
Aalborg Universitet

Classification of HTTP traffic based on C5.0 Machine Learning Algorithm

Bujlow, Tomasz; Riaz, Tahir; Pedersen, Jens Myrup

Published in:
IEEE Symposium on Computers and Communications (ISCC), 2012

DOI (link to publication from Publisher):
10.1109/ISCC.2012.6249413

Publication date:
2012

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Bujlow, T., Riaz, T., & Pedersen, J. M. (2012). Classification of HTTP traffic based on C5.0 Machine Learning
Algorithm. In IEEE Symposium on Computers and Communications (ISCC), 2012 (pp. 000882 - 000887). IEEE
(Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/ISCC.2012.6249413

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ISCC.2012.6249413
https://vbn.aau.dk/en/publications/276fdb95-7011-4926-8a4e-724aabdcb02b
https://doi.org/10.1109/ISCC.2012.6249413

Classification of HTTP traffic based on C5.0
Machine Learning Algorithm

Tomasz Bujlow, Tahir Riaz, Jens Myrup Pedersen
Section for Networking and Security, Department of Electronic Systems

Aalborg University, DK-9220 Aalborg East, Denmark
{tbu, tahir, jens}@es.aau.dk

Abstract—Our previous work demonstrated the possibility
of distinguishing several groups of traffic with accuracy of
over 99 %. Today, most of the traffic is generated by web
browsers, which provide different kinds of services based on the
HTTP protocol: web browsing, file downloads, audio and voice
streaming through third-party plugins, etc. This paper suggests
and evaluates two approaches to distinguish various types of
HTTP traffic based on the content: distributed among volunteers’
machines and centralized running in the core of the network.
We also assess the accuracy of the centralized classifier for both
the HTTP traffic and mixed HTTP/non-HTTP traffic. In the
latter case, we achieved the accuracy of 94 %. Finally, we provide
graphical characteristics of different kinds of HTTP traffic.

Index Terms—traffic classification, computer networks, HTTP
traffic, browser traffic, C5.0, Machine Learning Algorithms
(MLAs), performance monitoring

I. INTRODUCTION

The assessment of the Quality of Service (QoS) in computer
networks is a challenging task because different kinds of
traffic flows (voice and video streaming, file download,
web browsing) have different requirements. Therefore, to
estimate the performance, we need to know what type of data
flow is currently being assessed. There are many methods
for distinguishing computer network traffic, including the
classification by ports, Deep Packet Inspection (DPI), or
statistical classification [1]. We compared them in [2] and we
assessed that these methods are not sufficient for the real-time
identification of HTTP traffic.

We had two possible approaches to classify the flows in a
high-speed computer network infrastructure: centralized and
distributed. We implemented the distributed approach as the
Volunteer-Based System (VBS) and presented in [2]. VBS
clients installed on users’ computers collect the data together
with the name of the corresponding application. The necessary
statistical parameters are calculated on the client side and sent
to the database server. We designed the centralized solution
as a flow-examining-application installed in any point of the
network. All the flows passing through that point are captured
and assigned to a particular application class by the C5.0
Machine Learning Algorithm (MLA) [3]. As training data,
we used the data collected by VBS. The proposed design of a
solution for estimating QoS using both these approaches and
combining passive and active measurements was described in
[4]. The accuracy of the distributed QoS assessment solution is
approaching 100 %, as it uses the process names taken directly

from the system sockets during the classification. The accuracy
of our centralized QoS assessment was assessed to be 99.3–
99.9 %, due to the C5.0 classification error estimated based on
our previous approach to classify 7 different applications [3].

