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Wroctaw University of Technology, Poland
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Abstract

Advantages and disadvantages of available analytical and simulation techniques for pulse prob-
lems in non-linear stochastic dynamics are discussed. [irst, random pulse problems, both
those which do and do not lead to Markov theory, arc presented. Next, the analytical and
analytically-numerical techniques suitable for Markov response problems such as moment equa-
tions, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Uselulness of
these techniques is limited by the fact thatl effectiveness of cach of them depends on the mecan
rale of impulses. Another limitation is the size of the problem, i.c. the number of state vari-
ables of the dynamical system. In contrast, the applicability of the simulation techniques is not
limited to Markov problems, nor is it dependent on the mean rate of impulses. Morcover their
use is straightforward for a large class of point processes, al least for renewal processes.

1 Introduction

An often posed question is: whether or not it is of general interest to consider the problems of
response ol dynamical systems to random pulse trains. In order to justily such an interest let
us realize the fact that any excitation to the dynamical mechanical system may be ellcctuated
in either of two ways: as a continuous function of time, or by impulses (jumps in the velocity
response process). A class of practical engineering problems leading to the random impulse
process representation can be listed, which embraces all kinds of trains of shocks and impacts.

If it is of interest, which has been rather commonly accepted for a long time, to consider
problems of response to random excitations with time continuous sample paths, it is of equally
general interest to consider problems of response to impulse process excitations. However, the
latter excitations cannol be treated by usual techniques, because they reveal inherently non-
(iaussian naturc. A Gaussian process is only an asymptotic special case of a stochastic impulse
process. Although as a basic model an external impulse process excitation may be assumed, an
insight into the physical nature of many problems reveals that the jump of the velocity response
is the result of collision of two bodies. Consequently, the total impulse equal to the increment.
ol the momentum of the system under consideration depends on the velocities of both colliding
hodies prior to the collision and hence it depends on the state variables of the problem. This
leads to the multiplicative noise (parametric excitation) problem!. Ilence even for a simple
mechanical model, quite advanced techniques may be required.




One of the earliest papers dealing with the response of a non-linear dynamical system
to a random train of impulses is certainly due to Roberts.? Next different approaches to
the problem were developed, such as the equivalent linearization®, the improved perturba-
tion technique to solve the generalized Fokker-Planck equation?, techniques based on equations
for moments,>~"!! Petrov-Galerkin method,® cell-to-cell mapping technique.®!%1? Recently Di
Paola and co-workers'® as well as Grigoriu'* have tackled the problem.

2 Markov and non-Markov response problems

Consider a general multi-degree-of-freedom non-linear dynamical system under a random train
of general pulses driven by a stochastic point process {NV(1),1 € [Lo, 00[}, Pr{N(ly) = 0} =1,
which is uniformly regular and has a finite number of points in a finite time interval. The
counting process gives the number of time points in the interval [to,[. The state vector of the
system, Z(t), consisting of the structural generalized displacements and velocities augmented
possibly by the state variables of the auxiliary filter, is governed by the set of equations of
motion

dZ(t) = c(Z(t),t)dt + d(Z(L), 1, P(t))dN (L), Z(lo) = Zo, (1)

where dNV (1) = N(t + dt) — N(t) and P(1) assumes the values P’({;) = P; (random mark
variables) at the times (; of the impulses occurrences. If AM(t) is a Poisson counting process,
independent of the random mark variables which also are mutually independent, and both
counting process and mark variables are independent of the initial conditions, the state vector
Z(1) is a Markov process. Il is not for all other point processes, e.g. renewal processes.

Nevertheless the differential of the function @®(t,Z(t)) of the process governed by equations
(1) can be evaluated from the following differential rule,'®

do(1,Z(1)) = ai(tétzﬂd/,Jri%“—))q(zu),t)m
+ [cb(z,zu) +d(Z(),t, P(1)) ) - ¢(/,,z(/,))] dN (1), (2)

where n is the number of state variables.

