system is shown in (1).

[
Tw

Tz

]
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[
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] [
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]
(k) +
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]
Q̇hvac(k)

+
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0 0 0 Bdz

]
Tair
Tgnd
dw

dz

 (k) (1)

The vector Tw contains all the wall surface temperatures
(both inside and outside) and the vector Tz contains all
the zone temperatures. Tair, Tgnd, dw, and dz are consid-
ered as disturbances to the system, where dw is a vector
of lumped Long Wave Radiation (LWR) and Short Wave
Radiation (SWR) heat transfers affecting each wall and dz

is a vector of the thermal load applied directly on each zone
(e.g. occupants, appliances, and lighting). These are further
described in Subsection II-B.

B. Single Zone Office Model

In this paper, we use a single zone office building with
four walls, a ceiling, and a floor as an example, which is
assumed to be located in Phoenix, Arizona. Using a standard
medium office building construction template provided in the
OpenStudio tool [13] developed by the National Renewable

Energy Laboratory (NREL) an EnergyPlus [14] model of this
building was created, which uses a weather file for Phoenix,
Arizona. A Google SketchUp illustration of the building is
shown in Fig. 2.

Fig. 2. Google SketchUp illustration of single zone EnergyPlus model
created in OpenStudio.

The 3R2C framework described in Subsection II-A was
used to construct a simplified resistive-capacitive network
model in MATLAB. This model is based on the EnergyPlus
model, where the resistances corresponding to the heat
transfer between the zone and wall surfaces, and the zone
capacitance were obtained using a least squares based system
identification procedure applied on data generated using
EnergyPlus. The capacitances for the inner and outer wall
surfaces, and the resistances between them were computed
based on physical properties of the wall construction layers.
The resistances corresponding to thermal interactions of the
wall surfaces with the ground and ambient air were obtained
by averaging the corresponding heat transfer coefficient data
obtained from a yearlong EnergyPlus simulation. The floor is
modeled with only one state Twi,6 as the ground temperature
under the floor (Two,6) is considered constant.

The thermal load disturbances acting on the eleven
wall surfaces are collected in a single vector dw(t) =
[dwi,1(t), dwo,1(t), ..., dwi,5(t), dwo,5(t), dwi,6(t)]T consist-
ing of the disturbance on the inner wall surfaces (i ∈
1, 2, ..., 6)

dwi,i(t) = σAi

6∑
j=1

Fi,j

(
T 4
wi,j(t)− T 4

wi,i(t)
)

︸ ︷︷ ︸
LWR from wall surfaces

, (2)

and the outer wall surfaces (i ∈ 1, 2, ..., 5)

dwo,i(t) = εiσAiFgnd,i

(
T 4
gnd(t)− T 4

wo,i(t)
)︸ ︷︷ ︸

LWR from ground

(3)

+ εiσAiFsky,i

(
T 4
sky(t)− T 4

wo,i(t)
)︸ ︷︷ ︸

LWR from sky

+ εiσAiFair,i

(
T 4
air(t)− T 4

wo,i(t)
)︸ ︷︷ ︸

LWR from air

+αiAiqSWR,i(t)︸ ︷︷ ︸
SWR

,

where i is the wall number, σ is the Stefan-Boltzmann
constant, Ai is the surface area, F ∈ R6x6 is a matrix of
Script-F factors [15], Fgnd,i, Fsky,i, and Fair,i are view
factors for the outer surface of wall i, Tsky is the sky



temperature, εi is the thermal absorbtance of wall i, αi is the
solar absorbtance of wall i, and qSWR is the incident solar
radiation per unit area on wall i. These values, together with
Tair and Tgnd, can be obtained directly from EnergyPlus
for an entire year and (2) and (3) emulate how EnergyPlus
calculates the disturbances (short and long wave radiation).

