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SHAKING TABLE TESTS OF 
REINFORCED CONCRETE FRAMES 

P.S. Skjcerbcek, P.H. Kirkegaard and S.R.K. Nielsen 
Department of Building Technology and Structural Engineering, 

Aalborg University, DK-9000 Aalborg, Denmark 

ABSTRACT 
The purpose of the paper is to present a series of shaking table 
experiments performed at the Structural Laboratory at Aalborg 
University, Denmark during the autumn of 1996 and to show some 
selected results from these experiments. The aim of the tests was 
to test methods for identification of time-varying systems and 
to verify various methods for damage assessment of reinforced 
concrete structures from strong motion measurements. In this 
study the maximum softening concept will be evaluated. In the 
paper the damage assessment obtained by this method is com­
pared to visual damage assessment. The structures considered in 
the shaking table tests are 2-bay, 6-storey RC-frames in scale 1:5 
with outer measures of 2.4 m in width and 3.3 m in height. The 
structures are subjected to a series of sequential earthquakes and 
after each earthquake the structure is visually inspected. The re­
sults of the work have revealed that the recursive vector ARMA 
model is suitable for modal identification of degrading reinforced 
concrete structures and the maximum softening damage index 
calculated from the obtained identification provides a valuable 
tool for assessment of the damage state of the structure. 

INTRODUCTION 

When civil engineering structures are subjected to sufficiently 
high dynamic loads it is well known that damage will occur some­
where in the structure. In RC-structures the damage normally 
starts as cracking developing into crushing of concrete and yield­
ing of reinforcement. The damage can either be highly localized 
or more spread out in the structure. During an earthquake both 
types of damage may develop in the structure and there is a need 
for methods for localization of the damage. The traditional way 
of assessing damage in RC-structures is by visual inspection of 



the structure by measuring cracks, permanent deformations, etc. 
This is often very cumbersome or not possible, since panels and 
other walls covering beams and columns need to be removed. Fur­
thermore, internal damage such as bond slippage can be very dif­
ficult to determine by visual inspection. However, a much more 
attractive method is measuring of the structural response at a 
given location of the structure. From these response time series, 
damage indicators based on e.g. changes in dynamic character­
istics, accumulated dissipated energy, low cycle fat igue models , 
stiffness or flexibility changes etc. can be calculated. In the lit ­
erature several methods for damage assessment from measured 
responses have been presented during the last 2 decades, see e.g. 
Banon et al. [1], DiPasquale et al. [2], Park et al. [5], SkjCBrbrek 
et al. [6] and Stephens et al. [7]. 
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Figure 1: A schematic view of the setup of the considered frame. 

In order to investigate the durability of response based damage 
assessment methods scaled model shaking _table tests are needed. 
The purpose of the shaking table experiments performed on a 
series of 6-storey, 2-bay model test frames in scale 1:5 is therefore 



to provide data for verification and validation of these methods 
for non-destructive damage assessment of RC-frames based on 
one or more measured reponses of the structure. A schematic 
view of the test set-up is shown in figure 1. 
However, the scope of this paper is limited to evaluate the maxi­
mum softening damage index as a damage indicator for the con­
sidered reinforced concrete frame. 

THE TEST SERIES 

All the 7 frames considered in the test series were constructed 
identically. The dimensions of the test frames are 2400 by 3300 
mm, corresponding to a "real" structure with dimensions 12 by 
16.5 m. The test frames were built of 50 by 60 mm RC-sections. 
A plane view of the test frames and the test set-up is shown in 
figure 1. The mass of each frame is ~ 2 kN. The frames are tested 
in pairs of two giving three identical set-ups and the last frame is 
serving as a spare/reference frame . The three set-ups are labelled 
AAU1, AAU2 and AAU3 respectively. To model the storey deck, 
8 RC beams (0.12*0.12*2.0m) are placed on each storey. The 
total mass per frame is then ~ 20 kN. 
To avoid overlapping longitudinal reinforcement causing uncon­
trolled variations of bending stiffness and strength anchoring steel­
plates welded to the reinforcement are applied to the longitudinal 
reinforcement bars. 
The concrete used has a design compression strength of 20 MPa 
with a maximum aggregate diameter of 5 mm. For each frame 
approximately 80 1 concrete is used . . 
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Figure 2: Cross-section of beam and columns. 

The dimensions of the beams and columns in the frame are con­
stant all over the frame with outer measures of 50 x 60 mm. 