This differential formula is the startpoint to derive the differential equations for moments.
However since the response process Z(t) is the functional of the random mark variables P(1;) =
P;, t; < t and of the counting process N(7), 7 < t, this formula can only be used effectively,
yielding explicit moments at the right-hand sides of equations, if the averaging of the last term
is feasible, i.e. if the correlation between the expression in square brackets and dA/(1) can be
split. This is possible if the increments of the stochastic point process are independent, the
random mark variables are independent and these two are also mutually independent. This is
so if the underlying process is a compound Poisson process, i.e. if the augmented dynamical
system is Poisson-driven. However if the increments of the regular counting process N (1) can
be expressed as

dN(t) = p(N(t))dN(t), (3)

9
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where N(1) is a homogeneous Poisson counting process and p(N(1)) is a suitably chosen zero-
memory {ransformation, the problem can be converted to a Poisson-driven one at the experse
of introducing a number of auxiliary state variables. Such a transformation, being a linear
function of the auxiliary state variables, each of whose is an exponential transformation of
N(t), has been found for a class of Erlang renewal processes.!’'%!” Then the structural statce
vector Z;(t) augmented by the auxiliary variables Z,(1) is governed by the stochastic differential
equations
dZ(t) = c(Z(t),1)dt + d(Z(1), 1, P(1))dN(1), Z(lo) = zo (1)
H , c(Z(1),1) = [C'(Z‘O(l)’/‘) ,
_ [ di(Za(2), 1)g(Z2(1) P(1)
d(Z(1)7 "7P ’)) - [ dg(Zz(I.),i,) ’
where P(l) assumes the values P(i;) = P; al the times {; of the Poisson events and /% arc
mutually independent and identically distributed as P. Further, g(Zg(l,)) = p(N(I,)) is a
known [unction of the auxiliary variables.
Although the structural state vector Z;(1) is a non-Markov process, the augmented state
vector Z(1) becomes a non-dilfusive Markov process.

(5)

3 Analytical solution techniques

3.1 Equations for moments and modified closure approximations

For a general Poisson-driven pulse problem governed by equations (4) and (5) the equations for

the mean values, the second-, thrd and fourth-order joint central moments ol the response,

arc obtained ds” 15

(1) = 5 [ei(Z(L), O] + w(1) 2 [di(Z(L), L, P)] (6)

kii(l) = 2{E [Zf) (( (Z°(1),1) + v(t)d;(Z(t ),l,]’))]}s
+u()E [di(Z(1), L, P)d;(Z(L), 1, P)], (7)

frik(t) = 3{E[Z2)Z] (U(Z°(1),1) + v(1)dr(Z(1), 1, P))] },
+'su( {E [Zodv(Z( ), L, P)de(Z(2),1, P)] },
[J [d ),/,P)d (Z(I.),L,]”)dk(Z('/,),l, P)]v (8)

kiu(l) = 4{F [ZQZQ7O(‘O(ZU( ),t) + v(l)di(Z(1 )’l’[)))]}s
+6u(t) { £ (20 Z)de(Z(1), L, P)dy(Z(1),1, )] }
+av(t) { E [Z0d;(Z(1), 1, P)dk(Z(1), 1, P)di(Z(1),1, P)] },
+v(t)E [di(Z(), 1, P)d;(Z(L), L, P)de(Z(1), L, P)di(Z(1), L, P)],




where Z2(t) = Zi(t) — pi(t) and c}(Z°(t),t) = ¢;(Z(t),t) — E [¢;(Z(t),1)] denote the components
of the zero-mean (centralized) state vector and drift vector, and {...}, denotes the Stratonovich
symmetrizing operator.'®

It is no doubt that the accuracy of the results obtained with the help of a closure technique
depends on the ability of the tentative probability density function for the evaluation of the
unknown expectations entering the moment equations, to qualitatively model the actual density
function, i.e. it should have freedom to represent possible multimodal or multipeak shapes and
discrete probability components.

Consider the dynamical system subjected to a random train of impulses and to initial
conditions Z(tg) = zo. If in the time interval [to,t[ no impulse occurred, the system has
performed the deterministic drift motion from the initial state zy at the time {y to the state
z(1) = e(l|zo,1p) at the time ¢, or it has been at rest, in the case of zero initial conditions.
Notice that e(to|zo, o) = Zo-

If the train of impulses is driven by a homogeneous Poisson process, the probability Py of
no impulse occurrence in the time interval [io, [ is expressed as

Po(t|te) = Pr{N() = 0] N(to) = 0} = exp(—v(L — to)). (10)

