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Modal Identification of a Time-Invariant 
6-Storey Model Test RC-Frame from Free Decay 

Tests using Multi-Variate Models 

P.S. Skjcerbcek1 , P.H. Kirkegaard1, S.R.K. Nielsen1 and A.~. <;akmak2 

1 Department of Building Technology and Structural Engineering, 
Aalborg University, DK-9000 Aalborg, Denmark 

2 Department of Civil Engineering and Operations Research, 
Princeton University, Princeton, NJ 08544, USA 

Abstract The scope of the paper is to apply multi-variate time-domain models for identifica­
tion of eigenfrequencies and mode shapes of a time-invariant model test Reinforced Concrete (RC) 
frame from measured free decays. The frequencies and mode shapes of interest are the two lowest 
ones since they are normally the only ones activated in ground motion shaking of structures. For 
purely frequency identification, FFT, ARV, ERA and ARMA V models are applied and for mode 
shape identification, multi-variate ARV and ARMA V models and the ERA are used. Furthermore, 
the results of a finite element analysis are included in the comparison. The data investigated are 
sampled from a laboratory model of a plane 6-storey, 2-bay RC-frame. The laboratory model is 
excited at the top storey where two different types of excitation were considered. In the first case 
the structure was excited in the first mode and in the second case in the second mode. It is found 
that the estimates of the frequency, damping ratio and mode shape for the first mode estimated 
by the multivariate ARV, ARMA V and the ERA give nearly identical results for both types of 
excitation. Also the estimates of the frequency, damping ratio and mode shape of the second mode 
are nearly of the same magnitude. Compared with the FEM results the estimates are comparable 
for the first mode while there is a deviation between the FEM and estimated mode shapes for the 
second mode. 

Keywords: System Identification, RC-frame, Free Decay Tests. 
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Nomenclature 
w Circular eigenfrequency. ( Damping ratio. 
€ Prediction error. A Weighting matrix 
K Stiffness matrix. c Damping matrix. 
M Mass matrix. s Input matrix. 
~ Mode shape matrix. z State vector. 
y Measurement vector. f Force vector. 

1-l Eigenvalue matrix. p AR-order. 
q MA-order. F System matrix. 
I Identity matrix. H Block-Hankel matrix. 
N System order. u Matrix containing scaled mode shapes. 
A Discrete eigenvalues. 

1 Introduction 

During severe dynamic excitations such as major earthquakes the modal characteristics of re­
inforced concrete structures will normally change due to local or global damage ranging from 
harmless cracking of hitherto uncracked cross-sections to bond deterioration at t he interface be­
tween reinforcement bars and concrete, crushing of concrete in the compression zone, rupture of 
reinforcement bars and stirrups etc. Evaluation of these damages from identified changes in the 
modal characteristics have been dealt h with in a series of papers such as Hassiotis and Jeong [6], 
Nielsen and Cakmak [11 ], Park et al. [13], Penny et al. [14], Skjrerbrek et al. [16] [15] and Stephens 
and Yao [18] [19]. However , these investigations have mainly been performed on simulated cases 
where the changes of modal characteristics have been evaluated from a numerical model leaving 
out the problems of estimating eigenfrequencies and mode shapes from sampled noise filled data. 

The aim of this paper is to apply different methods for estimation of frequencies and mode shapes 
in the case where the structure is excited weak enough to avoid any structural damage. Avoiding 
structural damage and thereby changes in modal characteristics it is possible to investigate the 
influence of t he applied excitation of the structure. The applied data in this study are sampled 
as free decays from a 2-bay, 6-storey, scale 1:5 RC-frame tested at the structural laboratory at 
Aalborg University, Denmark. 
In the tests considered in this paper the shaking table shown in figure 1 is fixed and the excitation 
of the structure is applied at the top storey. 

The methods considered for identification of modal parameters here are, Fast Fourier Transforms 
(FFT), multivariate AutoRegressive Vector models (ARV), multivariate AutoRegressive Moving 
Average Vector models (ARMAV) and the Eigensystem Realization Algorithm (ERA). 