In previous papers, we assumed that one application carries
only one type of traffic and, for this reason, we took into
account only applications fulfilling this criterion. However,
the data collected by VBS showed that nowadays majority
of traffic is generated by HTTP-based applications as web
browsers. Until now, we were treating this kind of traffic
as a general web traffic class, which in effect consisted of
interactive traffic (web pages), audio and video streams, and
big file downloads (including big video files downloaded
directly from a website by the user or downloaded indirectly
by a web player, as YouTube). Flows carrying different
kinds of content can have different characteristics and QoS
requirements [5] and, therefore, they need to be distinguished
and processed in different ways. The measured characteristics
of different content types found within HTTP flows are shown
at the end of this paper. All these factors lead to the conclusion
that during QoS assessment, we are interested in the type of the
traffic (taking into account both the type of the content and the
type of the content delivery, as streaming or casual download),
not in the application which it generates. In this paper, we
present and evaluate a method for recognizing different kinds
of HTTP traffic.

Other methods for the classification of HTTP traffic are
shown in [6] and [7]. In [6], the authors propose to use the
size of the flow and the number of flows associated with the
same IP address to determine the character of the traffic by
3 different MLAs. Unfortunately, this approach requires to
have the traffic collected in advance, and in consequence, it
is not suitable for the real-time classification needed for QoS
assessment purposes. The method described in [7] is based
on keyword matching, flow statistics and a self-developed
algorithm. This approach also does not fulfill our needs
because it requires processing entire flows: first to match the
signature, then to extract statistics, such as the number of
packets contained by the flow. As opposite, our centralized
solution is able to classify the data based on 35 consecutive
packets from a random point of a flow. As a consequence, we
can monitor flows very quickly.

The remainder of this paper gives the overview of our
solutions for the distributed and centralized classification of

Figure 1. Overview of the method for obtaining the training data

network traffic and our methods for providing precise input
data, describes the results, and shows various traffic profiles.
We assessed the accuracy of the classification while changing
parameters in the algorithm. The data used in our experiments
originate from 5 private machines running in Denmark and
in Poland as well as 18 machines installed in computer
classrooms in Gimnazjum nr 3 z Oddziałami Integracyjnymi i
Dwujęzycznymi imienia Karola Wojtyły w Mysłowicach, a high
school in Poland.

II. CENTRALIZED CLASSIFICATION METHOD

We designed the centralized method to be used in the core of
the network. 35-packet long snippets from the selected flows
are inspected by the statistics generator, which calculates the
values of the relevant parameters. Based on the calculated
statistics, the C5.0 MLA is able to predict the traffic class of
the flow. The first and the most important issue in our solution
was how to train the classifier properly. As a consequence,

we designed and implemented an algorithm, which uses pre-
classified browser traffic to generate training cases for different
classes of traffic. The description of the algorithm is shown in
Figure 1.

Browser traffic can be classified based on two different
approaches: by using HTTP headers, or application names
and additional flow conditions like ports. Table I contains
examples of different services accessible by Firefox web
browser, together with the information about the chosen
method of classification. As shown, the type of the content
delivered by most services can be classified accurately by
the content-type field in the HTTP header. Unfortunately, in
some cases, we are not able to distinguish HTTP audio from
HTTP video streams (as shown in the case of application/x-
mms-framed content type, used both for streamed audio and
video content). However, streamed multimedia content is
often played by plugins which use the Real-Time Messaging
Protocol (RTMP) instead of HTTP, so the content can be

Table I
EXAMPLES OF DIFFERENT SERVICES PROVIDED BY WEB BROWSERS

Media Location App. name Content type Classification

Internet radio

The Voice http://www.thevoice.dk/popup/popup.php?tab=radio firefox audio/mpeg By content type

NOVAfm http://www.novafm.dk/popup/popup.php?tab=radio firefox audio/mpeg By content type

Radio 3 http://www.radio3.dk/sites/all/modules/netplayer/player.php plugin-container Impossible

RMF FM http://www.rmfon.pl/play,5 plugin-container audio/aacp By content type

ESKA http://www.eska.pl/player?streamId=101 firefox audio/mpeg By content type

CNN radio http://radioradio7.com/radio/CNN.html totem-plugin- application/x-mms-framed By content type