The zone load dz is pseudo randomly generated for each
day for an entire year. Each day we assume that five Gaussian
probability density functions (PDF) govern how many people
arrive for work, how many hours each person works, when
each person work (midpoint of working hours), when each
person has lunch (midpoint), and how long that person’s
lunch is. The PDF parameters are mean x̄ = {45 people,
9 hours, 13:00 hours, 12:30 hours, 0.75 hours} and standard
deviation σstd = {3 people, 1 hour, 0.5 hours, 0.25 hours,
0.1 hours}. Each occupant in the office corresponds to 0.6
kW (0.1 kW body heat, 0.4 kW appliances, 0.1 kW lighting)
and 0.3 kW when they are at lunch (0.2 kW appliances,
0.1 kW lighting). For simplicity there is no distinction of
weekends, however, one could just turn the learning off
during weekends or even have different learning controllers
for weekdays and weekends.

In this case study, the controllable heat transfer rate to
the zone Q̇hvac is assumed to be bounded between -35 and
17.5 kW. This will result in controller saturation during some
hot summer days and thus requirement for integrator anti-
windup. Furthermore, the zone temperature reference Tz,r is
set to 22.5◦C. A reference that varies during the day could
also be used, as long as it repeats itself daily.

III. OFFICE BUILDING TEMPERATURE CONTROL

The air temperature in office buildings can be controlled in
different ways, e.g. with simple on/off hysteresis based con-
trol, PI/PID control, or more advanced model based control.
In most cases one of the first two methods is used [1], [2],
[3], [4], primarily due to their simple implementations and
relatively simple tuning procedures. Fig. 3 shows the closed
loop feedback system, where the zone air temperature Tz
tracks a reference temperature Tz,r. The system is denoted
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Fig. 3. Closed loop feedback control structure for temperature control.

by G and has the heat transfer rate provided by an HVAC
system, Q̇hvac, as input. The disturbances to the system are
the thermal loads on the walls dw and the thermal load on the
zone air dz . The system model and disturbances in the single
zone building case study are defined in Subsection II-B and
are assumed to be unknown to the feedback controller.

Sensing of the zone air temperature with a digital sensor
(thermostat) and its communication with the controller C
is performed in discrete time. A realistic sample time for

buildings is somewhere between 1 to 15 minutes depending
on the size of the zones among other factors. Here a 5 minute
sample time ts is used. This sampling rate is faster than
that of the underlying system dynamics and slow enough to
allow the HVAC system to meet the desired Q̇hvac before
the demand is changed again. For comparison, the open loop
zone temperature time constant is about 27 minutes and the
wall surface temperature time constants are much larger.

PI control is used in the feedback loop in this case study,
since it performs better than just having hysteresis based con-
trol and because it is commonly used as mentioned earlier.
There exist various different PI tuning methods ranging from
step response analysis, relay feedback, robust synthesis, etc.
However, robust control methods require a nominal model of
the system and uncertainty models, which can be difficult to
obtain as mentioned earlier, and are usually not available to
the control engineer. The step response method is therefore
proposed, which gives different results depending on the
particular load on the system. Critical regions of operation
correspond to high and low load situations, which should be
considered in order to design a robust PI controller. Fig.
4 shows closed loop step responses using three different
discrete-time test controllers C1, C2, and C3 (4) for a high
load situation (Fig. 4(a) and 4(b)) and a low load situation
(Fig. 4(c) and 4(d)). The high load situation is generated
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Fig. 4. Closed loop step response with different controllers Cn during
high load (a,b) and low load (c,d).

based on the air and sky temperature at 1 pm July 1 with
zone load dz = 25 kW and the low load situation is generated
based on conditions at midnight on January 1 and with zone
load dz = 0 kW.

Cn =Kp,n +Ki,nts
z

z − 1
, n ∈ {1, 2, 3} , (4)

where Kp,1 = 25,Ki,1 = 0.025,

Kp,2 = 15,Ki,2 = 0.015,

Kp,3 = 5,Ki,3 = 0.005.