The probability Py(t|to) may be high, close to the unity, if the length ¢ — iy of the time
interval is small, i.e. at the early transient stage, especially if also the mean arrival rate v is

small.
Joint probability density function of the state vector Z(t) can be represented in form of the

sum of the continuous and discrete parts as

fz(z,1 | N(t) = 0)Pr{N(t) = 0} + fz(z,1 | N(t) > 0) Pr{N(1) > 0}

Po(tlto) T[ 6 (= = eitlaos to)) + (1 = Poftlto)) S3(2, 1), (11)

fz(z,1)

Il

where ¢;(t|2o,10) denotes the drift from the initial state zy al { = Ly obtained from (1) for
dN(t) = 0. Hence the system must be at the position z; = e;(t|zo,10) with probability one as
specified by the delta spikes, if no impulses have arrived. So, [3(z,1) = fz(z,t | N(l) > 0)
denotes the continuous joint probability density function on condition that at least one impulse
has occurred during the preceding time interval [{o,¢[. Expectations evaluated with respect
to fg(z,t) are denoted as E[---]Jo. In particular, the conditional mean value function and the

conditional joint central moments of the order r are denoted as uf(¢) and /i?liz,,,ir(l,). The
relationships between unconditional and conditional moments read'®
pi(t) = Po(tlto)ei(t]zo, to) + (1 = Po(t]to))u3 (1), (12)



K'iligwir(t) = F

AT (e = 1, 00) + 0= 208 [T (2,00 = 00+ 22t 0) - ))} -
. o (1)
( o+ (T(-_—_%;T_—]- | <6ij - /lij(t))) +
r—1 5 ]:01 r P, i

where (12) has been used. Further, the arguments of Fy(t|to) and e;(¢|2o, lp) have been omitted
for ecase of notation. The inverse relationship can be similarly derived in few steps

K’?I-[Z-‘-l"/'(t) = K {ﬁ (Zij(i) - /l?J(/))jl =

j=1

_Ii_f CRN0) F—— (zij(t)—#?,(t))} -

_(1—_—]%1_—[ (eij —uij(t)) +5 _IPOE [H (Z?j(t)+ 1 i’OPO(eij(z) —,u.ij)>} = (14)
Hﬁg CRIO)E:
i —1/%, i <3> {m”'l“'”—.f(") 11 (Q"k — (1)}, <1 foﬂ)>]'

7=0 k=r—j+1

For systems with polynomial drift vectors the following modified cumulant neglect closure
scheme may be used. In case of closure at the order N all centralized moments fc?] G L)
, v > N with respect to the continuous joint probability density function fy(z,t) are first
expressed in terms of corresponding centralized moments of the order j < N by means of the
ordinary cumulant neglect closure approximations. This will work if f7(z,1) is monomodal and
not deviating too much from a multivariate normal distribution, since the joint cumulants are
zero in the latter case. Then, the corresponding unconditional moments &;piy..i, (1), 7 > N
may he expressed in terms of the centralized moments K?]i'zmij(l)’ 7 < N by means of (13).
IFinally, all joint moments K?liZ"'ij(l)’ J < N within this expression can be expressed in {erms
of 1\',1-11-24..1-_7.(1), J < N by means of (14), and the required closure scheme is obtained. In case of
closure al the order N = 4 the explicit closure approximations for the 5th and 6th order joint
centralized moments have been derived for the case e;(t|zg,10) = 0.51°

The modified cumulant-neglect closure technique proved to be effective in the case of eval-
uating transient response moments for low mean rates of impulses, i.e. for sparse trains ol
impulses®. Stationary moments, even though the mean rate is low, can often be evaluated




with the help of ordinary cumulant-neglect closure approximations, because for very long time
intervals the spike of the probability density function becomes rather insignificant. However,
as the experience of the authors shows, numerical integration scheme combined with ordinary
cumulant-neglect closure approximations runs into instability at the early transient stage if the
mean rate of impulses is low.