Embedded audio

Wrzuta.pl http://www.wrzuta.pl firefox audio/mpeg By content type

Video on Demand

Youtube http://www.youtube.com/ firefox video/x-flv By content type

Ipla http://www.ipla.pl iplalite video/x-flv By content type

Onet Video News http://www.onet.pl firefox video/x-flv By content type

CNN Video News http://edition.cnn.com/video/ firefox video/x-flv By content type

Wrzuta.pl http://www.wrzuta.pl firefox video/mp4 By content type

Internet TV

Justin.tv http://www.justin.tv/ plugin-container By app name and remote port 1935

Al-Jazeera http://www.aljazeera.com/watch_now/ plugin-container By app name and remote port 1935

PDR http://www.pdr.pl totem-plugin- application/x-mms-framed By content type

File download

File 1 http://download.oracle.com/otn-pub/java/jdk/7u1-b08/
jdk-7u1-solaris-sparc.tar.Z

firefox application/x-compress By content type

File 2 http://www.skatnet.dk/test/testfile.avi firefox video/x-msvideo By content type as video. However,
the most proper class would be file
download

separated using plugin names (such as plugin-container) and
RTMP remote port (1935). From the QoS point of view, the
problem is that based on the content-type field, we cannot
distinguish streamed multimedia content from multimedia
files embedded on websites (such as YouTube) and just
downloaded in the background to the user’s computer, because
they can use identical values of the content-type field, for
example, audio/mpeg. The same situation happens when a user
downloads a video or audio file explicitly by using a download
link. Therefore, for the purpose of this experiment, we placed
all the flows delivering the video content to the same class,
regardless, if the content was streamed or downloaded.

As the first step, we need to decide if we are dealing with an
HTTP-based flow or another kind of transport-layer flow. For
this purpose, we examine each packet in the flow and check
if the HTTP header exists. If yes, we look for the content-
type field. If we can obtain the information, the preferred
way of processing is always to handle the flow as an HTTP-
based flow, as it allows to recognize different kinds of flows
generated by one application. Short flows (below 200 packets
in the case of regular flows, and below 35 packets in the case
of HTTP-based flows) are discarded because they seem to be
less useful from the QoS measurement point of view.

A. Regular transport-layer flows

Regular flows are processed based on the assignments
between the application names and traffic classes. Most

applications are specialized to handle specific types of traffic
(voice conversations for Skype, file transfer for FTP clients,
or interactive traffic for games), but they also generate
background traffic. For example, Skype shares a distributed
users’ directory, free file transfer clients tend to download
advertisements to display them on the screen when doing
their job, and games have control connections to the main
server. These flows, acting as noise, are usually quite short. To
eliminate their impact, we decided to discard all flows shorter
than 200 packets. If there is no application name assigned
to the flow, the flow is discarded. Flows associated with
HTTP-based applications (like web browsers) are discarded
as well, because they are not recognized as HTTP flows and
their type is unknown. Then the flows are checked against
the assignments between the application names and traffic
classes. If we cannot find any match, the flow is discarded
as well. As it is written in [2], around the first 10 and the last
5 packets of each flow have different characteristics of size
parameters than the other packets. As a result, these packets
are cut out of the flow. Next, the flow is split into 35-packet
subflows, which are provided to the statistics generator. The
generated statistics are given as the input to the C5.0 classifier
as training or test data. It was shown in [2] that further
increasing of the number of packets in the subflow does not
improve significantly the accuracy of the classifier. Using the
reasonably smallest number of flows allows to perform faster

traffic classification and saves system resources, what allows
to process more flows at a time.

B. HTTP-based transport-layer flows

Dealing with HTTP-based flows is more complex, as one
transport-layer flow by HTTP can carry multiple different files
as text, images, audio, and video. For this reason, we split
the transport-layer flow into entities carrying different files or
streamed content (called later separate HTTP flows, as they
have separate HTTP headers), which are mapped to a traffic
class based on the content-type field in the HTTP header.
We found that the content-type field in the HTTP header is
present in and only in the first inbound packet of a new logical
HTTP flow. If the mapping does not exist, the HTTP flow is
discarded.