Columns are reinforced with 6 KS410/D=6mm (ribbed steel) and 
beams with 4 KS410/D=6mm, see figure 2. 
The experiments performed on the frames can generally be di­
vided into two types: 

• Non-destructive testing (free decay tests, weak motion exci­
tation) 

• Destructive Testing (strong motion excitation) 

The non-destructive testing is performed by means of free decay 
tests and weak motion excitation of the test frames. The free 
decay tests are performed by applying a horizontal force at the 
top-storey which is suddenly released and the free decay motions 
are measured. The weak motion excitation is performed using 
the time series from the strong motion tests scaled down with a 
factor of 100. 
The destructive testing is performed by applying strong motions 
to the structure. In the tests three different types of excitations 
as illustrated in figure 3 are considered. 
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Figure 3: I)isplacements u9 of applied earthquake types scaled to 
maximum amplitude of 20 mm. 

The type a and b earthquakes are artificially generated using 
a Kanai-Tajimi filter with centre circular frequencies at Wa = 
lOrad/s and Wb = 30rad/s, respectively. The type c earthquake 



is a scaled version of an accelerogram measured during the 1994 
N orthridge earthquake in California. The main difference be­
tween the type a,b and the type c earthquake is that the type 
c earthquake is non-stationary in frequency content. The type 
c earthquake is only used in the weak motion shaking to test 
the robustness of the modal identification methods to frequency 
non-stationary excitations. 
Totally three setups, labelled AAU1, AAU2 and AAU3 are tested 
in the following way: Setup AAU1 was tested until complete fail­
ure using earthquake type a in the strong motion tests. Three 
sequential ground motion series were applied using scaling factors 
on the series shown in figure 3 of 0.25, 0.5 and 0.75, respectively. 
During the third earthquake the second and third storey of the 
structure collapsed. The AAU2 structure was exposed to two se­
quential earthquakes of type a using scaling factors of 0.2 and 
0.4, respectively. Structure AAU3 was exposed to three sequen­
tial earthquakes of type b with scaling factors of 0.1, 0.2 and 0.35 
respectively. 
After the strong motion tests, the structures AAU2 and AAU3 
were cut into smaller pieces which were subjected to static tests, 
see figure 4a. The stiffnessess determined from these static t ests 
were then compared to identical stiffness found from static tests 
performed on the undamaged reference frame. A schematic view 
of the static test set-up is shown in figure 4. 
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Figure 4: a) Separation lines. b) Schematic set-up of static testing 
of reference and damaged specimens. 

DAMAGE ASSESSMENT 
In this paper only the maximum softening/final softening damage 
indices are considered for the damage assessment, and the theo­
retical damages are compared to the visually observed damage. 
The maximum softening concept is based on the variation of the 
vibrational periods of a structure during a seismic event . A strong 



correlation between the damage state of a reinforced concrete 
structure that has experienced an earthquake and the global max­
imum softening has been documented. In order to use the max­
imum softening as a measure of the damage of the structure it 
is nessecary to establish a quantitative relationship between the 
numerical value of the maximum softening and engineering fea­
tures of damage. This relationship is obviously very complicated 
and has to be found by measurement from real structures by re­
gression analysis. DiPasquale et al. [2) investigated a series of 
buildings damaged during earthquakes and found a very small 
variation coefficient for the maximum softening damage index, 
see figure 5. 
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Figure 5: a) Distribution function of observed limit state values 
of one-dimensional maximum softening reported by DiPasquale 
et al. [2]. b) Definition of maximum value of the fundamental 
eigenperiod. 

Nielsen and <;akmak (4] extended the maximum softening to sub­
structures based on a multi-dimensional maximum softening 8 M,i 

defined as 

To · DM· = 1--'-~ 
,t T 

M,i 
(1) 

Where To ,i is the initial value of the ith eigenperiod for the undam­
aged structure and TM,i is the maximum value of the ith eigen­
period during the earthquake, see figure 5. Explicit expressions 
for the damage localization were developed for the 2-dimensional 
case. 
It is clear from the definition of this index that in case the maxi­
mum softening is 0 no damage has occurred in the structure, and 



when DM = 1 there has been a total loss of global stiffness in the 
structure. 
If the softening damage index given by eq. (1) is evaluated using 
the final value of the eigenperiods TF,i the index is referred to as 
the final softening damage index. 
After each series of ground motion the entire structure was visu­
ally examined and the damage state of each storey of the building 
was described by marking all cracks and afterwards photos were 
taken. 

