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1. INTRODUCTION

For various design and planning purposes there is at present an increasing interest and a need for
numerical modelling of the process of navigating a vessel (or a floating body in general). The
reason for this is that experiments in “full mission” simulators with human navigators at the
handles are costly and time consuming - at least in the context of sampling sufficient data for
statistical analysis purposes. Furthermore, a modelling of the process of navigation could be used
in a vessel autopilot to guide a vessel on a fixed heading (course - keeping) or a new heading
(course - changing).

Therefore, generation of data for analyses of processes involving human interaction (offshore
operations, ship navigation, lifting operations, etc. ) is obviously very conveniently solved if the
capacity and performance of the behaviour of a human navigator can be numerically modelled.
If it is possible to make a numerical model of a human navigator the effect of human errors on -
a design and planning process could be reduced. A human navigator model used to guide a vessel
may also imply a reduction of unforeseen human errors which will increase the safety. However,
in order to model a human navigator one should be able to model numerically 1) the ship and 2)
how a human will navigate a ship.

In this report the first of these two problems is investigated. These investigations look into the
possibility of using artificial neural networks for modelling a ship. Artificial neural networks are
computational models inspired by the neuron architecture and operation of the human brain. The
pioneering work in this field is usually attributed to McCulloch et al. [1]. They developed a
simplified model of a neuron. The brain is composed of neurons of many different types, see e.g.
McCulloch et al. [1]. For a more detailed description of neural networks, see e.g. Hertz et al. [2]
and Hush et al. [3]. Since McCulloch and Pitts in 1943 there have been many studies of
mathematical models of neural networks. Many different types of neural networks have been
proposed by changing the network topology, node characteristics and learning procedures.
Examples of those are e.g. the Hopfield network, see Hopfield [4], the Kohonen network, see
Kohonen [5], and the so-called multi-layered perceptron (MLP). The MLP (also sometime called
the Backpropagation neural network) is currently given the greatest attention by application
developers, see e.g. Rumelhart et al. [6]. Most of the work where neural networks have been used
for modelling dynamic mechanical systems has been based on multi-layered feedforward
networks trained by the backpropagation algorithm, see e.g. Masri et al. [7], Qi et al. [8], Riva
et al. [9]. However, such static neural networks cannot by themselves represent dynamic systems.
The static neural network can only be used to model dynamic systems if the inputs and outputs
to the network are selected based on the understanding of the system to be modelled. Generally,
in order to model non-linear dynamic systems, it is necessary to use the so-called recurrent neural
networks which incorporate feedback, see e.g. Hush et al. [3], Hertz et al. [2], Seidl et al.[10],
Phametal. [11] and Sjoberg [12]. Modelling of a ship is a non-linear dynamic problem where
one should expect that recurrent networks should be used. The problem of modelling a ship using
neural networks has been considered in e.g. Burns [13], Endo et al. [14], Witt et al. [15] and
Balasuriya et al. [16]. In these papers the traditional MLP based static networks have been used.
The objective of this report is to investigate modelling of ships using three different types of
neural networks. The three different neural network approaches are described in chapter 2. In
chapter 4 the three approaches are used to model a single-screw high-speed container ship in
surge, sway, roll and yaw based on simulated data. The assumptions for these simulations are
given in chapter 3.



2. ARTIFICIAL NEURAL NETWORKS

This chapter outlines the characteristics of the three different types of artificial neural networks
used in this report for modelling a ship model of a single-screw high-speed container ship in
surge, sway, roll and yaw. The three neural network types outlined in sections 2.1, 2.2 and 2.3 are
the Multi-Layer Perceptron network (MLPN), Radial Basis Function network (RBFN) and
Recurrent neural network (RN), respectively.

2.1 MULTI-LAYER PERCEPTRON

The Multi-Layer Perceptron network (MLPN) belongs to the class of layered feed-forward nets
with supervised learning. This network is probably the most often considered member of the
neural network family. The main reason for this is its ability to model simple as well as very .
complex functional relationships. This has been proved through a large number of practical
applications, see e.g. Hertz et al. [2], Topping et al. [11].

An MLPN is made up of one or more hidden layers placed between the input and output layers,
see fig. 2.1. Each layer consists of a number of nodes connected in the structure of a layered
network. The typical architecture is fully interconnected, i.e. each node in a lower level is
connected to every node in the higher level. Output units cannot receive signals directly from the
input layer. During the training phase activation flows are only allowed in one direction, a
feed-forward process, from the input layer to the output layer through the hidden layers. The input
vector feeds each of the first layer nodes, the outputs of this layer feed into each of the second
layer nodes and so on.

Figure 2.1: Principle of a 3-layer Multi-Layer Perceptron neural network.

Associated with each connection between node i in the preceding layer and node j in the
following layer is a numerical value which is the strength or the weight of the connection. At the
start of the training process these weights are initialized by small random values.

For the MLPN network with n layers in figure 2.1 signal pass through the network and the input
vector u is linked to the output vector y by means of the equation
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where W, is the weight matrix associated with the ith layer, b, indicate threshold or bias values
associated with each node in the ith layer and ¢, is a non-linear operator or activation function
associated with the ith layer. The function ¢, is assumed to be differentiable and to have a
strictly positive first derivative. For the nodes in the hidden layers, the activation function is often
chosen to be a so-called sigmoidal function
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The activation function for the nodes in the input and output layers is often chosen as linear.