3.2 Petrov-Galerkin method to solve the forward and backward
Kolmogorov-Feller equations

The forward Kolmogorov-Feller equation for the joint probability density [z(z,1) of the state
vector Z(t) reads in the case of absorbtion on a part of the boundary!®!®

%fz(zﬂf) =Ksulf(z,1)] , Vi€, ta] , VZES

fZ(Z;tO) = fO(Z) ) Vze Slo ) (15)

fz(z,1) =0 , Vi€l ty] , VzeadsPuas®

where S, is the solution set at the time ¢, bounded by the surface 0.5, = (?S,(O) U (')Sf” U (')Si(g).
0.9}2) is the non-accessible (natural) part of the boundary, whereas the accessible boundary is
made up of the exit part ('?St(]) and the entrance part 35'}0). As indicated, absorbtion boundary
conditions must be specified on 5.5'&(0).

The forward integro-differential Kolmogorov-Teller operator is given by %18
Kzl fz(z,t)] =
- Y lata a0+ (0 [ |faata0,0) 7 - )| seoidn, 7
* P
where el <I " (’)d(a(z,p,L),l)) ()
- — T )
and a = a(z,p,1) is the inverse transformation of
z=a+d(a,p,t) (18)
2% is the gradient of d(y,p, ) with respect to y and fp(p) is the probability density of the

mark variable P.

The backward Kolmogorov-Feller equation with absorbtion boundary conditions is '*

2 fa(z,t) + KL [fz(z,0)]=0 , Vi€ [lo,t] , Yz ES,

fz(z,11) = fi(z) , Yz €S, : (19)

fz(z, 1) =0 , Vi€l , VzedsPuas?



where fi(z) is the terminal value of the unknown function fz(z,1). In this case the absorbtion
boundary condition is specified on 55}1).
The backward integro-differential Kolmogorov-Feller operator is given by

K’g,t[fZ(Zat)] =
S atm )z fata )+ t0) [ |fo(a+ dlep) = fa(n) srpian.
i P

The Galerkin method for solving the boundary and initial value problems (15) and (19)
consists in expanding the unknown function [z(z, t) in series of approximating shape [unctions
and expanding the variational field in series of weighting functions. I'or the problem (15) the
shape [unctions must fulfil the boundary condition N;(z) = 0, z € (')St(o) U 'dS,.(?'), whereas
the weighting functions Vi(z) = 0, z € 85", In contrast, for the problem (19) the shape
[unctions fulfil the boundary condition N;(z) =0, z € 85’1(1)U05'i(2), and the weighting [unctions
Vi(z) =0,z € 55’52). Further the shape and weighting functions must be sufficiently smooth
that Ky ,[...] and ICL[] may become adjoint operators when integrated over S,. In order to
achieve numerical stability due to the large Courant number in part of the mesh an upwind

“differencing in the weighting function becomes necessary as performed in the Petrov-Galerkin
variational method.

It has been found that for a two-dimensional problem, i.e. the Dulfing oscillator under
trains of impulses with high to moderate mean rate, the Petrov-Galerkin method provides very
accurate solution of the backward Kolmogorov-Ieller equation 8. Unfortunately it has not been
possible to devise the Petrov-Galerkin technique suitable for sparse trains of pulses. Another
drawback of the method is that, despite todays technology, the solution is not feasible for state
vectors of dimension larger than 4 or 5, not even with parallellization of the calculations.

3.3 Cell-to-cell mapping technique

The problem is discretized in time and space. The time axis is divided into small time intervals
Al and [z(zo,1;) denotes the first order probability density function at the time (; = 1y +
1AL, 1=20,1,2,.... The probability density function at the subsequent instant {;,;, is given hy
the convolution integral

Jz(z,tiy1) = /CJZ(Z,ti+1|Z0Jz‘)fZ(Z0,ii)dzm (21)

St 7

where gz, Liy1|2o, i) is the transition probability density function of the state vector from the
state Z(ly) = 2o at the time ¢; to the state Z(t) = z at the time t,4, and S}, is the sample space.

If the time interval At is short enough and if the mean rate is low, it follows [rom the
Poisson law that the probability of occurrence of more than one impulse in this time interval
may be neglected and the following asymptotic form of the transition probability density may
he assumed,!?