We decided to specify the following traffic classes: audio,
file download, multimedia, video, and web. The multimedia
class was assigned to traffic with content-types, which could
carry audio as well as video (regardless if the content was
streamed or downloaded, as based on the content it is
impossible to detect). The file download class was assigned
to big file downloads (however, except the multimedia files,
which were assigned to one of the multimedia classes), and the
web class to the traffic produced by interactive web browsing.
It was very hard to define what the interactive web browsing
is, but we decided to create this class as characteristics of
transport-layer flows carrying multiple small files like HTML
documents, web images and stylesheets are different than the
characteristics of downloads of big files. It can be even more
complicated because small few-second videos and animations
on websites behave more like the interactive traffic than the
real video traffic. On the other hand, big images embedded on
websites behave like file downloads. Therefore, we decided to
consider all the small (below M Bytes) HTTP flows as web
interactive traffic, and all the big web flows (above N Bytes)
as file download traffic. Values for M and N are intended to
be chosen experimentally. All the interactive HTTP web flows
within the transport-layer flow were merged together into one
big web flow. It makes no sense to calculate statistics for
each small web element (HTML file, images, etc) separately,
because they are visible across the network as one interactive
flow, so they must be processed holistically to assure the
proper assessment of the QoS level.

The entities carrying the multimedia content must be re-
classified as either audio or video, because they have different
characteristics and requirements. We use the assignments
between the application names and traffic classes to see if
the application assigned to that flow is purely audio or video
oriented. If not, the flow is discarded. Flows shorter than 35
packets are dropped to ensure compatibility with processing
regular transport-layer flows. Finally, the flow is split into
35-packets subflows, which are provided to the statistics
generator. The generated statistics are the input given to the
C5.0 classifier as the training or the test data.

III. DATA SOURCES

The algorithm of obtaining the training data uses three
external sources: a set of transport-layer flows, the assignments
between the application name and traffic classes, and the
assignments between the content types and traffic classes. The
origin of the mentioned data sources is described below.

A. Transport-layer flows

The transport-layer flows are obtained by our Volunteer-
Based System (VBS), whose architecture and implementation
was described in [2]. We implemented several major changes
to the system since it was published in order to make it capable
to process the information about HTTP content types.

First, we used the JNetPcap library to detect the HTTP
header in each packet of the flow and, in case of presence,
to extract the values of the content-type field. The field is
always present in the first incoming packet of the logical
HTTP flow inside the transport-layer flow. Obtaining this
information allows us not only to detect the class of the traffic
but also to separate logical HTTP flows within one transport-
layer flow. The extracted values of the content-type field are
associated with particular packets and sent to the server where
they are stored in a separate table and associated with the
corresponding packets. This way, we are able to keep track of
the content types in one place and save space. Due to obtaining
all the relevant information directly from the client machines,
VBS fulfills two roles. First, it is an independent distributed
solution able to classify network traffic in real-time from the
machine where it is installed. Second, it delivers the data for
training the C5.0, which is used in the centralized classification
approach. We must admit that turning on the HTTP header
inspection did not increase the CPU usage in a measurable
way, so there was no need to implement any optimization
methods (like processing only a part of the flows, inspecting
only a a part of the packets in a flow, and so on).

B. Assignments between the application names and traffic
classes

Obtaining the mappings between application names and
traffic classes is quite straightforward and it was done in the
way described below. The results for our case are shown in
Table II. It is worth mentioning that one element can possibly
match multiple classes. For example, a p2p flow can carry a
file (so it can be in fact a good match for the file download
class). The audio and video classes carry in this case only
the streamed content. The http process in a standard Ubuntu
application, which is responsible for downloading files for
system purposes, as system upgrades.

• Extract all the application names from the flows, which
contain at least 5000 packets in total. This limitation
was made to prevent including in the listing applications
which generated only small amounts of data, because they
are not sufficiently representative.

• Change all the names to lowercase and trim the
whitespace from both ends. Then write the list to a
Comma Separated Values (CSV) file.

