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Abstract 

Advantages and disadvantages of available analytical and simulc1tion techniques for pulse prob
lems in non-linear stochast.ic dynamics arc discussed. First, random pulse problems, both 
those which do ;u1d do not. lead to Markov theory, a.rc presented . Next, t.he analytical and 
analytically-numerical techniques suitable for Markov response problems such as moment equa
tions, Pctrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of 
these techniques is limited by the fad that effectiveness of each of them depends on the mean 
rate of impulses. Another limitation i::; t.he size of the problem, i.e. the number of state vari
ables of the dynamical system. In contrast., the applicability of the simulation techniques is not. 
limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their 
use is straightforward for a large class of point processes , at least for renewal processes. 

1 Introduction 

J\n often posed question is : whether or not. it. is of general interest. to consider the problems of 
rcspoiJSf~ of dynamical systems to random pulse trains. In order to justify such an interest kt. 
us realize the fact. that any excitation to the dynamical mechanical system may be d!"ectu<ttcd 
i11 either of two ways: as a continuous function of t.ime , or hy impulses (jumps in the velocity 
response process). J\ class of practical engineering problems leading to the random impulse 
process representation can be listed , which embraces all kinds of tra ins of shocks and impacts . 

lf it is of interest, which has been rather commonly accepted for a long time, t.o consider 
problems of response to random excitations with time continuous sample paths, it. is of equally 
general interest to consider problems of response to impulse process exc.itations. Howf~ver, the 
la.Ucr excita.tions cannot be treated by usuctl techniques, because th ey revea.l inherently non
Caussia.n nature. A Gaussian process is only an asymptotic special ca.se of a. stochast.ic impulse 
process. Alt.hough as a basic model an external impulse process excitation rna..y lw assumed, a.n 
insight int.o the physi cal nature of many problems reveals that the jump of the velocity response 
is U1f~ result. of collision of two bodies . Conscquen1.ly, the t.ot.a.l impulse equal to the incr<~rnent 
of t.he momentum of the system under consideration depends on the vc~ locities of both colliding 
bodies prior to t.he collision a.nd hence it depe!nds on the stat.e variables of the problem. This 
leads to the multiplicative noise (pa.rarnetric excitation) problcm 1

. llencc ev<'JI for a silllplc 
rnechanicc1l mode l, quite advanced techniques may be required. 



One of the earliest papers dealing with the response of a non-linear dynamical system 
to a random train of impulses is certainly due to Roberts. 2 Next different a.pproatlles to 
the problem were developed, such as the equivalent lin earization3 , the improved perturba
tion technique to solve the generalized Fokker-Pianck equation\ techniques based on equations 
for moments,5

-
7

•
11 Petrov-Galerkin method,8 cell-to-cell mapping technique.9 •10•12 Recently Di 

Paola and co-workers 13 as well as Grigoriu 14 have tackled the problem . 

2 Markov and non-Markov response problems 

Consider a general multi-degree-of-freedom non-linear dynamical system under a random train 
of general pulses driven by a stochastic point process {N(t), t E [lo , oo[}, Pr{N(lo) = 0} = I , 
which is uniformly regular and has a finite number of points in a finite time interval. The 
counting process gives the number of time points in the interval [t0 , t[. The state vector of the 
system, Z(t), consisting of the structural generalized displacements and velocities augmented 
possibly by the state variables of the auxiliary filter, is governed by the set of equation~> of 
motion 

dZ(t) = c(Z(l),l)dt + d(Z(l), t, P(t))dN(l), Z(l 0 ) = z0 , (J) 

where dN(t) = N(t + dt) - N(t) and JJ(i) assumes the values P(l;) = fJ; (random mark 
variableo) at the times l ; of the impulses occurrences. If N( l) iH a Poisson counting process, 
independent of the random mark variables which also are mutually independent. , and both 
counting process and mark variables are independent of the initial conditions , the state vector 
Z(l) is a Markov process. It is not for all other point processes, e.g . renewal processes. 

Nevertheless the differential of the function <I>(t, Z(l)) of the process governed by equations 
( 1) can be evaluated from the following differential rule, 15 

d<I>(t, Z(l)) u<I>(l, Z(t))d ~ 8<I>(l, Z(l)) .. (Z(· ) )) d 
~l .t + L 

8 
r. c, t , t .t 

ui . Z; •=1 

+ [<t>(t ,Z(l)+d(Z(t) ,t,P(t))) -<t>(t,Z(l))] dN(t), (2) 

where n is the number of state variables . 
This differential formula is the startpoint to derive the differential equations for moments. 