922, tin |20, 1) = Po(tiz1|t)q8) (2, Lisalzo, 1) +

(22)
(1 = Poltenslt)) 4§ (2, tisaloo, ) + O ((v2r1)"),
where
Po(tenlts) = Pr{N(tiss) = 0N () = 0} = exp (—v(tiss — 1)) (23)
and
452, tisil20, ) = (21 = ex(tina20,4)) -+ 8 (20 — ealtina 20,1, (24)

is the transition probability density conditional on no impulse arrival and e({;41|zo, ;) has the
same meaning as in equation (11). Surely, (22) is fulfilled at best for sparse pulse trains where v
is small. Hence the method is expected to work at best in this case. The transition probability
density q(zl)(z,ti+1[z0,ti) conditional on one impulse arrival is of continuous type. Hence the

expansion (22) is based on pretty much the same idea as the modified cumulant neglect closure

scheme derived from (11). Algorithms have been devised for evaluation of q(zl)(z Liv1|Z0,1:) -1°

Especially a method based on a Taylor expansion in the impulse magnitude P is tractable

The sample space is divided into a finite number M of small volumes (cells) ', where the
volume Az, of the mesh element is centered at zx. Assume that Az, is sufficiently small
for gz(z;,1; + At|zk, ti) and fz(z,t;) to be approximately constant throughout the cell. The
probability of being in the kth cell at the time {; is

= [z2(2k, ;) Az (25)

9,12

The probability 7r ) of being in the jth cell at the time ¢,44 1s then given by

T ZQ]kvrk, i=1,..., M, (26)

ij = Aquz(Zj, ti + At|zk, 1.1'). (27)

where Q¢ is the the element in the jth row and kth column of the transition probability matrix.
The transition probability @);x will not depend on time ¢; if the Markov process is stationary.
The transition of states can be represented by the matrix equation

L) — Qﬂ.(i) — Qiﬂ(o)’ (28)

where Q' = Q---Q (Q multiplied by itselfl ¢ times), =() is an M-dimensional vector of the
state probabilities 71'5:) after sth transition, and =(®) denotes the initial distribution al the time
ly. The stationary distribution #(®) may be obtained after infinite many transitions as i —
oo. Obviously, n(®) = Q=(*), determining #(*) as the normalized eigenvector related to the
eigenvalue A = 1 of the matrix Q.

The cell-to-cell mapping technique described above has been applied to a Duffing oscillator
under Poisson!® and renewal impulses '?, hence for the problems two and three (one auxil-
iary) state variables, respectively. The stationary marginal displacement and velocity response

1012 and reliability function '° have been evaluated. The results obtained
9,10,12

probability densities
confirmed the congesture that the method is highly effective for sparse pulse trains.

S



4 Simulation technique

The sample path of the random train of impulses is obtained by generating the sequence of
interarrival times and the sequence of impulses magnitudes. The interarrival times may be
sampled directly from the given probability distribution, or in the case of an Erlang process,
with the help of a generated train of Poisson distributed points. The impulses magnitudes are
generated as sample values of a random variable P with a prescribed probability distribution.

The response sample curve is next obtained by numerical integration, of the homogeneous
governing equation of motion between the impulses arrival times, whereas al every time point
ol an impulse occurrence the velocity response is increased by a jump, which gives the updated
initial condition for the next interarrival time interval. Usually a standard 4th order Runge-
Kutta technique may be used for numerical integration.

Usually an ensemble of 50 000 response sample curves was generated for the problems
considered by the authors, and in the case of ergodic sampling!? the generated response sample
curve had a length of 4 000 000 natural periods of a comparative linear oscillator.

The simulation technique is quite straightforward to apply for a large class of regular point
processes if the probability distribution of the interarrival times is specified. This class certainly
embraces all the renewal processes.

Possible extensions of the simulation technique can be performed for the problems in which
the interar‘rival times and the impulse magnitudes are correlated random variables.

5 JIllustrative numerical results

Consider a Duffing oscillator under a Poisson driven train of impulses. Let Y(1) and Y (1)
denote, respectively, the displacement and velocity responses of the Dufling oscillator. Then
Z(1), c(Z(t),t) and d(Z(1),1) of equation (4) are given by

2 = [ 20 ] ve(B)1)= [ 2wV (1 )—S}Lf)( 1) — ewd¥(1) } il = { P } - )

where ( is the damping ratio, wg is the natural frequency of the linear oscillator corresponding
to the Duffing oscillator and ¢ is the non-linearity parameter. The data assumed for the Duffing
oscillator is: wy = 187, ¢ = 0.05, & = 0.5.

Computations have been performed for two different values of the mean arrival rates lo
impulses: v = 0.1wp and v = 0.01wy.