In figure 2.1, a3 layer network is shown, with m input signals and m output signals. It is however
by no means necessary for the number of inputs to be equal to the number of outputs. In fact this
is usually not the case. Also, it is more usual for the number of nodes in the hidden layer to be
greater than those in either the input or output layer.

Important points in the selection of a suitable MLPN are a) how many layers of neurons/nodes
should there be and b) how many neurons/nodes should there be in each layer. These questions
relate directly to model structure problems in system identification, the aim being to choose the
“best” structure to obtain a high degree of accuracy.

The first stage of creating an artificial MLPN to model an input-output system is to establish the
appropriate values of the connection weights and thresholds by using a learning algorithm. A
learning algorithm is a systematic procedure for adjusting the weights and thresholds in the
network to achieve a desired input/output relationship, i.e. supervised learning. The most popular
and successful learning algorithm used to train MLPN is currently the so-called Back-propagation
routine, see e.g. Rumelhart [1]. The Back-propagation algorithm normally employs a gradient
descent search technique for minimizing an error, normally defined as the mean square difference
between desired and estimated outputs of output node for all the training data. The thresholds are
adjusted in the same way as the weights. The process of computing the gradient and adjusting the
weights and thresholds is repeated until a minimum of the error (or a point sufficiently close to
the minimum) is found. The mean square error is not known a priori but must be constructed from
the known errors at the output layer. The errors are passed backwards through the net and a
training algorithm uses the error to adjust the connection weights moving backwards from the
output layer, layer by layer, hence the name "Back-propagation".In the traditional implementation
of the Back-propagation training algorithm the gradients are multiplied by a so-called "learning
rate" which is chosen as large as possible without leading to intolerable oscillations. To overcome
this problem, a momentum term is usually also introduced into the updating rule. However, it is
generally true that the convergence of the back-propagation algorithm is fairly slow. Attempts to
speed the learning include variations on simple gradient search, line search techniques and second
order techniques, see e.g. Hertz et al. [2], Billings et al. [18]. In this report the training rule is the
traditional gradient descent search technique implemented in the trainbpx m-file used in the
Matlab Neural Networks Toolbox, Demuth et al. [19].



2.2 Radial Basis Function

Recently Radial Basis Function Networks (RBFN) have been shown to operate well in a neural
network context and indeed it has been shown, in theory, that they can model any arbitrary
nonlinear system, see Chen et al. [20].

The general structure of an RBFN is much simple than the MLPN, in particular the output layer
is merely a linear combination of the signals from one hidden layer. The basic structure of an
RBFN is shown in figure 2.2. The transfer function of the output layer is linear. The transfer
function for the nodes in the hidden layer has to be a function, which produce a significant non
zero response only when the input falls within a small localized region of the input space.

ll1 RI(U)
»Ll2 - Rz(u)
0, Ry (@)

Figure 2.2: Principle of a Radial Basis Function neural network.

For the RBFN in figure 2.2, the single output signal, y, is found, in relation to the m-element input
vector, u, by means of the equation

N
y = ZwiH(u) +b, 3)

n=|

where w, (i=1,...,N) are the network weights and b, is the bias term. The basis functions H (u) are
then given by the expression

Hu) = dllu-c) @)

in which the basis function centres c; (i=1,...N) are each m-vectors. Thus the input to a radial basis
neuron is the vector distance between its weight vector and the input vector multiplied by the
weight. The basis function ¢ () itself can be selected in one of a number of forms. The most
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logical and common of these is the Gaussian

¢ = exp((-llu-c[h*a?) (Sy

in which ois a selectable scaling parameter.

In RBFN two sets of variables need to be settled on, the basis function centres, ¢, and the
network weights w, The centres can be chosen in a number of ways. However, the centres, both
in quantities and positions directly affect the efficiency and accuracy of the network. Essentially,
it is best to place the centres where there is a considerable amount of activity in the input space.
Unfortunately, if the input signals are random, or at least pseudo-random, this means that to
adequately cover the input space in a reasonable way, a basis function centre is required for every
data point. Obviously, for such a situation the RBFN approach becomes inviable where the input
space is of high dimension, i.e. many randomly spaced signals, Narenda et al. [21]. However, as
is the case in the operation of many systems, when the input signals are scattered in certain .
closely knit regions of the input space, in clear groupings or clusters, then the stronger are these
clusters so the better they can be used of an RBFN. If the input vector is m-dimensional then so
too is the cluster centre, m-dimensional. :

In this report the RBEN is estimated using the solverb m-file in the Matlab Neural Networks
Toolbox, Demuth et al. [19]. This algorithm employs an iterative design method, where neurons
are created one at a time. At each iteration the input vector which will result in lowering the
network error the most, is used to create a new neuron. The iteration continues until the error is
below a user specified error goal or the number of neurons is equal to the maximum number of
neurons. The latter cannot exceed the number of input vectors.

2.3 Recurrent Networks

The MLPN and RBFN described above belong to the static class of neural networks. Such
networks are only capable of modelling dynamic systems if the inputs and outputs to the network
are established from knowledge of the system to be identified. Therefore, in general, it is
necessary to use artificial recurrent neural networks with feedback to model dynamic systems, see
Hertz et al. [2], Sjoberg [12], Sgrensen [22] and Kirkegard [23]. In the neural network
terminology recurrent means that future network inputs will depend on present and past network
outputs. This class of artificial neural networks with feedback, and therefore, inherently recursive
is commonly referred to as partially or fully recurrent neural networks. A fully recurrent neural
network has feedback between all the nodes. In the following an approach to incorporate feedback
into a neural network in order to model a non-linear dynamic is described.