However since the response process Z(t) is the functional of the random mark variables P(i;) = 

P;, l; < t and of the counting process N(T), T < t, this formula can only be used effectively, 
yielding explicit moments at the right-hand sides of equations, if the averaging of the last term 
is feasible, i.e. if the correlation between the expression in square brackets and dN(l) can be 
split. This is possible if the increments of the stochastic point process are independent , the 
random mark variables arc independent and these two arc also mutually independent. This is 
so if t.he underlying process is a. compound Poisson process, i.e. if t.hc augmented dynamical 
system is Poisson-driven. However if the increments of the regular counting process N(t) can 
be expressed as 

dN(t) = p( N(t)) dN( t ), 

2 



where N(t) is a homogeneous Poisson counting process and p(N(t)) is a suitably chosen zero
memory transformation, the problem can be converted to a Poisson-drivcn one at the cxpE!rlsc 
of introducing a number of auxiliary state variables. Such a transformation, being a linear 
function of the auxiliary state variables, each of whose is an exponential transformation of 
N(t), has been found for a class of Erlang renewal processes. 11

•
12

•
17 Then the structural sta.tc 

vector Z1 (t) augmented by the auxiliary variables Z2(t) is governed by the st.ochastic differential 
equations 

dZ(t) = c(Z(t), t.)di + d(Z(l), l, P(t))dN(I.), Z(t 0 ) = z0 ( 1) 

Z(L) = [Z1(l)] (Z(t) t) = [ci(Zl(/.),1)1 
Zz(l) ' c ' 0 ' 

d(Z() l P(t)) = [d1 (Z!(t), t)g(Z2(t))P(t) 
t ',, , d2(Z2(t), t) ' 

(El) 

where P(t) assumes the values P(i;) = P; at the times l; of the Poisson events and P; an~ 

mutually independent and identically distributed as P. Further, g(Z2(l)) = p(N(l)) is a . 
known !"unction of the auxiliary variables. 

Although the structural state vector Z1 (t) is a non-Markov process, the augmented state 
vector Z(l) becomes a non-diffusive Markov process. 

3 Analytical solution techniques 
I 

3.1 Equations for moments and modified closure approximations 

For a general Poisson-driven pulse problem governed by equations ( 1) and ( 5) the equations for 
t.he mean values, the second-, third- and fourth-order joint central moments of the response, 
arc obtained as11

•
15 

Ji.; (l) = E [c;(Z(l), t)] + v(l)E [d;(Z(l), t, P)] 

~~i.i(t) = 2 { E [z? (c?(Z0 (l), l) + 11(L)d1(Z(t), t, P))]}. 
+v(t)E [d;(Z(I,), t, P)dj(Z(l), t. , P)], 

3 { E [Z;0 zy (c~(Z0 (t), t) + ll(t)dk(Z(L), t , P))] L 
+3v(t) { E (Z?d;(Z(l), t, P)dk(Z(t), l, P)]} s 

+v(t)!E [d;(Z(l), l, P)d1(Z(I.), t, P)dk(Z(l), l, P)], 

K.;jkt(l) = 1 {E [z?zJzf(c?(Z 0 (t),t)+v(t)dt(Z(t),t,P))]L 

+6v(t) { E [z? ZJdk(Z(I. ), t, P)dt(Z(t), t, P)] L 
+411(l) { E [Z?dj(Z(t), t , P)dk(Z(t) , t, P)dt(Z(t), l , P)] L 
+v(t)E [d;(Z(t), i, P)di (Z(t), t , P)dk(Z(t), t, P)dt(Z(t), L, P)], 

(6) 

(7) 

(8) 

(9) 



where Zf(t) = Z;(t)- f.L;(t) and c~(Z0 (t), t) = Cj(Z(t), t)- E [cj(Z(l), t)] denote the components 
of the zero-mean (centralized) state vector and drift vector, and { .. . }s denotes the Stratorwvich 
symmetrizing operator. 16 

It is no doubt that the accuracy of the results obtained with the help of a closure technique 
depends on the ability of the tentative probability density function for the evaluation of the 
unknown expectations entering the moment equations, to qualitatively model the actual density 
function, i.e. it should have freedom to represent possible multimodal or multipeak shapes and 
discrete probability components. 