The random magnitudes of impulses have been assumed as centralized, Rayleigh distributed
random variables, calibrated in such a way that in both cases vE[P?] has the same value and
that the variance of the stationary response of a comparative linear oscillator has unit value
(cf. e.g. ).

A uniform 50 x 50 mesh has been used with the limits [—60y, 60y] X [—60y, 60y |, where oy
and oy are standard deviations of the stationary response of a comparative linear oscillator.
The length of a transition time interval has been assumed as At = Ty/2, where Ty = 27 /wq
is the natural period of the comparative linear oscillator. The transient marginal probability
density functions of the displacement and the velocity response evaluated at the time points:

9




1 =Ty, t = 2Ty and ¢ = 107} for v = 0.lwy and v = 0.0lwy are shown in Figures 1 and 2,
respectively. The solid line (—) and dashed line (----) represent, respectively, the analytical
and simulation results obtained in the case of non-zero initial conditions: ¥ (0) = 1, ¥ (0) = 0.
The dotted line (-.-... ) and the dashed-dotted line (-._._._) represent, respectively, the analytical
and simulation results obtained in the case of zero initial conditions.

The simulation results have been based on the ensemble of 100 000 of the response sample
functions obtained by numerical integration, with the help of 4th order Runge-Kutta technique,
of the homogeneous governing equation of motion (1) in the time intervals between the impulses
arrivals, with the updated initial conditions for each time interval, due to the jump in the
velocity response process at each impulse arrival time.

It is seen that the agreement between the analytical and simulation results is certainly very
good in the case of zero-mean initial conditions and in both cases v = 0.lwy and v = 0.01wy.
It is so in the very early transient stage, i.e. at 1 = Tg, L = 2T as well as at £ = 107y, in which
case the response is almost stationary as shows the zero-mean value of the velocity response.
The discrepancy of the peak values in the case of very sharp spikes of the density curves, should
be attributed to the fact that in these cases the mesh is not fine enough. _

In the case of non-zero mean initial conditions, for v = 0.1lwg, the analytically predicted
probability density curves are also sufficiently close to the simulated curves excepl only, as
before, for the peak values. For v = 0.0lwy the analytical prediction is only accurate enough
in the nearly stationary case ol the displacement response (I'ig. 2 €)). Significant discrepancy
between the analytical nad simulation results in other cases may be explained by the fact that
analytical, piece-wise linear, probability density functions have been obtained with a mesh too
coarse o idcalize sharp spikes of the probability density. Unfortunately assuming a finer mesh,
c.g. 100 x 100, resulting in a 10* x 10" transition probabilities matrix, turned oul to be a
computational task excessively large for the computers available.

6 Conclusions

A briefl review of analytically -numerical techniques, having been developed by the authors and
co-workers, [or non-linear dynamical systems under random impulses is done. Their advan-
tages and shortcomings are discussed. Concluding, authors wish to express the opinion that
the avenue of further development of the solution techniques for pulse problems in stochastic
dynamics should be directed onto optimization of the simulation techniques.

References

1. A. Tylikowski (1982), Vibration of a harmonic oscillator due to a sequence ol random
collisions, Proc. of the Inst. of Machines Construction Foundation, Technical University

of Warsaw, No. 1, (in Polish).

2. J.B. Roberts (1972), System response to random impulses, J. Sound and Vibration, Vol.
24, 23-34.

3. A. Tylikowski and W. Marowski (1986), Vibration of a non-linear single-degree-of-reedomn
system due to Poissonian impulse excitation, Int. J. Non-linear Mechanics, Vol. 21, 229- -

10



<t

6.

L1

16.

238.

-

G.Q. Cai and Y.K. Lin (1992), Response distribution of non-lincar systems excited by
non-Gaussian impulsive noise, Int. J. Non-lincar Mechanics, Vol. 27, 995-967.

R. Iwankiewicz, S.R.K. Nielsen and P. Tholt-Christensen (1990), Dynamic response of
non-linear systems to Poisson-distributed pulse trains: Markov approach, Structural

Safety, Vol. 8, 223-238.

R.Iwankicwicz and S.R.K.Niclsen (1992), Dynamic response of hysteretic systems to
Poisson-distributed pulse trains, Probabilistic Engrg. Mech., Vol.7, No. 3, 135-148.