The recurrent neural network (RN) model is formulated by a Nonlinear Innovation State Space
Model (ISSM) where p state variables are observed, see Sgrensen [22].

X() = GX(-An,Ut-An,E(t-Ar). W)
(6)
Y(r) = HX(t) + E(1)



X(t) and U(t) are the estimate of the state vector and the excitation vector at the discrete time step
t, respectively. E(r) is the prediction error vector of order p at the discrete time step 7. Y(z) is the
measured observation vector of order p at the discrete time step ¢. H is the observation matrix of
order p x n. Incomplete State Information may occur, i.e. X (t) is not completely measurable. The
matrix H can be chosento H=[1,,0,,,], where I, ,isa p x p unity matrix and 0,,,isa px
n-p zero matrix. In this way the elements in HX(t) are equal to the first p elements of the

observation vector Y(t).

In order to train an MLP to learn the Innovation State space model in (6) a network with the state
vector, the excitation of the system and the prediction error vector are used as input and the state
vector as output, see Sgrensen [22]. This means that the desired outputs of the network are the
elements of Y(t). In this report the RN is estimated using the nnssif m-file in the Neural
Network Based System Identification Toolbox, Ngrgaard [24].

3. SURFACE SHIP MATHEMATICAL MODEL

3.1 The Son & Nomoto Model

The ship-model used is a st quadrant parametric model for a single-screw high-speed container
ship in 'surge, sway, roll and yaw (4 parameter model) by Son and Nomoto, see Son & Nomoto
[25], Fossen [26]. The models by Son and Nomoto are nonlinear equations of motion (surge,
sway, roll, yaw), non-linear course-keeping equations of motion (sway, roll, yaw) and linearized
course-keeping equations of motion (sway, roll, yaw). The equations used are listed in Fossen,
[26], at pp.441 - 444. The implementation of the equations is listed in file vO7 . m (appendix A.0),
from Lauvdal et al. [27].

3.2 Test Cases

The test cases are all made using the Matlab toolbox by T. Lauvdal & T.I. Fossen: "Matlab
Simulation Program for Marine and Flight Vehicles", see Lauvdal et al. [27]. The high-speed
container ship model (No. 07 in the above-mentioned toolbox) is used.

Various standard full-scale manoeuvring trials are defined and used to determine manoeuvring
characteristics, like: turning circle, zig-zag, pull-out, spiral and reverse spiral manoeuvres and
stopping trials. For this test four different test cases have been defined primarily in order to be
able to test: a) how different NN models behave and b) how good they are at predicting and
simulating (interpolated) new data.

Table 1 shows the test cases used for NN training. The test cases labelled x.0 have a duration of
1800 seconds (30 minutes) and test cases x.1 a duration 900 seconds (15 minutes), except test
case 4.1 which has a duration of 1800 seconds. The x.0 test cases are used for training and test
cases x.| for testing.




TEST CASES

Test Case | File Description

1. "Right turn"

1.0 TESTC_I0.MAT Rudder: -2° [60;120] , -6° [960;1020]

1.1 TESTC_11.MAT Rudder: -4° [60;120]

2. "Turning circle"

2.0 TESTC_20.MAT Rudder: -6° [60;780] , -2° [1080;1800]

2.1 TESTC_21.MAT Rudder: -4° [60;780]

3. "Right turn"

3.0 TESTC_30.MAT Rudder: -8° [180;240] , Speed: 15rpm [0,420]
Rudder: -4° [780;840] , Speed: 15rpm [660,1020]

3.1 TESTC_31.MAT Rudder: -6° [180;240] , Speed: 15rpm [0,420]

4. "Track sailing

4.0 TESTC_40.MAT Rudder: -6° [60;120] , Rudder: 5° [300;480]
Rudder: -3° [720;840] , Rudder: 4° [960;1080]
Rudder: -1° [1080;1200] , Rudder: 2° [1200;1380]
Rudder: 3° [1500;1680] , Speed : 50rpm [900;1800]

4.1 TESTC_41.MAT Rudder: 3° [120;300] , Rudder: 2° [420;600]
Rudder: -1° [600;720] , Rudder: 4° [720;840]
Rudder: -3° [960;1080] , Rudder: 5° [1320;1500]
Rudder: -6° [1680;1740] , Speed : 50rpm [0;900]

Table 1. Test cases used for NN training (Son & Nomoto ship model). All interval
values are given in seconds. Outside the intervals listed the rudder angle is 0 and the

shaft speed is 65 rpm.

All simulations are done using the Lauvdal & Fossen toolbox using an interval of 0.1 second in
the Euler integration and are all verified by comparison with the results obtained using the file
ode34 in Matlab. The number of data in the test cases have been decreased so that only every
30th sample point (1 per three seconds) is used in the NN training. This is equivalent to 10
samples for each period in e.g. the 3rd or 5th element in the input vector (roll velocity and roll

angle).
The detailed specifications of test cases are listed in Appendix A.O (file vO7_cont .m).

The initial state of the ship is for all test cases: the actual shaft speed is 65 rpm and the surge
velocity is 6.806 m/s (which is equivalent to the steady-state speed when the shaft speed is 65

rpm).
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All other initial values in the state vector are equal to zero. The state vector has 12 elements
which are all listed below (taken from file vO7_data .m). The intervals for rudder angle and
shaft speed are likewise defined in the file.