Consider the dynamical system subjected to a random train of impulses and to initial 
conditions Z(t0 ) = z0 . If in the time interval [to, t[ no impulse occurred , the system has 
performed the deterministic drift motion from the initial state z0 at the time t 0 to the state 
z(t) = e(tlzo, t 0 ) at the timet, or it has been at rest , in the case of zero initial conditions. 
Notice that e(tolzo, la) = zo. 

If the train of impulses is driven by a homogeneous Poisson process, the probability P0 of 
no impulse occurrence in the time interval [to, t[ is expressed as 

Pa(tlto) = Pr{N(t) = OIN(to) = 0} = exp( -v(t- to)). (10) 

The probability P0 (tlt 0 ) may be high, close to the unity, if the length t - t 0 of the time 
interval is small, i.e. at the early transient stage, especially if <1lso the mean arrival rat.e v is 
small. 

.Joint probability density function of the state vector Z(t) can be represented in form of the 
sum of the continuous and discrete parts as · 

fz(z, t) fz(z, t I N(t) = 0) Pr{N(t) = 0} + Jz(z, t I N(t) > 0) Pr{N(t) > 0} 
n 

Pa(tlta) IT o(z;- e;(tlzo,to)) + (1- Po(tlta))J~(z,t), ( 11) 
i=l 

where e;(llzo, t0 ) denotes the drift from the initial state z0 at l = L0 obtained from (1) for 
dN(t) = 0. Hence the system must be at the position z; = c;(tlzo, t0 ) with probability one as 
specified by the delta spikes, if no impulses have arrived. So, f~(z, t) = fz(z, t I N(L) > 0) 
denotes the continuous joint probability density function on condition t.hat at least one impulse 
has occurred during the preceding time interval [to, t[. Expectations evaluated with respect 
to n(z, t) are denoted as E[· · ·]0 . In particular, the conditional mean value function and the 
conditional joint central moments of the order r are denoted as p.?(t) and K?1 ;2 

... ;r (l). The 

relationships between unconditional and conditional moments read 15 

p;(t) = Po(Lito)c;(tlzo, to)+ (1- Po(tlto))p~(t), (] 2) 

4 



( 13) 

where (12) has been used. Further, the arguments of P0 (tito) and e;(tlzo, l0 ) have been omitted 
for ease of notation. The inverse relationship can be similarly derived in few steps 

( 11) 

For syi:itcms with polynomial urift vectors the following modified cumulant neglect closure 
i:iclteme may be used. In case of closure at the order N all centralized moments K~1 ; 2 .. ;T(l) 

, T > N with respect to the continuous joint probability density function J£(z, t) are first. 
expressed in terms of corresponding centralized moments of the order j ~ N by means of th e 
ordinary cumulant neglect closure approximations. This will work if J~(z, t) is monomodal and 
not deviating too much from a multivariate normal distribution, since the joint cumulants are 
~cro in the latter case. Then, the corresponding unconditional moments K;

1
;:r·ir(t), r· > N 

rnay he expressed in terms of the centrali~ed moments x:?
1

;
2 

... ;Jl), j ~ N by means of (13) . 

Finally, all joint. moments x:?
1

;
2 

... ;j(t), j ~ N within this expression can be expressed in terms 

of x:;
1

;
2 

... ;i(i), j ~ N by means of (111), and the required closure scheme is obtained. In case of 
closure at th e order N = 4 the explicit closure approximations for the .St.h and 6th order joint 
central ized moments have been derived for the case e;(t lzo , t0 ) = 0. 5

•
15 

The modified curnulant-neglect closure technique proved to be effective in the case of eval
uating transient response moments for low mea.n rates of impulses, i.e. for spa.rse tra.ins of 
imptdses5

. Stationary moments, even though the mea.n rate is low , can often be cva.l uatcd 

.s 



with the help of ordinary cumulant-neglect closure approximations , because for very l~ng time 
intervals the spike of the probability density function becomes rather insignificant. However, 
as the experience of the authors shows, numerical integration scheme combined with ordinary 
cumulant-neglect closure approximations runs into instability at the early transient stage if the 
mean rate of impulses is low. 