Table II
MAPPING APPLICATION NAMES TO TRAFFIC CLASSES

Name Requirement Class

amule p2p

dropbox file download

filezilla file download

http file download

java file download

libgcflashplay remote_port = 1935 video

plugin-container remote_port = 1935 video

skype protocol_name = ’UDP’ audio

ssh ssh

steam file download

utorrent p2p

wget file download

• Manually assign a traffic class to all the rows in the
file. Add a condition as a part of an SQL statement,
if needed (for example by restricting the transport layer
protocol to UDP or including only flows matching
particular port numbers). Some of the applications also
can generate background traffic, which must be cut off
(like Skype, which beside the main voice UDP flow
generates numerous TCP connections to other clients
to exchange the distributed users’ directory). If the
application is unknown or it can handle different kinds
of traffic which cannot be separated by a SQL statement,
it should be deleted from the list.

C. Assignments between the content types and traffic classes

To be able to map the logical HTTP flows to a traffic class,
we needed to create a mapping table based on the information
contained in the database. This resulted in the assignments
shown in Table III. The process of obtaining these mappings
is described below. It is worth mentioning that one element can
possibly match multiple classes, as the classes present various
levels: content (as audio) or behavior (as file download). For
example, an audio flow can carry a streamed content from a
web radio or an audio file (so it can be in fact a good match
for the file download class).

• Extract all the values of the content types from the
packets, changing their names to lowercase and trimming
the whitespace from both ends.

• Remove from the content type everything beyond the
type itself, for example, the information about the used
encoding. Then, write the list to a CSV file.

• Manually assign a traffic class to all the rows in the file.
If the content type cannot be verified, delete the row. If
the content-type can correspond both to the audio and to
the video traffic, assign the multimedia class.

Unfortunately, relying on mappings between the traffic
classes and the content types is not always accurate and
consistent regarding the QoS assessment. For example, a
movie downloaded (directly by the user from a website or

Table III
MAPPING CONTENT TYPES TO TRAFFIC CLASSES

Class Content type

audio audio/aac, audio/aacp, audio/mpeg, audio/x-mpegurl, audio/x-pn-
realaudio-plugin, audio/x-scpls

file
download

application/binary, application/force-download, application/octet-
stream, application/octetstream, application/pdf, application/rar,
application/x-bzip2, application/x-compress, application/x-debian-
package, application/x-gzip, application/x-msdos-program, application/x-
msdownload, application/x-redhat-package-manager, application/x-tar,
application/x-xpinstall, application/x-zip-compressed, application/zip,
binary/octet-stream

multimedia application/x-mms-framed, application/ogg

video application/x-fcs, flv-application/octet-stream, video/mp4, video/ogg,
video/webm, video/x-flv, video/x-m4v, video/x-ms-asf, video/x-msvideo

web application/atom+xml, application/gif, application/java-
archive, application/javascript, application/js, application/json,
application/ocsp-request, application/ocsp-response,
application/opensearchdescription+xml, application/pkix-crl,
application/rdf+xml, application/rss+xml, application/smil,
application/soap+xml, application/x-amf, application/x-director,
application/x-font, application/x-httpd-cgi, application/x-java,
application/x-java-archive, application/x-javasc, application/x-javascri,
application/x-javascrip, application/x-javascript, application/x-
ns-proxy-autoconfig, application/x-pkcs7-crl, application/x-sdch-
dictionary, application/x-shockwave-flash, application/x-silverlight-app,
application/x-woff, application/x-ww, application/x-www, application/x-
x509-ca-cert, application/xaml+xml, application/xhtml+xml,
application/xml, banner/jpg, font/woff, httpd/unix-directory, image/bmp,
image/gif, image/ico, image/jpeg, image/jpg, image/pjpeg, image/png,
image/svg+xml, image/vnd.microsoft.icon, image/x-ico, image/x-icon,
image/x-ms-bmp, image/x-png, multipart/byteranges, multipart/form-
data, text/css, text/html, text/javascript, text/json, text/plain, text/vdf,
text/x-c, text/x-cross-domain-policy, text/x-gwt-rpc, text/x-javascript,
text/x-js, text/x-json, text/x-perl, text/xml

indirectly in the background by the browser from YouTube) is
marked as the video flow, as it carries video content. However,
regarding the QoS requirements, the video class should contain
only streamed video content, and the most appropriate action
in this case is to mark the flow as the file download, but there
is no simple way to obtain knowledge about the purpose of
the traffic beside asking the user what he is currently doing.