File: vo7_data.m

% VO7_DATA datafile for v07.m. Contains initial state

% vector, initial input and main dimensions.
%

% NTH 1994 Trygve Lauvdal

cle

echo on

% Default parameters for High Speed Container Ship
%

% Max rudder angle : 10 deg

% Max rudder rate : 5 deg/s

% Max shaft velocity : 160 rpm

% Length of ship : 175 m

% Initial states,inputs and sample time (to be edited by user):

u = 6.8060; % surge velocity (m/s)

v = @5 % sway velocity (m/s)

P B 0; % roll velocity (rad/s)
72 = 0; % yaw velocity (rad/s)
phi = 0; $ roll angle (rad)
psi = @3 % yaw angle (rad)
xpos = 0; % surge position (m)
ypos = 0; % sway position (m)
delta = 0; % actual rudder angle (rad)

n = 654 % actual shaft speed (rpm)
d_¢ = 10*pd /71803 % commanded rudder angle (rad)
n_c = 0; % commanded shaft speed (rpm)

h = 0.10: % sample time (s)

X = [u v p r phi psi xpos ypos delta n]'; % state vector
u = [de n.cl'; % input vector
echo

current = pwd;

if ~exist(['sim.m']),

saveon = [current ‘/v07_data x u h'];

else

saveon = [current '/v07_data x u h'];

end

eval (['save ' saveon])

%

% End




3.3 Input/Output Specification

The input/output vectors for all the networks in section 4 are specified in table 2 below.

No. Input Output

1 u  surge velocity u  surge velocity
2 v sway velocity v sway velocity
3 p  roll velocity p  roll velocity
4 r  yaw velocity r  yaw velocity
5 ¢  roll angle ¢  roll angle

6 ¥ yaw angle ¥ yaw angle

7 6  actual rudder angle

8 n actual shaft speed

Table 2. Input /output state vectors for all the networks in section 4.

4. Results

This chapter presents the results obtained using the three neural network approaches outlined in
chapter 2. The charts showing the results using MLPN are all listed in Appendix A.l. The results
using RBFN (section 4.2) and RN (section 4.3) are listed in appendices A.2 and A.3, respectively.

4.1 Multi-Layer Perceptron

An identical network topology is used for all four test-cases based on different trials trained with
test case 4. A four layer network with 8 input neurons, 6 output neurons and two hidden layers
with 25 and 20 neurons is chosen. A simple scaling of all I/O is applied so that the largest value
in each of the 8 input vectors is equal to 1.0.

The "stopcriteria" shown in figures for training using backpropagation lists two numbers like
"0.10 (0.22)" (see figure [m1a]). The first number is the requested stopping criteria and the second
the value of the term used as stopping criteria reached after the number of epochs listed, i.e. each
pass through all of the training input and output vectors. The stopping criteria is the summed
square of the error between the real output and the output predicted by the network.

Better results may be obtained using a different scaling (e.g. each input vector normalized to a
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specific length). Different scaling of the input was tested on test case 4 without any significant
changes in convergence speed or in prediction or simulation results. Different network topologies
having more neurons in the hidden layer were tried using test case 4 without significant better
results.

4.1.1 Test Case 1

Figures [m1b] and [mlc] show that prediction for both known and unknown data works
satisfactory. The prediction of the surge velocity is wrong and the oscillating trend from the roll
velocity and roll angle is clearly recognisable in the surge velocity.

The simulation results have no similarities with the real data neither for the data used for training
[m1b] or unknown data [mld]. The bad simulation results are due to the bad modelling and -
narrow training interval for the surge velocity where small errors cause the surge velocity to leave
the interval used for training and thereby requiring the NN model to extrapolate the surge velocity
which is not working here. If the surge velocity is removed (i.e. predicted) the simulation shows
fairly good results.

See also general observations for all four test cases in section 4.1.4.

4.1.2 T:est Case 2

The same comments as for test case | are applicable for test case 2. The main reason for the
wrong simulation results is again the bad modelling of the surge velocity, see e.g. figure [m2b]
where the surge velocity goes to +12 m/s which is far from the training interval [6;7] m/s for the
surge velocity.

4.1.3 Test Case 3

Same comments as for test case | and 2 are applicable here. Simulation results are only slightly
better and only comparable for the first 0-60 seconds following that the error accumulates and
the simulation results are meaningless. The prediction results using unknown data [m3c] are very
good giving small errors for the whole 900 seconds.

4.1.4 Test Case 4

From figure [m4a] it is seen that the network is able to model the state vector satisfactorily except
for the surge velocity which shows large errors both in magnitude and form. It is also visible from
the error charts directly that there is a correlation between the signal and the errors (compare e.g.
"peaks" on "yaw velocity" and the corresponding error plot). Also, the autocorrelation function
for the error is far from being a white noise approximation.

From figure [m4b] it is seen that simulation only gives usable results during the first 90 seconds
whereafter the results are not usable at all. The reason for the errors using simulation is primarily
the bad modelling of the surge velocity (see figure [4ba]). If the surge velocity in the simulation
is input using the real values the simulation gives fairly good results, see below.

13




Figure [m4c] shows that prediction using new data is good (except for the last 500 seconds whére
the real and predicted curves diverges). [m4d] shows that simulation with new data is as bad as
simulation with the trained data. Again, simulation without the surge velocity gives usable results.