The step up in reference at high load and the step down at
low load determines how fast a controller we can design. In



these situations, the controller C1 is too aggressive, giving a
large overshoot in just one time step. Controller C3 on the
other hand is too conservative, whereas C2 provides a good
balance with a maximum overshoot of 6% and a minimum
rise time of approximately one time step (300 seconds). This
corresponds to Fig. 4(a) and 4(d). The slowest responses
are observed in Fig. 4(b) and 4(c), where the rise time is
between 900-1200 seconds. This confirms that a fixed gain
PI control is not ideal under all operating conditions and
therefore motivates the development of a learning/repetitive
type control for improvement of tracking performance.

IV. LEARNING/REPETITIVE CONTROL FOR IMPROVED
REFERENCE TRACKING

Fig. 5 illustrates the proposed addition of RC to the
feedback control loop shown in Fig. 3. The RC block
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Fig. 5. Existing feedback loop (black) with additional RC (blue).

modifies the original temperature reference Tz,r based on the
tracking error one trial back in time e (one trial is a repetitive
cycle, e.g. 24 hours), which will lower e as the number of
trials goes to infinity, if the load pattern is repetitive enough.

Collecting past errors e and reference modifiers Tz,rm
in vectors, Tz,rm = [Tz,rm(k − 2N + 1), ..., Tz,rm(k −
2), Tz,rm(k−1)] and e = [e(k−2N +2), ..., e(k−1), e(k)],
where k is the current time step, and using buffers (memory
blocks in Fig. 5) of size 2N − 1, where N is the number
of discrete samples in one repetitive trial, we can define a
repetitive controller as

T̂z,rm =Q(Tz,rm + Le). (5)

The vector T̂z,rm = [T̂z,rm(1), T̂z,rm(2), ..., T̂z,rm(2N−1)]
is the output of the learning algorithm and it contains
updated reference modifiers. However, we are only interested
in T̂z,rm(N + 1) since this is the updated version of the
reference modifier during the last trial (N samples back in
time) to be applied in the next time step k + 1. Therefore,
the reference modifier for the next time step is

Tz,rm(k + 1) =T̂z,rm(N + 1). (6)

The calculations are repeated at each time step and L and
Q can be causal/non-causal filters with low-pass, band-pass
or high-pass characteristics depending on the frequencies of

the repetitive part of the error. Choosing L and Q as filters
is also the reason why vectors are used in (5).

The proposed RC is similar to a serial structure ILC
implementation, with the only difference being that the
reference modifier is calculated in real time at each time step
k, whereas in ILC, all reference modifiers are calculated after
a trial has ended for the entire subsequent trial. The benefit
of RC is that it does not require the same initial condition
each trial. For more detail on discrete RC see [7], [16], [17].

In order to determine the cutoff frequencies for the
learning filter L we propose to calculate the Repeatable-to-
Nonrepeatable Ratio (RNR) for all frequencies. This method
is shown in [9] and calculated as

RNR =20log

(
|FFT [ē]|2

1
Nt

∑Nt

j=1 |FFT [ē− ej ]|2

)
, (7)

where Nt is the number of trials used in the analysis, FFT
is the Fast Fourier Transform, and the repeatable error is

ē =
1

Nt

Nt∑
j=1

ej , (8)

where ej is a vector of all the errors in trial j. Equation
(7) calculates the power of the repeatable signal versus
the power of the nonrepeatable signal and converts it to
dB. If this number is larger than 0 dB for a particular
frequency it means that there is more repetitiveness in the
error than nonrepetitiveness. The learning filter L should then
be applied only on these frequencies, which can be achieved
by picking appropriate cutoff frequencies for a band-pass
filter or an upper cutoff frequency for a low pass filter. The
filter Q can then e.g. have cutoff frequency above L in the
low-pass case and is there to ensure that the condition for
stability is met. Stability can be checked using (9) (derivation
in [7]), which must be satisfied for all frequencies.