IV. CLASSIFICATION BY C5.0

During the experiment, we used the same sets of
classification attributes (A plus B) as used in [3]. We
performed a normal decision-tree based classification for two
cases: only for HTTP traffic, and for the mixed HTTP/non-
HTTP traffic. In the first case, we tried to estimate the
optimal values for the parameters M and N in the algorithm,
so we made several tries with various values of M and N
while observing how it affects the classification error. Both
parameters equal to 0 mean that the mechanism of switching
flows between the web and the file download classes is turned
off. The matrix of the classification error for HTTP flows while
using different values of M and N is shown in Table IV.

As shown, the accuracy of the classifier is independent of
the lower and upper limits (M and N) for the interactive
web traffic. Moreover, we can turn off the changing-class
mechanism without significant decrease of the accuracy. We
observe this behavior, because in order to test the classification
accuracy, we use a disjoint set of data obtained in the same
way as the set used for the training purposes, so it uses the

Table IV
CLASSIFICATION ERROR RATE [%] FOR DIFFERENT VALUES OF M AND N

N=0 N=100 N=200 N=300 N=500 N=1000

M=0 17.9

M=30 17.3 17.2 17.2 17.2 17.2

M=60 17.1 17.2 17.2 17.2 17.2

M=100 17.1 17.3 17.2 17.2 17.3

M=150 17.3 17.3 17.3 17.3

M=300 17.2 17.2 17.2

M=500 17.3 17.2

(a) (b) (c) (d) <-classified as
----- ----- ----- -----
98.04 0.40 1.03 0.53 (a): class audio

78.08 20.96 0.95 (b): class file download
0.02 12.67 85.95 1.37 (c): class video
0.26 10.67 9.52 79.56 (d): class web

__

(a) (b) (c) (d) (e) (f) <-classified as
------ ------ ------ ------ ------ ------
95.89 0.64 1.37 1.72 0.38 (a): class audio
0.01 86.03 0.72 12.51 0.73 (b): class file download

0.13 99.85 0.01 (c): class p2p
0.75 96.79 0.35 2.10 (d): class ssh

0.02 12.85 0.06 86.12 0.95 (e): class video
0.13 11.88 0.16 0.02 9.40 78.42 (f): class web

Figure 2. Misclassification matrix [%] for the HTTP traffic (above) and
entire traffic (below)

same values of M and N. It means that the proper values
for M and N should be estimated through observations of the
traffic. It ensures that the web class contains as much of the
real interactive browser traffic as possible, but as the least of
the multimedia and the file transfer traffic.

For the HTTP traffic (the misclassification matrix is
shown in Figure 2 (M=100, N=300)), we have two major
observations. First, we are able to distinguish the audio and the
interactive web traffic among different kinds of HTTP traffic.
In our case, the audio group contained mostly web radios,
which are of the streaming characteristic. Contrary to that,
the video traffic and the regular file download transfers are
often confused between themselves, as in fact, our video group
contained in significant majority video files downloaded by a
web browser, so their packet-level characteristic is the same as
other file downloads. The average error rate was in this case
17.0 %.

During the second part of the experiment, we used full
data sets containing both the HTTP and the non-HTTP traffic
(the misclassification matrix is shown in Figure 2). For the
non-HTTP traffic, we specified the following traffic classes:
audio, file download, p2p, ssh and video. The non-HTTP
video transfers were mostly streams played mostly through
third-party plugins in the browser, such as Adobe Flash. The
average error rate was in this case 6.0 %. The number of the
misclassifications between the file download and the video
classes decreased, as this time the video class contained more
elements of the streaming characteristic than in the previous
case.