The simulation comparisons [m4b] and [m4d] are also shown in figures [m4b_] and [m4d_]. In
the last two plots the surge velocity is predicted to avoid the error from the surge velocity. As it
can be seen the simulation results are a lot better here than in [m4b] and [m4d].

This network topology has been tested by running the backpropagation training until convergence
in the stopping criteria. It was found that additional epochs above 30000 for test case 4 gave no
decrease in the stopping criteria term.

4.2 Radial Basis Networks

The RBFN has been designed using a three layer network with 8 input neurons, 6 linear output
neurons a one hidden layer with Gaussian neurons. The "stopcriteria” shown in figures for
training using RBFN lists two numbers like "0.20 (0.20)" , see figure [rla]. The first number is
the requested stopping criteria and the second the value of the term used as stopping criteria. The
RBFN implementation, see Demuth et al. [19] employs an iterative design method, where neurons
are created one at a time. At each iteration the input vector which will result in lowering the
network error the most, is used to create a new neuron. The iteration continues until the error is
below the stopcriteria or the number of neurons is equal to the maximum number of neurons. This
means that number of epochs refers to number of neurons for solvebr. The different user
specified parameters have been selected by a trial and error study.

4.2.1 Test Case 1
The results in figures [rla] and [rlc] show that the RBFN gives very well predictions for both
known as well as unknown data. However, the prediction errors indicate that the obtained RBFN

does not model the data satisfactorily due to the missing white noise prediction error sequences.

The simulation results [r1b] and [rl1d] obtained by the RBFN can be given the same comments
as the simulation results obtained using MLPN in test case 4.1.1

4.2.2 Test Case 2

Here, the same comments as given in section 4.1.1,4.1.2,4.1.3 and 4.2.1 can be given.

4.2.3 Test Case 3

Again, the same comments as given in section 4.2.2 can be used. However, it seems as the
simulation results are slightly better but not usable. Further, it is seen that the RBFN uses 58
neurons/nodes in the hidden layer while only 6 and 18, respectively, have been used in the test
cases 4.2.1 and 4.2.2.



4.2.4 Test Case 4

The results presented in figures [r4a] and [r4c] show that the RBFN models the training data very
well but the prediction results using data not included in the training data are not satisfactory. The
simulation results in this test case are as bad as for the other test cases with RBFN.

4.3 Recurrent Networks

Two different RN topologies are selected for the four test-cases based on different trials
training. A three layered RN with 14 input neurons, 6 output neurons and a hidden layer with 6
neurons is chosen for the test cases 1 and 2 while 12 neurons are used in the hidden layer for the
test cases 3 and 4, respectively. Before training the data have been scaled.

Number of iteration used for training the RN is listed together with the "stopcriteria" information,
and topology information at the charts shown in appendix 3.

4.3.1 Test Case 1

Figures [ila] and [ilc] show that prediction for both known and unknown data works satisfactory.
However, as observed for the MLPN and the RBEN, respectively the simulation results are not
useable.

4.3.2 Test Case 2

The results from this case again show that usable prediction results can be obtained but the
simulation results are not usable.

4.3.3 Test Case 3

This test case again shows satisfactorily prediction results and unsatisfactory simulation results.
Further, it is seen that 12 neurons are used in this test case.

4.3.4 Test Case 4

From figures [i4a] and [i4c], respectively it is seen that the network is able to model the state
vector satisfactorily. However, as for all the other test cases the error is far from being a white

noise approximation.

From figures [i4b] and [i4d] it is seen that simulation only gives results which are slightly usable
for some of the state variables, see e.g. Sway and yaw. Especially, the results in figure [i4d] seem
to be interesting. One should expect that these simulations could be quite good if the number of
training data was increased in order to model the variation in e.g. surge better. However, these
investigations will not be made in this report.




4.4 Summary

Firstly, it must be emphasized that no direct comparison (in order to determine the "best" network
topology and training method) between the feasibility and usability of the three different neural
networks and their behaviour can be made. The three different network topologies and different
methods of training, e.g. network topology, network size and amount of training are not directly
comparable.

Comparing prediction results using known data, e.g. [mla], [rla] and [ila] do not show any

significant difference. MLPN seems slightly better than RN and RBFN. The difference may be

due to different network topologies and training. More interesting is the prediction behaviour

using unknown data. Comparing e.g. [mlc], [rlc] and [ilc] show better results using MLPN than

RN and RBFN. For RBEN [ilc] the prediction results are influenced by a high-frequency error -
which makes prediction of roll unusable. However, this high frequency is less dominating in

[i2c], [i3c] and [i4c]. Simulation results, see e.g. [m1b], [r]1b] and [i1b] are not usable at all,

neither used on trained data or unknown data.

In general it seems that prediction with unknown data gave best results for MLPN and RBFN.
The RN has difficulties modelling the non-oscillating behaviour of sway and yaw (see e.g. [i2c])
whereas MLPN and RBFN show no oscillations in prediction of sway and yaw (see e.g. [m2c]
and [r2c]). Looking at figures [m3c], [r3c] and [i3c] it is seen that the RBFN has problems
modelling the correct behaviour at t = 420 seconds where the shaft velocity changes - this
problem does not occur for MLPN and RN.

Prediction test using unknown data for test case 4 ([m4c], [r4c] and [i4c]) shows that MLPN have
small difficulties (surge velocity) modelling the last 300 seconds, the RBFN again have
difficulties when the shaft velocity changes and RN has some high-oscillation errors also
encountered in [ilc].