‖Q(1− zLP )‖∞ <1 (9)

The transfer function P is the complementary sensitivity
transfer function from reference to output defined as

P =
GC

1 +GC
. (10)

V. CASE STUDY - ONE YEAR SIMULATION

The previously described single zone office building is
used here as a case study, to show the reference tracking
performance improvement of RC when applied to a system
with nearly periodic load disturbance. The repetitive trial
length is identified as one day starting from midnight, where
the occupancy load is small.

Fig. 6(a) shows the tracking error for each day in January
(blue) for the feedback control without RC and the corre-
sponding repeatable error (red), calculated using (8), where
Nt = 30. Furthermore, for comparison, the error for each
day in an entire year is also shown (cyan). Based on the
tracking error, the RNR is calculated for January and also
for an entire year. However, we assume that only data from
January was available as training set for the design of the
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The bottom graph (b) shows the RNR at different frequencies based on the
January errors (blue) and the entire year (cyan).

learning filter L. The uncertainty of not having each month
in the year will get assigned to the nonrepeatable part of the
signal. More data could be used if available.

The RNR in Fig. 6(b) indicates that L should be a low-pass
filter in this particular case study and the cutoff frequency
was set to 0.000223 Hz. The MATLAB command butter
was used to design a first order Butterworth low-pass filter
and the command filtfilt was then used to make a non-
causal zero phase filter. The Q filter was also chosen to be a
non-causal zero phase filter with a cutoff frequency of two
times 0.000223 Hz. This satisfies the stability condition in
(9). Additionally, the reference modifier Tz,rm was limited
between -1 and 1. This means that in worst case, if today
does not look like yesterday, we will only end up following
a reference of minimum 21.5 or maximum 23.5 degrees,
which should still be acceptable for the occupants. Tighter
constraints can be used if necessary.

After the training period, RC can be added to the system.
Fig. 7 shows the infinity-norm, 2-norm, and 1-norm of the
error for each day from the 1st of February to the 31st of
December plotted in a histogram. The same simulation is
repeated without RC for comparison. All error norms show
that RC improves the reference tracking performance. This is
also indicated in Fig. 8 where the 2-norm is plotted for May,
June, and July. However, there are a few days where the RC
performs worse (e.g. trial 152). These outliers are caused by
hot summer days where the HVAC system is saturated, which
is also visible in Fig. 6 with larger errors around the hot hours
of the day between 1-5pm. If there is saturation one day (e.g.
trial 151), the RC will learn a reference that compensates
for this effect, but the next day might be colder resulting
in worse tracking that following day. However, the control
has converged again the day after (trial 153). The outliers,
both with and without RC, can potentially be avoided by
increasing the systems saturation bounds.

Fig. 9 shows the reference signal and the modified ref-
erence signal for two consecutive trials, indicating the con-
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tinuous modifications to the reference signal for the inner
PI control, which results in better tracking of the original
reference Tz,r. The modified reference goes down during the
morning hours when people arrive for work and increases
after they leave in the afternoon. Furthermore, the lunch
break causes a modification of the reference starting at
around 11 am until 2 pm. This also correlates with the
repeatable error shown in Fig. 6(a), when RC is not applied.

Fig. 10 shows the energy charge in U.S. dollars for
each month of the year with and without RC using a time
of use tariff effective in 2010 from the Arizona Public
Service Company [18]. The expected energy consumption
was estimated by assuming a constant heating efficiency of
1 and cooling efficiency of 2. The figure shows that there is
negligible difference in energy charge with and without RC.
Although there may be some uncertainty in the estimation
of total consumed power since constant efficiencies are used,
the importance is not in estimating the correct bill amount,
but rather in comparing the control with and without RC
under the same tariff schedule.
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Table I summarizes the results and gives percentage im-
provements. We can conclude that the reference tracking