2 Theory of SI-methods 

2.1 Basic Equations of ARMAV 

2.1.1 Continuous Time Model 

In the continuous time domain an n-degree linear elastic viscous damped vibrating system is 
described by a system of linear differential equations of second order with constant coefficients 
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Figure 1: A Schematic view of the setup and instrumentation of the considered frame. 

given by a mass matrix M , a damping matrix C , a stiffness matrix K , an input matrix S and a 
force vector f (t). Then the equations of motion for a linear multivariate system can be expressed 
as 

Mx(t) + Cx (t) + Kx(t) = Sf(t) (1) 

where xis the displacement vector. The state space model corresponding to the dynamic equation 
1 is 

z(t) = Ax(t) + Bf (t) (2) 

A = [ - MO-lK _-J-lc l' B = [ -~-lS l 
where z(t) is the state vector. It is assumed that the system matrix A is asymptotically stable 
and can be eigenvalue decomposed as 

(3) 

fL = diag[f.Li], i = 1, 2, ... 2n 

U is the matrix whose columns contain the scaled mode shapes Ui of the ith mode. fL is the 
continuous time diagonal eigenvalue matrix which contains the poles of the system from which the 
circular frequency wi and the damping ratio (i of the ith mode can be obtained for underdamped 
systems from a complex conjugate pair of eigenvalues as 

(4) 
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2.1.2 Discrete Time ARMAV Model 

For multivariate time series, described by an m-dimensional vector y(t) , an ARMAV(p,q) model 
can be written with p AR-matrices and q MA-matrices 

p q 

y(t) + L Aiy(t - i) = L Bje(t- j) + e(t) (5) 
i=l j=l 

where the discrete-time system response is y(t) = [y1 (t), y2 (t), ... , Ym(t)]Y. Ai is an m x m matrix 
of autoregressive coefficients and Bj is an m x m matrix containing the moving average coeffi­
cients. e(t) is the model residual vector, an m-dimensional white noise vector function of time. 
Theoretically an ARMAV model is equivalent to an ARV model of infinite order. The ARV is often 
preferred because of the linear procedure of the involved parameter estimation. The parameter 
estimation of the ARMAV model is a non-linear least squares procedure and requires some skill 
as well as large computational effort. A discrete state-space equation for equation (5) is given by 
e.g. Pandit et al. [12) 

Zt = FZt-t + Wt 

with the state vector Zt and the system matrix F given by 

Zt = {y(tf y(t- l)T y(t- 2f ... y(t- p + l)Tf 

F= 
0 0 

- Ap-1 

0 

I 0 

(6) 

(7) 

(8) 

Wt includes the MA terms of the ARMAV model. It is assumed that F can be decomposed as 

I 
ltAl-l I2Al-l ... IpmAl-l I 
I , p-2 I ,p-2 I \P-2 

-1 1/\1 2At ... pm/\1 
F = LAL , I= . . . . . . . . . 

It l2 Ipm 

(9) 

The discrete state space model can now be used for identification of modal parameters and scaled 
mode shapes as follows, see Andersen et al. [2]. First, the discrete system matrix F is estimated by 
minimizing a quadratic error criterion l( €) using a damped Gauss-Newton optimization algorithm 
and analytically gradients, 

1 
l(€) = 2,€T A -t€, €(t,B) = y(t) - y(tit - 1) (10) 

A and € are the weighting matrix and the prediction error respectively. By solving this optimization 
problem the matrices in (5) are estimated, implying that F can be established, see Andersen et 
al. [2). 

Next, the discrete eigenvalues ofF are estimated by solving the eigenvalue-problem det(F- AI) = 0 
which gives the pm discrete eigenvalues Ai. The continuous eigenvalues can now be obtained by 
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Ai = e'"'t which implies that the modal parameters can be estimated using (4). The scales mode 
shapes are determined directly from the the columns of the bottom m x pm submatrix of L. The 
number of discrete eigenvalues in general are larger or different from the number of continuous 
eigenvalues. Therefore, only a subset of the discrete eigenvalues will be structural eigenvalues. 
This means that the user has to seperate t he physical modes from the computional modes. The 
computional modes are related to the unknown excitation and the measurement noise processes. 
This separation can often be done by studying the stability of e.g. frequencies, damping ratios and 
mode shapes, respectively, for increasing AR model order. Often it is also possible to separate the 
modes by selecting physical modes as the modes with a damping ratio below a certain treshold. 
However, satisfactory results obtained using ARMA V models require that appropriate models are 
selected and validated. 