V. TRAFFIC PROFILES

Based on the output from C5.0, we found the most used
classification attributes to distinguish different types of the
HTTP traffic. We chose two of them (the number of PSH
flags for the inbound direction and the total payload size)
to perform the graphical analysis. The distributions of these
attributes shown in Figure 3 and in Figure 4 confirm that the
audio and the web traffic differ significantly between each
other, and from the video traffic and the big file download
transfers. The number of the PSH flags increases when the
content needs to be delivered to the client without delays.
It proves that we can easily catch HTTP-based audio traffic,
which is the most fragile for network performance issues. It
justifies a need for the separate group of interactive web traffic
as well. During this experiment, we used M=100 and N=300
in the algorithm generating the cases.

Figure 3. Distribution of number of PSH flags for the inbound direction

Figure 4. Distribution of total payload size in the sample

VI. CONCLUSION

This paper presents two novel methods for content-based
recognizing different kinds of HTTP traffic in computer
networks. The distributed method implemented among VBS
clients uses the content-type fields in the HTTP headers to
extract logical HTTP flows from the transport-layer flows.
Later, the traffic classes are assigned based on the particular

types of the content. The centralized method is able to
distinguish different content types transported by HTTP in
the central point of the network based on the C5.0 MLA.
We have shown that the MLA-based classifiers are not able
to distinguish different types of the content transported by
HTTP when the other flow characteristics (beside the content
itself) are the same. The inability to distinguish between the
video files and other binary files transported by HTTP caused
the high average classification error rate (17.0 %). However,
we demonstrated that the classifier did not have problems
with recognizing interactive voice traffic, as it was originated
mostly by streamed web radios. The last step of our experiment
was to classify the mixed HTTP/non-HTTP traffic. In this case,
we achieved much lower error rate of 6.0 %, as we included
non-HTTP video streams from online TVs.

REFERENCES

[1] Jun Li, Shunyi Zhang, Yanqing Lu, and Junrong Yan. Real-
time P2P traffic identification. In Proceedings of the IEEE Global
Telecommunications Conference (IEEE GLOBECOM 2008), pages 1–5.
IEEE, New Orleans, Louisiana, USA, December 2008.

[2] Tomasz Bujlow, Kartheepan Balachandran, Tahir Riaz, and Jens Myrup
Pedersen. Volunteer-Based System for classification of traffic in computer
networks. In Proceedings of the 19th Telecommunications Forum
TELFOR 2011, pages 210–213. IEEE, Belgrade, Serbia, November 2011.

[3] Tomasz Bujlow, Tahir Riaz, and Jens Myrup Pedersen. A method
for classification of network traffic based on C5.0 Machine Learning
Algorithm. In Proceedings of ICNC’12: 2012 International Conference
on Computing, Networking and Communications (ICNC): Workshop on
Computing, Networking and Communications, pages 244–248. IEEE,
Maui, Hawaii, USA, February 2012.

[4] Tomasz Bujlow, Tahir Riaz, and Jens Myrup Pedersen. A method for
Assessing Quality of Service in Broadband Networks. In Proceedings
of the 14th International Conference on Advanced Communication
Technology (ICACT), pages 826–831. IEEE, Phoenix Park, PyeongChang,
Korea, February 2012.

[5] Gerhard Haßlinger. Implications of Traffic Characteristics on Quality
of Service in Broadband Multi Service Networks. In Proceedings of
the 30th EUROMICRO Conference (EUROMICRO’04), pages 196–204.
IEEE, Rennes, France, September 2004.

[6] Kei Takeshita, Takeshi Kurosawa, Masayuki Tsujino, Motoi Iwashita,
Masatsugu Ichino, and Naohisa Komatsu. Evaluation of HTTP video
classification method using flow group information. In Proceedings of the
14th International Telecommunications Network Strategy and Planning
Symposium (NETWORKS), pages 1–6. IEEE, Warsaw, Poland, September
2010.

[7] Samruay Kaoprakhon and Vasaka Visoottiviseth. Classification of
audio and video traffic over HTTP protocol. In Proceedings of
the 9th International Symposium on Communications and Information
Technology (ISCIT 2009), pages 1534–1539. IEEE, Icheon, Korea,
September 2009.

