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Conventional Synchronous Reference Frame
Phase-Locked Loop Is An Adaptive Complex Filter

Saeed Golestan, Member, IEEE, and Josep M. Guerrero, Senior Member, IEEE

Abstract—Despite the wide acceptance and use of the con-
ventional synchronous reference frame phase-locked loop (SRF-
PLL) no transfer function describing its actual input-output
relationship has been developed so far. Arguably, the absence of
such transfer function has hampered the application of SRF-PLL
as a filter or controller inside the closed-loop control systems.
In this paper, the transfer function describing the actual input-
output relationship of the conventional SRF-PLL is presented.
Using this transfer function, it is shown that the conventional
SRF-PLL is a first-order adaptive complex bandpass filter. It is
also shown that this transfer function can be useful for tuning
of SRF-PLL parameters. The accuracy of this transfer function
is confirmed through numerical results.

Index Terms—Synchronous reference frame phase-locked loop
(SRF-PLL), modeling, complex filters.

I. INTRODUCTION

Owing to its simple structure, robustness, and effectiveness,
the synchronous reference frame phase-locked loop (SRF-
PLL) is probably the most popular and widely used technique
for extraction of information about the grid fundamental
component in three-phase systems [1]. Fig. 1 shows the block
diagram description of this PLL. In this PLL, as shown,
the stationary («/3) coordinate voltages (which are obtained
by applying the Clarke transformation to the three-phase
voltages) are transformed to the synchronous reference frame
by applying the Park transformation. The dq reference frame
angular position is regulated using a feedback control loop
which forces v, to zero. Typically, a proportional-integral (PI)
controller is used as the loop filter (LF). Also, to make the
SRF-PLL performance insensitive to grid amplitude variations,
the signal v, is divided by an estimation of grid voltage
amplitude, which can be obtained by passing vy through a
low-pass filter (LPF) [2]. The fundamental frequency positive
sequence (FFPS) components are finally constructed using the
extracted phase and amplitude.

To the best of the authors knowledge, no transfer function
relating the input voltages to the output voltages of the con-
ventional SRF-PLL has been developed so far. We believe the
absence of such transfer function has hampered the application
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of SRF-PLL as a filter or controller inside the closed-loop
control systems despite the great advantages that it can offer.

In this paper, the transfer function describing the actual
input-output relationship of the conventional SRF-PLL is
presented. This transfer function shows that the conventional
SRF-PLL is actually a first-order complex bandpass filter
(CBF). It is worth mentioning that the complex filters have
an asymmetrical frequency response around zero frequency,
and therefore they can make distinction between the positive
and negative sequences of a same frequency [3]-[5].

II. TRANSFER FUNCTION REPRESENTATION OF SRF-PLL

In this section, the transfer function describing the actual
input-output relationship of the SRF-PLL is determined. To
determine this transfer function, it is assumed that: 1) the LPF
used to filter out the d-axis voltage component is a first-order
LPF of the form LPF(s) = k, /(s + k,) where k, is the LPF
cutoff frequency; and 2) the proportional gain k, of the PI
controller and the cutoff frequency k, are equal, i.e., k, =
k, = k. The second assumption is similar to that assumed in
[6] to obtain the transfer function describing the input-output
relationship of the Enhanced PLL (EPLL).

According to Fig. 1, the SRF-PLL output signals can be
expressed in time-domain as

05 (8) = 074 (t) cos (67
ot

A Y ()
v;{l(t) = 9y (t) sin (Hf)
Differentiating from both sides of (1) yields
GEa(t) = 0y (¢ cos (07 ) = 0F o, () sin (07) o
(1) = 65, () sin (éf) + 0767, (£) cos (éf) .

According to Fig. 1 and what was assumed at the beginning
of this section, we can obtain éf and ﬁjl as

bF = a(t) + k-2

KE (3)
+ (q) — _k At (4) — 5+
T1(s) = pvals) = 05, () =k [vd(t) - vdﬁl(t)]

Substituting (3) into (2) and performing some simple mathe-
matical manipulations, yields

5506 =k {va(t) cos (8 ) = v () sin (07 ) }

va (t)
— k], (1) cos (éf) —G(t) o, (1) sin (éf) )
—_— —— —_— ——
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Fig. 1. Block diagram description of the conventional SRF-PLL.
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Using (4) and (5), the state-space description of the SRF-PLL
can be obtained as

{ z(t) = A(t)x(t) + Bu(t) ©)
y(t) = Cz(t)
where
[ oga@) u(t) = Va (1)
o= | o (0 s =] 0 |
At) = [ w_(f) _‘fl(f) ] :B=FkI;C=1.

Notice that the SRF-PLL is a time varying system, as the off-
diagonal entries of the state matrix A are functions of time.