Overall, prediction using unknown data is generally good. Some irregularities occur using RBFN
(sudden large prediction errors) and using RN (high-frequency oscillations). Simulation using any
of the three training networks is in general not usable. However, simulation where one or more
of the elements in the input vector is predicted (surge velocity) gives usable results (see e.g.
[mdb_] and [m4d_]. Also, starting simulation at an arbitrary point in time will give good
simulation results for 0-60 seconds before the simulation results diverge and become unusable.

Looking back at the test cases a number of unfavourable issues may be pointed out. The test cases
used for training are too limited and should have been expanded to cover a broader interval of the
elements in the input and output vectors. Also, tests using simulation should not start when the
ship is in a "steady state" (roll angle and yaw angle equal to zero).

The results show, however, that prediction is usable and that simulation results may be used to

get a correct modelling of the behaviour of the ship for a limited time period after start of a
simulation or a prediction.
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5. CONCLUSIONS

This report contains results of an investigation using different types of neural networks to predict
the surge, sway, roll and yaw behaviour of a single-screw, high-speed container ship.

The experience obtained and errors done in this report will be taken into account in the further
work in the project "Application of Neural Networks in Numerical Modelling of a Human Ship
Navigator".
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Appendix A. 0

This appendix contains the files used for generation of test cases (v07_cont.m) and the file
containing the implementation of the Son & Nomoto model (v07.m). Both from Fossen [26],

File: v07_cont.m

e T e T . 5 15,3 5 P e e et e s
function ul = V07_cont(k,x,u)
ul = [ 0*pi/180; 65 ];
%
icase=10;
% _____________________________________________________________
% Test case 10: Right turn: 2 deg. for 1 minute [ 1; 2]
% Right turn: 6 deg. for 1 minute [16; 17]
% 30 minutes, delta_t = 3 sec., 600 samples
%
if (icase==10)
if (k>60)
ul = [ -02*pi/180; 65];
end;
if (k>120)
ul = [ 0*pi/180; 65];
end;
if (k>960)
ul = [ -06*pi/180; 65];
end;
if (k>1020)
ul = [ 0*pi/180; 65];
end;
end;
% _____________________________________________________________

% Test case 11: Right turn: 4 deg. for 1 minute [1 ; 2]
% 15 minutes, delta_t = 3 sec., 300 samples

%
if (icase==11)
if (k>60)
ul = [ -04*pi/180; 65];
end;
if (k>120)
ul = [ 0*pi/180; 65];
end;
end;
% _____________________________________________________________
% Test case 20: Turning circle: 6 deg. for 12 minutes [ 1 ; 13]
% Turning circle: 2 deg for 12 minutes [18 : 30]
% 30 minutes, delta_t = 3 sec., 600 samples
%
1f (icase==20)
if (k>60)
ul = [ -06*pi/180; 65];
end;
if (k>780)
ul = [ -00*pi/180; 65];
end;
if (k>1080)
ul = [ -02*pi/180; 65];
end;
if (k>1800)
ul = [ -00*pi/180; 65];
end;
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% Test case 21: Turning circle: 4 deg. for 12 minutes [1 ; 13]
% 20 minutes, delta_t = 3 sec., 400 samples

%
if (icase==21)
if (k>60)
ul = [ -04*pi/180; 65];
end;
if (k>780)
ul = [ -00*pi/180; 6517 ;
end;
end;
% _____________________________________________________________

% Test case 30: Slow speed + Right turn + normal speed
% 30 minutes, delta_t = 3 sec., 600 samples

%
if (icase==30)
if (k>0)
ul = [ -00*pi/180; 15];
end; :
if (k>180)
ul = [ -08*pi/180; 15];
end;
if (k>240)
ul = [ -00*pi/180; 151];
enda
if (k>420)
ul = [ -00*pi/180; 65];
end;
if (k>660)
ul = [ -00*pi/180; 15];
end;
if (k>780)
ul = [ -04*pi/180; 151;
end;
if (k>840)
ul = [ -00*pi/180; 15];
end;
if (k>1020)
ul = [ -00*pi/180; 65];
end;
end;
% _____________________________________________________________

% Test case 31: Slow speed + Right turn + normal speed
% 15 minutes, delta_t = 1 sec., 300 samples

%
if (icase==31)
if (k>0)
ul = [ =00*pi1/180; 151;
end;
if (k>180)
ul = [ -06*pi/180; 151];
end;
if (k>240)
ul = [ -00*pi/180; 15];
end;
if (k>420)
ul = [ -00*pi/180; 651;
end;
end;
e T e T
% Test case 40: "track"
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% 20 minutes, delta_t = 1 sec., 1200 samples

%
if (icase==40)

if (k>0)

ul = [ -00*pi/180; 65];
end;
if (k>60)

ul = [ -06*pi/180; 65];
end;
if (k>120)

ul = [ -00*pi/180; 65];
end;
if (k>300)

ul = [ +05*pi/180; 65];
end;
if (k>480)

ul = [ +00*pi/180; 65];
end;
if (k>720)

ul = [ -03*pi/180; 65];
end; -
if (k>840)

ul = [ -00*pi/180; 65];
end;
if (k>900)

ul = [ -00*pi/180; 50];
end;
if (k>960)

wl = [ 04*pi/180; 50];
end;

if (k>1080)

ul = [ -01*pi/180; 501;
end;
if (k>1200)

ul = [ 02*pi/180; 50];