TABLE I
SUMMARY OF CASE STUDY RESULTS FOR SIMULATION FROM 1ST OF

FEBRUARY TO THE 31ST OF DECEMBER.

quantity without RC with RC % improvement∑334
j=1 ‖ej‖∞ 115.28 55.43 51.91∑334
j=1 ‖ej‖2 1357.70 475.87 64.95∑334
j=1 ‖ej‖1 29037.42 9584.77 66.99

Total energy (kWh) 50612 50450 0.32
Total cost (U.S. $) 2926.31 2915.54 0.37

performance was significantly improved with RC and this
performance improvement came at no increase in energy
consumption or spending cost. The tracking performance
improvement could also be used to change the temperature
reference set point to a value that requires less energy in
terms of cooling or heating, while still staying within toler-
able temperature bounds. This could be used in applications
where we are mostly concerned with staying below a certain
upper temperature bound, e.g. a food processing/storage
facility or in a pharmaceutical processing facility. As a result,
this could provide significant electricity savings.

VI. CONCLUSION

In this paper, the use of repetitive control is studied in
the context of building temperature regulation. Improvements
of more than 50% in set point tracking performance were
achieved with no additional energy consumption, when the
proposed RC procedure was applied to an existing feedback
controller in a single zone office building simulation. No
extra hardware is required and the proposed procedure is

to use closed loop data from an appropriate time window,
such as the previous year or month, and use that to calculate
the repeatable-to-nonrepeatable ratio of the tracking error
for each frequency. This is then used to design a repetitive
controller with a learning filter that improves performance at
frequencies where the repeatable part of the error is larger
than the nonrepeatable part. The single zone case study used
as an example is a simplified version of a true system,
but detailed enough to give a realistic picture of the po-
tential of learning control in building systems. Furthermore,
the lumped parameter resistive-capacitive network modeling
framework is applicable on larger buildings as well.

REFERENCES

[1] C. P. Underwood, HVAC Control Systems: Modelling, Analysis and
Design. Spon Press, 1999.

[2] J. E. Seem, “A New Pattern Recognition Adaptive Controller with
Application to HVAC Systems,” Automatica, vol. 34, no. 8, pp. 969–
982, August 1998.

[3] Q. Bi, W. Cai, Q. Wang, C. Hang, E. Lee, Y. Sun, K. Liu, Y. Zhang,
and B. Zou, “Advanced controller auto-tuning and its application in
HVAC systems,” Control Engineering Practice, vol. 8, no. 6, pp. 633–
644, June 2000.

[4] D. Lim, B. P. Rasmussen, and D. Swaroop, “Selecting PID Control
Gains for Nonlinear HVAC&R Systems,” HVAC&R Research, vol. 15,
no. 6, pp. 991–1019, November 2009.

[5] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and M. Morari, “Use of model predictive
control and weather forecasts for energy efficient building climate
control,” Energy and Buildings, vol. 45, pp. 15–27, February 2012.

[6] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96–114, June 2006.

[7] R. W. Longman, “Iterative learning control and repetitive control for
engineering practice,” International Journal of Control, vol. 73, no. 10,
pp. 930–954, 2000.

[8] Y. Wang, F. Gao, and F. J. Doyle, “Survey on iterative learning control,
repetitive control, and run-to-run control,” Journal of Process Control,
vol. 19, no. 10, pp. 1589–1600, December 2009.

[9] B. E. Helfrich, C. Lee, D. A. Bristow, X. H. Xiao, J. Dong, A. G.
Alleyne, S. M. Salapaka, and P. M. Ferreira, “Combined H∞-
Feedback and Iterative Learning Control Design with Application to
Nanopositioning Systems,” in American Control Conference, Seattle,
Washington, USA, June 2008, pp. 3983–3900.

[10] F. Lorenz and G. Masy, “Méthode d’évaluation de l’économie
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