3.2 Petrov-Galerkin method to solve the forward and backward 
Kolmogorov-Feller equations 

The forward Kolmogorov- :F'eller equation for the joint probability density .fz(z, t) of the state 
vector Z(t) reads in the case of absorbtion on a part of the boundary 15

•
11

; 

~Jz(z, t) = Kz ,t[f(z , t)] , V t E]io, t1] , V z ESt 

fz(z, to) = fo(z) , V z E Sto ( 15) 

fz(z, t) = 0 

where 5'1 is the solution set at the timet, bounded by the surface oS1 = 8S1(o) U ()S1(
1J U oS}2l. 

DSP) is the non-accessible (natural) part of the boundary, whereas the accessible boundary is 

made up of the exit part 8S}1l and the entrance part oSf0 l. As indicated, absorbt.ion boundary 

conditions must be specified on 8S}0 l. 
The forward integro-differential Kolmogorov-Feller operator is given by 15

•
18 

Kz,t[fz(z, t)] = 

-2.::: a:i [c;(z, t)Jz(z, t)J + v(t) j [~z(a(z,p, t), t) 1 ~ 1 - Jz(z, t) J .rp(p)dp, 
1 p 

( 16) 

where 
_ d, (I od(a(z,p,L),l)) 

J- et + f)y'l" , (17) 

and a = a( z, p, i) is the inverse transformation of 

z=a+d(a,p,t) ( 18) 

88Y~ is the gradient of d(y, p, t) with respect to y and f p(p) is the probability density of the 
mark variable P. 

The backward Kolmogorov-Feller equation with absorbtion boundary conditions is 15 

8 T [ j aJz(z, t) + Kz,t fz(z, t) = 0 , ViE [to,LJ[ , V z ESt 

( 19) 

fz(z,t) = 0 

6 



where I1(z) is the terminal value of the unknown function .fz(z, t) . In t.his case the absorb1jon 

boundary condition is specified on as?l. 
The backward integro-differential Kolmogorov-Feller operator is given by 

K~, 1 [fz(z, t)] = 

"'£ c;(z, t) a~Jz(z, t) + v(t) j [.rz ( z + d(z, p, t)) - .rz ( z, l) J fp(p)dp. 
' p 

(20) 

The Galerkin method for solving the boundary and initial value problems (15) ami (19) 
consists in expanding the unknown function fz(z,t) in series of approximating shape functions 
and expanding the variational field in series of weighting functions. For the problem (15) the 

shape functions must fulfil the boundary condition N;(z) = 0, z E a8z0
) U 88

1
('2), whereas 

the weighting functions V;(z) = 0, z E ast(I}_ In contrast, for the problem (19) the Bhap<! 

functions fulfil the boundary condition N;(z) = 0, z E 8St(I}UaS1(
2

), and the weighting functions 

V;(z) = 0, z E 8S1(
2

). Further the shape and weighting functions rnu~Jt be suff-iciently smooth 
that K:~.,t[ ... ] and KL[ ... ] may become adjoint operators when integrated over 81• In order to 
achieve numerical stability due to the large Courant number in part of the mesh an upwind 

-differencing in the weighting function becomes necessary as performed in the Petrov-Galerkin 
variational method . 

11. has been found that for a. two-dimensional problem, i.e. the Duffing oscillator under 
trains of impulseB with high to moderate mean rate, the Petrov-Galerkin method provides very 
accurate solution of the backward Kolrnogorov-Feller equation 8

. Unfortunately ii. has not been 
possible to devise the Petrov-Galerkin technique suitable for sparse trains of puiBes. J\notlwr 
drawback of the method is that, despite todays technology, the solution is not feasible for sLate 
vectors of dimension larger than 4 or 5, not even with parallellization of the calculations. 

3.3 Cell-to-cell mapping technique 

The problem iB discretized in time and space. The Lime axis is divided into srnctll Lime intervals 
6.l and fz(zo, i;) denotes the first order probability density function at. the Lime l; = l 0 + 
·i.6.l, ·i. = 0, 1, 2, .... The probability density function at the Bubsequent instant li+I, is given hy 
the convolution integral 

fz(z, ti+I) = j qz(z, t;+IIzo, i;).fz(zo, t;)dzo, (21) 

s,, 

where q(z, l;+ 1 lz0 , l;) is the transition probability density function of the state vector from the 
state Z(lu) = z0 at the time i; to the state Z(l) = z at the Lime i;+ 1 and 81, is the sample space. 