R. Iwankiewicz and S.R.K. Nielsen (1994), Dynamic response of non-lincar systems to
renewal-driven random pulse trains, Int. J. Non-lincar Mechanics, Vol. 29, 555-567.

H.U. Koylioglu, S.R.K. Nielsen and R. Iwankiewicz (1994), Reliability of non-lincar os-
cillators subject to Poisson-driven impulses, J. Sound and Vibration, Vol. 176, No. I,
19-33.

[1.U. Koylioglu, S.R.K. Nielsen and A.§. Qakmak (1994), FFast Cell-to-Cell Mapping
(Path Integration) with Probability Tails for the Stochastic Response of Non-linear White
Noise and Poisson Driven Systems, Proc. of 2nd Int. Conl. on Comp. Stochastic
Mechanics, Athens, Greece, June 13-15, 361-370.

. .U, Kéylioglu, S.R.K. Nielsen and R. Iwankiewicz (1995), Response and Reliability of

Poisson Driven Systems by Path Integration, J. Engng Mech., ASCI, Vol. 121, No. 1,
117-130.

S.R.K.Nielsen, R.Iwankicwicz and P.S. Skjaerback (1995), Moment equations for non-
lincar systems under renewal-driven random impulses with gamma-distributed interarrival
times, IUTAM Symposium on Advances in Nonlincar Mechanics, Trondheim, Norway,
July 1995, Eds. A. Naess and S. Krenk, Kluwer Academic Publishing, 331-340.

R.Iwankicwicz and S.R.K.Niclsen (1996), Dynamic response of non-lincar systems to re-
newal impulses by path integration, J. Sound and Vibration, Vol. 195, No. 2, 175-193.

M.Di Paola and G.[‘alsone (1993), 116 and Stratonovich integrals for delta-corrclated
processes, Probabilistic Engrg. Mech., Vol.8, 197-208.

M.Grigoriu (1996), Response of dynamic systems to Poisson white noise, J. Sound and
Vibration, Vol. 195, No. 3, 375-389.

R.Iwankiewicz and S.R.K.Nielsen (1997), Vibration Theory, Vol. 4, Advanced Methods
in Stochastic Dynamics of Non-linear Systems, Universily of Aalborg.

R.L.Stratonovich (1963), Topics in the Theory of Random Noise, Vol. 1, New York:
Gordon and Breach.

11




17.

18.

19

S.R.K.Nielsen and R.Iwankiewicz (1997), Dynamic systems driven by non-Poissonian im-
pulses: Markov vector approach, to be presented at ICOSSAR’97, Nov. 24-28, 1997,
Kyoto, Japan.

A. Renger (1979), Equation for probability density of vibratory systems subjected to
continuous and discrete stochastic excitation, Zeitschrift {ir Angewandte Mathematik
und Mechanik, Vol. 59, 1-13, (in German).

J.Q. Sun and C.S. Hsu (1988), First-Passage Time Probability of Non-Linear Stochastic
Systems by Generalized Cell Mapping Method, J. Sound and Vibration, Vol. 124, No.
2., 233-248.

12



3.5 T 2.5
3 L
2 |
257}
~ 2} 1.5
= o
E 1.5} N
ey
1 L
0.5}
0.5
0 el 0
-5 0 y/oy 5 -5
a) Displacement response, t = Tp. b) Velocity response, t = Tp.
2 — 1.4
; 1.2}
1.5} ’ ; 1 1}
= 1 =~ 08}
-~ i, -
s 1 ¥ =
% < 0.6}
Ly
05l 0.4}
0.2¢
O5 5 05 0
- y/oy - y/oy
c) Displacement response, t = 2Tp. d) Velocity response, t = 2Tp.
1 . 0.8
0.7}
0.8}
0.6
= 0.6} i,j 0.5¢
- o)
B < 0.4}
= «3
0.4 i ) 0.3 |
0.2}
0.2} 1
/ 0.1
0 - 0 "
= 0 yloy : - O yloy
e) Displacement response, 1 = 107p. f) Velocity response, t = 10Tp.

Fig. 1. Transient marginal probability densities fy(y,1) of the displacement response and fy (7,1) of
the velocity response of a Duffing oscillator to a Poisson impulse process with mean rate v = 0.1wg.
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