end;
if (k>1380)
ul = [ 00*pi/180; 501;
end;
if (k>1500)
ul = [ 03*pi/180; 501];
end;
if (k>1680)
ul = [ 00*pi/180; 501;
end;
end;
% _____________________________________________________________
% Test case 41: "track" / reverse !
% 30 minutes, delta_t = 3 sec., 600 samples
%
if (icase==41)
if (k>0)
ul = [ -00*pi/180; 501];
end;
if (k>120)
ul = [ 03*pi/180; 50];
end;
if (k>300)
ul = [ -00*pi/180; 501
end;
if (k>420)
ul = [ +02*pi/180; 501;
end;
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if (k>600)

ul = [ -01*pi/180; 501];
end;
if (k>720)

ul = [ 04*pi/180; 50];
end;
if (k>840)

ul = [ -00*pi/180; 50];
end;
if (k>900)

ul = [ -00*pi/180; 65];
end;
if (k>960)

ul = [ -03*pi/180; 65];
end;
if (k>1080)

ul = [ -00*pi/180; 65];
end;
if (k>1320)

ul = [ 05*pi/180; 65];
end; N
if (k>1500)

ul = [ 00*pi/180; 65];
end;

if (k>1680)
ul = [ -06*pi/180; 65];

end;
if (k>1740)
ul = [ 00*pi/180; 651 :
end;
end;
%
% End
%
File: v07.m

function xdot = V07(x,ui)

xdot = V07 (x,ul); returns the time derivated of the state vector

X = [ u v pr phi psi xpos ypos delta n ]' where
u = surge velocity (m/s)

v = sway velocity (m/s)

p = roll velocity (rad/s)
g = yaw velocity (rad/s)
phi = roll angle (rad)
psi = yaw angle (rad)
Xpos = position in x-direction (m)
ypos = position in y-direction (m)
delta = actual rudder angle (rad)

n = actual shaft velocity (rpm)

The input vector is

ui = [ delta_c n_c ]' where
delta_c = commanded rudder angle (rad)
n_c = commanded shaft velocity (rpm)

NTH 1994, Trygve Lauvdal

of o€ o 9O dP o° P AP I P d° O O OF AP O JP OF OC AP GO SC dP o oo
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Reference : Son & Nomoto (1982).
On the Coupled Motion of Steering and
Rolling of a High Speed Container Ship,
Naval Architect of Ocean Engineering,
20: 73-83. From J.S.N.A. , Japan, Vol. 150, 1981.

% Check of input and state dimensions

if ~(length(x) == 10),error('x-
2),error('u-

if ~(length(ui) ==

% Normalization variables

oe

L £ 175;
sqrVv (x(1)*2 + %x(2)72);
v sqrt (sqrV) ; %

% Check of service speed

if V == 0,error('The ship must
delta_max = 10; %
Ddelta_max = 5; %
n_max = 160; %

vector must have dimension 10 !');end
vector must have dimension 2 !'');end

length of ship (m)

service speed (m/s)

have speed greater than zero');end

max rudder angle (deg)
max rudder rate (deg/s)
max shaft velocity (rpm)

% Nonrdimensional states and inputs

delta_c = ui(l);

n_c = ui(2)/60*L/V;

u = x(1)/V; v = x(2)/V;

o} = x(3)*L/V; T = x(4)*L/V;
phi = x(5); psi = x(6);

delta = x(9); n = x(10)/60*L/V;

% Parameters, hydrodynamic derivatives and main dimensions

m = 0.00792; mx = 0.000238; my = 0.000238;

Ix = 0.0000176; alphay = 0.05; 1x = 0.0313;

ly = 0.0313; Ix = 0.0000176; Iz = 0.000456;

Jx = 0.0000034; Jz = 0.000419; xG = 0;

B = 25.40; dF = 8.00; g = 9.81;

da = 9.00; d = 8.50; nabla = 21222;

KM = 10.39; KB = 4.6154; AR = 33.0376:;

Delta = 1.8219; D = 6.533; GM = .3/L;

rho = 1000; t = 0.175; ik = 0.0005;

W = rho*g*nabla/ (rho*L"2*V~2/2);

Xuu = -0.0004226; Xvr = -0.00311; Xrr = 0.00020;
Xphiphi = -0.00020; Xvv = -0.00386;

Kv = 0.0003026; Kr = -0.000063; Kp = -0.0000075;
Kphi = -0.000021; Kvvv = 0.002843; Krrr = -0.0000462;
Kvvr = -0.000588; Kvrr = 0.0010565; Kvvphi = -0.0012012;
Kvphiphi = -0.0000793; Krrphi = -0.000243; Krphiphi = 0.00003569;
Yv = ~-0.0116; ¥ = 0.00242; Yp = 0:

Yphi = -0.000063; Yvvv = -0.109; YEEE = 0.00177;
Yvvr = 0.0214; Yvrr = -0.0405; Yvvphi = 0.04605;
Yvphiphi = 0.00304; Yrrphi = 0.009325; Yrphiphi = -0.001368;
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Nv = -0.0038545; Nr = -0.00222; Np = 0.000213;

Nphi = -0.0001424; DNvvv = 0.001492; Nrrr = -0.00229;
Nvvr = -0.0424; Nvrr = 0.00156; Nvvphi = -0.019058;
Nvphiphi = -0.0053766; Nrrphi = -0.0038592; Nrphiphi = 0.0024195;
kk = 0.631; epsilon = 0.921; xR = -0.5;

wp = 0.184; tau = 1.09; Xp = -0.526;

cpv = 0.0; cpr = 0.0; ga = 0.088;

cRr = -0.156; cRrrr = -0.275; cRrrv = 1.96;

cRX = 0.71; aH = 0,237y =zZR = 0:033;

xH = -0.48;