If the time interval 6.t is short enough and if the mean rate is low, it follows from the 
Poisson law that the probability of occurrence of more than one impulse in this time interval 
rnay be neglected and the following asymptotic form of the transition probability density may 
be a.ssumed, 10 

7 



where 

and 

qz(z, ti+1lzo, ti) = Po(ii+1ltJ)q~)(z, ti+1lzo, i;)+ 

(1 - Po(ti+1Jt;))q~)(z, ti+llzo, t;) + 0 ((vlltt) , 
(22) 

(23) 

(24) 

is the transition probability density conditional on no impulse arrival and e( i;+1 Jz0 , i;) has the 
same meaning as in equation (11). Surely, (22) is fulfilled at best for sparse pulse trains where v 
is small. Hence the method is expected to work at best in this case. The transition probability 
density q~)(z, i;+ 1 Jz0 , t;) conditional on one impulse arrival is of continuous type . Hence the 
expansion (22) is based on pretty much the same idea as the modified cumulant neglect closure 

scheme derived from (11). Algorithms have been devised for evaluation of q~)(z, l;+1 Jz0 , l;) .10 

Especially a method based on a Taylor expansion in the impulse magnitude P is tractable:9
•
12 

The sample space is divided into a finite number M of small volumes (cells) 19
, where the 

volume llzk of the mesh element is centered at Zk . Assume that llzk is sufficiently small 
for qz(Zj, i; + lltJzk, t;) and fz(zk, t;) to be approximately constant throughout the cell. The 
probability of being in the kth cell at the time l; is 

(25) 

The probability 7fy+1
) of being in the jt.h cell at the time i;+1 is then given by 

M 
(i+1) _ ~ Q (i) . _ 1 M 7fj - L....t jk1fk' J- , ... , ' (26) 

k=1 

(27) 

where Qjk is the the element in the jth row and kth column of the transition probability matrix. 
The transition probability Qik will not depend on time l; if the Markov process is stationary. 

The transition of states can be represented by the matrix equation 

(28) 

where Qi = Q · · · Q (Q multiplied by itself i times ), 7l"(i) is an M -dimensional vector of the 

sl.a.tc probabilities 7l"~i) after ith transition, and 7l"(o) denotes the initial distribution at the time 
t 0 . The stationary distribution 7l"( oo) may be obtained after infinite many transitions as i -t 

oo . Obviously, 7l"( oo ) = Q7l"( oo), determining 7l"( oo ) as the normalized eigenvec1.or rela ted l.o the 
eigenvalue ,\ = 1 of the matrix Q . 

The cell-to-cell mapping tech nique described above has been applied to a Dufiing oscillator 
under Poisson 10 and renewal impulses 12

, hence for the problems two and three (one auxil
iary) state variables, respectively. The stationary marginal displacement and velocity response 
probability densities10

•
12 and reliability function 10 have been evaluated. The results obtai ned 

confirrn ec.l the congesture that the method is highly effective for sparse pulse trains. 9
•
10

•
11 

8 



4 Simulation technique 

The sample path of the random train of impulses is obtained by generating the tlequencc of 
interarrival times and the sequence of impulses magnitudes. The interarrival times may be 
sampled directly from the given probability distribution, or in the case of an Erlang procestl, 
with the help of a generated train of Poisson distributed points . The impulses magnitudes arc 
generated as sample values of a random variable P with a prescribed probability distribution. 

The response sample curve is next obtained by numerical integration, of the homogeneoutl 
governing equation of motion between the impulses arrival times, whereas at. every time point. 
of an impulse occurrence the velocity response is increased by a jump, which gives the updated 
initial condition for the next interarrival time interval. Usually a standard 1th order Runge
Kutta technique may be used for numerical integration. 

Utiually an ensemble of 50 000 response sample curves was generated for the problems 
considered by the authors, and in the case of ergodic sampling12 the generated response sample 
curve had a length of 4 000 000 natural periods of a comparative linear oscillator. 

The simulation technique is quite straightforward to apply for a large class of regular point 
processes if the probability distribution of the interarrival times is specified. This clastl certainly 
embraces all the renewal processes. 

Potlsible extensions of the simulation technique can be performed for the problems in which 
the interarrival times and the impulse magnitudes are correlated random variables. 