2.2 Basic Equations of ERA 

2.2.1 Discrete-Time State-Space Model 

In discrete time the equations of mot ion (1) can be rewritten as 

x(t + 1) = A'x(t) + B'f(t) (11) 

Assuming that y(t) is the measured response 

y (t) = C'x(t) + D'f(t) (12) 

where A' , B', C' and D' are matrices describing the input-output relationship through the discrete­
time state vector. 

2.2.2 Eigensystem Realization Algorithm 

Based on measured free decays the triplet {A', B', C'} can be estimated using the Eigensystem 
Realization Algorithm (ERA) which has been developed for identification from Markov parame­
ters, see Juang [8]. The algorithm is based on the system realization theory results by Ho et al. 
[7]. 

Assume that we have given N = l + r measurements y(t) the two block-Hankel matrices which is 
t he product of the observability matrix and t he controllability matrix called, are given by 

Htr(t) = 

y(t) 

y (t + 1) 

y(t + 1) 

y(t + l-1 ) y (t+l) 

y (t+l -1) 

(13) 

y(t + l + r- 2) 

t = 1, 2, .. , where l > n and r > n are the numbers of block rows and columns, respectively. N is 
t he order of the system. By performing the singular value decomposition 

(14) 
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where the diagonal matrix S1 contains then principal singular values. If it is assumed that y (t) 
is noise free the block-Hankel matrix, H1r will be of rank n and hence S 2 = 0. A realization is 
then given by 

(15) 

(16) 

(17) 

where Ep = [IpO] and Em = [lmO] with Im and Ip being identity matrices of order m and p, 
respectively. 0 is a zero matrix of appropriate dimension.When ERA is used on noisy data or 
data from a higher order system, S2 will not be identically zero and the triple will then be an 
approximation of the true system. 

3 Experimental Results 

Figure 2: Photograph taken during construction of the frame. 
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The data considered in this paper was sampled from a model test RC-frame (scale 1:5) tested at 
the Structural Laboratory at Aalborg University, Denmark in 1996. 

3.1 Description of the Test Set-Up 

As seen from figure 2 the frames were tested in pairs of two, where the storey weights are modelled 
by placing RC-beams in span between the two frames. Each of the two frames were instrumented 
with Briiel and Kjcer accelerometers at each storey. In figure 1 a schematic view of the test set-up 
is shown. 

The frames were in-situ cast and consist of beams and columns with cross-sections of 50 x 60 mm. 
The beams are reinforced with 4 6 mm KS410 ribbed steel bars with an average yield strength of 
410 MPa. The columns are reinforced with 6 reinforcement bars of the same type as in t he beams. 
The storey height is 0.55 m giving the model a total height of 3.3 m. Each of the two bays are 1.2 
m wide give the model a total width of 2.4 m. At each storey 8 0.12 by 0.12 by 2 m RC-beams 
are placed between the two parallel frames to model the storey weights giving the model a total 
weight of approximately 4000 kg. The exact geometry of t he structure is shown in figure 3. 

ueo 

eo 

490 

60 

490 

60 

490 

eo 

0 
g 

490 

"' 60 

(90 

60 

490 

60 1140 60 1140 60 

Figure 3: Geometry of the considered 2-bay, 6-storey model test frame. All measures in mm. 

3.2 Generation of Excitation 

In the investigations performed different types of excitations are used, to investigate the influence 
on the identified modal parameters. The following two cases are considered. 

• Excitation in the first mode 

• Excitation in the second mode 
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The excitation of the structure was applied at the top storey by means of a rope attached to the 
top storey beams. 