% Masses and moments of inertia

mll = (m+mx);
m22 = (m+my) ;
m32 = -my*ly;
m42 = my*alphay;
m33 = (Ix+JxX);
mdd = (Iz+Jz);

% Rudder saturation and dynamics

if abs(delta_c) >= delta_max*pi/180,
delta_c = sign(delta_c)*delta_max*pi/180;
end

delta_idot = delta_c - delta;
if abs(delta_dot) >= Ddelta_max*pi/180,

delta_dot = sign(delta_dot)*Ddelta_max*pi/180;
end

% Shaft velocity saturation and dynamics

n_c = n_c*v/L;

n = n*V/L;
if abs(n_c) >= n_max/60,

n_c = sign(n_c)*n_max/60;
end

ifn>0.3,Tm=5.65/n;else,Tm=18.83;end
n_dot = 1/Tm*(n_c-n)*60;

% Calculation of state derivatives

vR = ga*v + CcRr*r + cRrrr*r”3 + cRrrv*r"2*v;
uP = cos(v)*((1 - wp) + tau*((v + Xp*r)"2 + cpv*v + cpr*r));
J = uP*V/ (n*D) ;
KT = 0.527 - 0.455*J;
uR = uP*epsilon*sqgrt(l + 8*kk*KT/(pi*J"2));
alphaR = delta + atan(vR/uR);
FN = - ((6.13*Delta)/(Delta + 2.25))*(AR/L”2)*(uR"2 + vR"2)*sin(alphaR);
T = 2*rho*D"4/ (V*2*L"2*rho) *KT*n*abs (n) ;

% Forces and moments

X = Xuu*u”2 + (1-t)*T + Xvr*v*r + Xvv*v"*2 + Xrr*r”~2 + Xphiphi*phi~2 +
cRX*FN*sin(delta) + (m + my)*v*r;

Y = Yv*v + Yr*r + Yp*p + Yphi*phi + Yvvv*v"3 + Yrrr*r”3 + Yvvr*v"2*r +
Yvrr*v*r~2 + Yvvphi*v~2*phi + Yvphiphi*v*phi”®2 + Yrrphi*r”2*phi +

Yrphiphi*r*phi~2 + (1 + aH)*FN*cos(delta) - (m + mx)*u*r;
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= Kv*v + Kr*r + Kp*p + Kphi*phi + Kvvv*v"*3 + Krrr*r~3 + Kvvr*v" 2*r +

Kvrr*v*r~2 + Kvvphi*v~2*phi + Kvphiphi*v*phi®2 + Krrphi*r~2*phi + ...
Krphiphi*r*phi”®2 - (1 + aH)*zR*FN*cos(delta) + mx*1lx*u*r - W*GM*phi;

N = Nv*v + Nr*r + Np*p + Nphi*phi + Nvvv*v"3 + Nrrr*r~3 + Nvvr*v"2+*r +

Nvrr*v*r~2 + Nvvphi*v”~2*phi + Nvphiphi*v*phi~2 + Nrrphi*r~2*phi +
Nrphiphi*r*phi”®2 + (xR + aH*xH) *FN*cos (delta) ;

% Dimensional state derivatives
xdot = X*(V~2/L) /mll

- (-m33*m44*Y+m32*m44*K+m42*m33*N) / (m22*m33*m44-m32°2*m44-m42°~2*m33) *(V~2/L)
(-m32*m44*Y+K*m22*md4-K*m42°2+m32*m42*N) / (m22*m33*md4-m32°2*mb4-md2°2*m33) *
(V*2/L"°2)
(-m42*m33*Y+m32*md42*K+N*m22*m33-N*m32°2) / (m22*m33*m44-m32°2*md4-m42°2*m33) *
(V~2/L"2)
p*(V/L)
cos (phi)*r* (V/L)
(cos(psi) *u-sin(psi) *cos(phi) *v) *V
(sin(psi) *u+cos(psi) *cos (phi) *v) *V
delta_dot
n_dot ¥
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Appendix A.1 - MLPN Results

This Appendices A.l, A.2 and A.3, respectively present the obtained results from the examples

in chapter 4.

Four comparison charts are listed for each of the test cases | to 4 and for each of the three types

of neural networks/neural network training.

The charts here and in appendices A.2 and A.3 are labelled ([mri][1234][abcd]) where [mri]
denotes MLPN, RBFN and RN, respectively, where [1234] denotes test case 1,2,3 or 4. The

letters [abcd] denote a) prediction with trained data, b) simulation with trained data, c) prediction

with unknown data and d) simulation with new data (see also table below).

[abced] Trained data Tested data Prediction/Simulation
a TESTC_x0.MAT TESTC_x0.MAT Prediction
b TESTC_x0.MAT TESTC_x0.MAT Simulation
C TESTC_x0.MAT TESTC_x1.MAT Prediction
d TESTC_x0.MAT TESTC_x1.MAT Simulation

Table A.1 Numbering of charts with output from trained networks.

E.g. [m4a] is a neural network trained using MLPN "m" used on test case four "4" showing
the prediction error using TESTC_40.MAT with a neural network trained using
TESTC_40.MAT ("a",see table A.1.)
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Appendix A.2 - RBFN Results
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