I 

5 Illustrative numerical results 

Consider a Duffing oscillator under a Poisson driven train of impulses. Let Y(t) a.nd Y(t) 
denote, respectively, the displacement and velocity responses of the Duffing oscillator. Then 
Z(t), c (Z(t), t) and d(Z(t), t) of equation (4) arc given by 

[ 
Y(t) ] _ [ Y(t) ] [ o ] 

Z(t) = Y(l) 'c (Z(t), t.) = -2(w
0
Y(l)- wJY(l)- c:w5Y:~(l) 'd = J>(l) . . (29) 

where ( is the damping ratio, w0 is the natural frequency of the linea.r oscillator corresponding 
to the Duffing oscillator and E is the non-linearity parameter. The data assumed for the Duffing 
oscillator is: w0 = 1 s-', ( = 0.05, E = 0.5. 

Computations have been performed for two different values of the mean arrival rates fo 
impulses: v = O.lw0 and v = O.Olwo. 

The random magnitudes of impulses have been assumed as centralized, Rayleigh distributed 
random variables, calibrated in such a way that in both cases vE[P2

] has the same value and 
that the variance of the stationary response of a comparative linear oscillator has unit value 
(d. e.g. 12) . 

A uniform ,r')Q x 50 mesh has been used with the limits [-6ay,6ay] x [-6ay-,6ay-], where ay 

and ay- are standard deviations of the stationary response of a comparative linear oscillator. 
The length of a transition time interval has been assumed as 6t = Tu/2, where T'o = 27r /wu 
is the natural period of the comparative linear oscillator. The transient marginal probability 
density functions of the displacement and the velocity response evaluated at the time points: 



i = T0 , t = 2T0 and i = l0T0 for v = O.lw0 and v = O.Olw0 are shown in Figures 1. and 2, 
respectively. The solid line(--) and dashed line(----) represent, respectively, the analytical 
and simulation results obtained in the case of non-zero initial conditions: Y(O) = l, Y(O) = 0. 
The dotted line ( .. .... ) and the dashed-dotted line (-· -· -· -·) represent , respectively, the analytical 
and simulation results obtained in the case of zero initial conditions. 

The simulation results have been based on the ensemble of 100 000 of the responsr. sample 
functions obtained by numerical integration, with the help of 4th order Runge-Kutta technique, 
of the homogeneous governing equation of motion (1) in the time intervals between the impulses 
arrivals, with the updated initial conditions for each time interval, due to the jump in the 
velocity response process at each impulse arrival time. 

It is seen that the agreement between the analytical and simulation results is certainly very 
good in the case of zero-mean initial conditions and in both cases v = 0.1w0 and v = 0.01w0 . 

It. is so in the very early transient stage, i.e. at i = T0 , l = 2T0 as well as at l = ] O'T0, in which 
case the response is almost stationary as shows the zero-mean value of the velocity response. 
The discrepancy of the peak values in the case of very sharp spikes of the density curves, should 
be attributed to the fact that in these cases the mesh is not fine enough. 

In the case of non-zero mean initial conditions, for v = 0.1w0 , the analytically predicted 
probability density curves are also sufficiently close to the simulated curves except only, as 
before, for the peak values. For v = O.Olw0 the analytical prediction is only accurate <!nougb 

in the nearly stationary case of the displacement response (Fig. 2 e)). Significant discrepancy 
between

1 
the analytical nad simulation results in other cases may be explained by the fact that 

analytical, piece-wise linear, probability density functions have been obtained with a mesh too 
coarse to idealize sharp spikeli of the probability density. Unfortunately assuming a finer rnesb, 
e .g. 100 x 100, resulting in a 10~ x 10~ transition probabilities matrix, turned out to be <1 

computational task excessively large for the computers available. 

6 Conclusions 

A brief review of analytically -numerical techniques, having been developed by the authors and 
eo-workers, for non -linear dynamical systems under random impulses is done. Their advan
tages and shortcomings are discussed. Concluding, authors wish to cxpresli the opinion that 
the avenue of further development of the solution techniques for pulse problems in stochast.ic 
clynarnics should be directed onto optimization of the simulation techniques. 
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Fig . 1. Transient marginal probability densities jy(y, t) of the displacement response and JJ'(iJ, t) of 
the velocity response of a Duffing oscillator to a Poisson impulse process with mean rate v = O.lw0 . 
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