EXPERIMENTAL RESULTS 

In this section some results obtained from the tests performed on 
the frame AA U3 are presented. 
Initially, the free decay test was performed for identification of the 
modal parameters of the virgin structure. The modal parameters 
was extracted using a vector ARMA technique, see Kirkegaard 
et al. [3]. The identified frequencies are shown in table 1 for the 
three cases where a pull-out force of 0.25kN, 0.5kN and 0. 75kN 
has been applied. Identical tests with a pull-out force of 0.5kN 
were performed after each of the earthquakes and these results 
are listed in table 1 as well. 

Case hJd lH zJ f2Jd lH zj (1 j%j (2J%J 
Virgin 0.25kN 2.20 7.15 1.7 1.1 
Virgin 0.50kN 2.25 7.27 1.5 1.0 
Virgin 0.75kN 2.25 7.29 1.4 0.9 
After EQl 0.5kN 1.97 6.39 2.4 1.9 
After EQ2 0.5kN 1.73 5.67 3.2 2.4 
After EQ3 0.5kN 1.41 4.55 4.6 3.2 

Table 1: Evaluated frequencies and damping ratios of the virgin 
structure and after each earthquake. 

During the three earthquakes the top-storey accelerations and 
displacements were measured as shown in figures 6 and 7, respec­
tively. From the acceleration signals the two lowest time-varying 
frequencies of the structure were extracted using a recursive im­
plemented vector ARMA model, see Kirkegaard et al. [3]. The 
evaluated development in the two lowest eigenfrequencies during 
the three earthquakes are shown in figure 8 and the calculated 
softenings are shown in table 2. 
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Figure 6: Measured top storey accelerations 
earthquakes. Setup AAU3. 
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Figure 7: Measured top storey displacements during the three 
earthquakes. Setup AAU3. 

Case fF,l fF,2, fM,l fM,2 DF1 DF2 8M1 8M2 , , , , 
[Hz] [Hz] [Hz] [Hz] 

EQ1 1.97 6.39 1.97 6.21 0.12 0.12 0.12 0.15 
EQ2 1.73 5.67 1.71 5.64 0.23 0.22 0.24 0.22 
EQ3 1.41 4.55 1.41 4.26 0.37 0.37 0.37 0.41 

Table 2: Evaluated frequencies and corresponding maximum 
and final softenings, 8M,i and 8 F, i· 

After each of the earthquakes the structure was visually inspected 
for cracks. After the first earthquake, minor crack development 
was found at the joints between columns and beams all over the 
structure with slightly larger cracks at the second, fourth and 
fifth storey. After the second earthquake the cracks had grown 

I 
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Figure 8: Evaluated development in 1st and 2nd eigenfrequency 
fi(t) and f 2(t) during the three earthquakes, set-up AAU3. 

significantly, especially at the fourth and fifth storey, where the 
cracks almost went through the cross-section. After the third 
earthquake further crack growth was observed along with con­
crete crushing in the joint between the beams and the middle 
column in the fourth storey and the damage state could in this 
case be characterized as severe due to the beginning of concrete 
crushing. It should here be noted that even though only limited 
damage was observed visually, the structure can be in a severely 
damaged state. This was the case for setup AAUl, where only 
limited cracking and almost no concrete crushing were observed 
after EQ2, but still the structure failed in the initial parts of EQ3. 
However, the maximum softening was evaluated as DM,l = 0.39 
during EQ2 indicating that the damage state was critical since 
DM,l was close to the critical value of 0.43 for the maximum soft­
ening as indicated in figure 5. 
Comparing the evaluated maximum softenings in table 2 and the 
distribution function shown in figure 5a the damage evaluation 
based on the maximum softening indicates severe damage in the 
structure which is in a very good agreement with the visually 
observed damage. 

CONCLUSIONS 

In this paper a series of shaking table test was presented. Selected 
data from one of the structures considered in the test series were 
presented and processed in order to evaluate modal parameters 



of the structure and changes in those due to strong motion ex­
citations. The evaluated changes in eigenfrequencies were used 
to calculate the maximum and final softening damage indicators 
and these were compared to the visually observed damage. Using 
the distribution function for the maximum softening suggested by 
the inventors of this damage indicator revealed very good agree­
ment between the visually observed damage and the values of the 
maximum softenings. 
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