The acceleration time series shown in figures 4-5 were measured at the 6 storeys. 

§J0.5~ .g; 0 
E.-0.5 

~~-L----~--~----~----~---L----~--~----~--~ 

~0.5~ 
~ 0 
- - 0.5 

L-~-L----~--_J-----L----~---L----~--_J ____ _L __ ~ 

C\10.5~ ~ 0 
E.-0.5 L_ __ _L ____ ~ __ _J ____ _L ____ ~ __ _L ____ ~ __ _J ____ _L __ ~ 

~ o.~~ f\ If\ J\ 1/"\. /'. 1 /'. /'..I.,...._ .,.....' ~ ~'- _'- _ ' - _' _ ___j 
£-0.5~ ~ ~ V '-: 'V '": -v ~ ~ ~ ~ ~ - ~ - --:- - ~ -l 

~---L----~--_J ____ _L ____ ~ __ _L ____ ~ __ _J ____ _L __ ~ 

0 2 3 4 5 6 7 8 9 10 
Time [sec] 

Figure 4: Measured storey accelerations for the first case. 
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Figure 5: Measured storey accelerations for the second case. 
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3. 3 System Identification 

In the following the results of the system identification using the methods described in section 2 
are presented. The analysis is performed using the STDI tool box developed at Aalborg University, 
Denmark, see Andersen et al. [2], [3], (4]. 

3.4 Results 

The results of the analysis are shown in table 1 for the case where the structure are excited in 
the first mode. Along with the estimated frequencies and damping ratio frequencies obtained by 
finite element analysis using the program SARCOF, M9-lrk [9], [10] are shown. In the finite element 
analysis it is assumed that the structure is fully cracked. 

SI-method h [Hz) h [Hz) (1 (2 
SARCOF 1.930 6.140 - -
FFT 1.941 6.519 - -

ARV 1.930 6.342 0.0270 0.0455 
ARMAV 1.932 6.223 0.0231 0.0795 
ERA 1.936 6.205 0.0235 0.0123 

Table 1: Identified frequencies and damping ratios of the fram e structure when the structure is 
excited in the first mode. 

In table 2 the corresponding results are shown for the case where the structure is excited in the 
second mode. 

SI-method h [Hz) h [Hz) (1 (2 
SARCOF 1.93 6.14 - -
FFT 1.978 6.592 - -

ARV 1.948 6.573 0.0290 0.0169 
ARMAV 1.947 6.517 0.0270 0.0129 
ERA 1.949 6.599 0.0298 0.0190 

Table 2: Identified frequencies and damping ratios of the frame structure when the structure is 
excited in the second mode. 

From tables 1 and 2 it can be seen that estimates of the damping ratios in the second mode is 
more uncertain in the first case than in the second case. This is because that all energy in the 
excitation is concentrated around the first mode. 

The mode shapes identified by the ARV, ARMAV models and the Eigensystem Realizat ion Algo­
rithm are shown along with mode shapes calculated from finite element analysis in the figures 6 -
7. 
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1st mode (ERA) 2nd mode (ERA) 
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Figure 6: Identified mode shapes usmg ARV, ARMAV and ERA compared to finite element 
results. First case. 
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Figure 7: Identified mode shapes 
results. Second case. 

usmg ARV, ARMAV and ERA compared to finite element 
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From figures 6 and 7 it is again seen that the estimates of the second mode shape is estimated 
more uncertain in the first case than in the second case. 

4 Conclusions 

T he present paper has considered multivariate time-domain system ident ification of a 1:5 model 
test RC-frame. It is found that the estimates of the modal parameters for the first mode obtained 
by the multivariate ARV, ARM AV and the ERA give nearly identical results for both types of 
excitation. Also the obtained frequency, damping ratio and mode shape of the second mode 
are nearly of the same magnitude. Compared with the finite element results the estimates are 
comparable for the first mode while there is a deviation between the finite element model and 
estimated mode shapes for the second mode. This deviation is probably due to the assumption 
that the structure is assumed fully cracked in the finite element model, which may not be the case 
in the upper storeys of the structure. 
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