A. Analysis With Constant &

Let us assume that the estimated frequency w is constant.
In this case, the state matrix A is time-invariant, and therefore
the state-space description of (6) can be expressed in transfer
function form as

y(s) = [C(sI = A) B u(s) 0
or equivalently
[ i1 (s) } _ k [ stk —o } [ Va(5) }
0Eis) ] sk rerl @ stk [vsls) |
3
In space vector notation, (8) can be expressed as
> k(s 4+ k) +j0]
Dap(5)= mvaﬁ(s)
B k(s 70 ()
[ Rgal (s + k) — ja] **
k
= Uap(8) 9

(s — )+ k of
— —
Gsrr-pLL(S)

where 5;_6,1(5) =05,(s) + jﬁ;l(s) and Unp(s) = va(s) +

Jjvs(s).
Equation (9) shows that the SRF-PLL is actually a first-
order CBF. Fig. 2 shows the frequency response of (9) for
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Fig. 2. Frequency response of Gsgrrp—pLr(s) for @ = 2750 rad/s and
three-different values of k.

w = 2750 rad/s and three-different values of k. Notice that
the responses to negative frequencies in these plots can be
interpreted as the responses to the negative sequence vector
signal. As expected, the SRF-PLL frequency response is
asymmetrical around zero frequency: it provides unity gain
with zero-phase shift at the fundamental frequency of positive
sequence, while it provides a certain level of attenuation at the
same frequency of negative sequence.

B. Analysis With Time-Varying @

It is shown in this section that the estimated frequency w
is in general a slowly varying function time. Therefore, the
obtained transfer function for the SRF-PLL (which was based
on assuming a constant value for the estimated frequency
w) can provide a good approximation in general case. This
analysis is based on the linearized model of the SRF-PLL
which can be simply obtained by assuming a quasi-locked
state [7].

Fig. 3 shows the linearized model of the SRF-PLL in
which w and 6 are the frequency and phase of the grid
voltage, respectively. According to this model, the closed loop
transfer function relating the actual frequency to the estimated
frequency can be obtain as

ki

)= e m )

This transfer function (which is a standard second order
transfer function) implies any variation in the grid frequency

(10)
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Fig. 4. SRF-PLL settling-time in extraction of FFPS component as a function
of k£ (labeling on the left); Attenuation provided by the SRF-PLL at the
fundamental frequency of negative sequence as a function of k (labeling on
the right).

does not appear immediately in the signal w, and there is a
transition time that is determined by the PLL’s bandwidth. To
ensure high noise immunity, a limited bandwidth for the PLL
is typically selected. Therefore, it can be concluded that the
estimated frequency @ experiences a smooth transition when
the grid frequency undergoes variations. On the other hand,
in most practical cases the grid frequency w has a stable
nature, and its sudden and large variations are not expected
[8]. According to this fact and that mentioned above, it can
be concluded that the estimated frequency w is in practice a
slowly varying function of time. Thus, the obtained transfer
function for the SRF-PLL, which obtained by assuming a fixed
w, can provide a good approximation in general case.

III. DESIGN GUIDELINES

As shown in previous section, Gsrr—pr1(s) is a CBF (with
center frequency w) which its bandwidth is determined by
the parameter k. The higher the value of k, the higher the
bandwidth and, therefore, the lower the filtering capability (see
Fig. 2). So, selection of k involves a trade-off between the
filtering capability and the transient time.

Assuming the dc offset in the SRF-PLL input is negligible
(as is typically the case), the fundamental frequency negative
sequence (FFNS) component is the disturbance component
that we should be most concerned about, due to its low
frequency. Fig. 4 shows the attenuation provided by the SRF-
PLL at the fundamental frequency of negative sequence as
a function of k. The 2% settling time of the SRF-PLL in
extraction of the FFPS component (according to (9) the 2%
settling time can be approximated by t, ~ 4/k) is also shown
in this figure. The figure clearly shows the trade-off between
the filtering capability and transient time, and it can be used
for selecting a proper value for k.

Once the value of k is determined, the next step is to
determine the integral gain k;. From Fig. 3, the closed-loop
transfer function relating the input and estimated phases can

TABLE I
VALUES OF CONTROL PARAMETERS

Parameter Value
Proportional gain, £, 140
LPF’s cutoff frequency, k, 140
Integral gain, k; 9800
Sampling frequency, f 10 kHz
Nominal frequency, w, 2750 rad/s

: .
— transfer function

X SRF-PLL
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Fig. 5. Evaluation of accuracy of the obtained transfer function.
be expressed as
07 (s kps+ k;
Gcl(s): 1+( ) — 5 P 7 (11)
07 (s) 52+ kps + I

which is a standard second order transfer function, having a
zero. Define k = k, = 2¢w, and k; = w2 where ( is the
damping factor and w,, is the natural frequency. Thus, we can
write

ki=—. 12)

As the value of k£ has already been determined, k; can be
determined by selecting a proper value for ¢. Often ¢ = 1/v/2
[7] and sometimes ¢ = 1 [8] is recommended in literature.
The former value is selected in this paper which results in
ki = k?/2.

I'V. NUMERICAL RESULTS

In this section, the accuracy of obtained transfer function
for the SRF-PLL is confirmed through numerical results. The
selected values for control parameters are summarized in Table
L

To evaluate the accuracy of obtained transfer function,
different harmonic components of different sequences are
added to the input of the SRF-PLL and their amplitudes at
the output of the SRF-PLL are measured. The gain of SRF-
PLL at each harmonic frequency is then obtained by dividing
the measured amplitude by the input voltage amplitude at that
harmonic frequency, and compared with those predicted by
the transfer function. Fig. 5 shows the obtained results. It can
be observed that the obtained transfer function is accurate.

V. CONCLUSION

In this paper the transfer function describing the actual
input-output relationship of the SRF-PLL was developed.
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Using this transfer function it was shown that the conventional
SRF-PLL is a first-order CBF. Usefulness of this transfer
function in tuning of the SRF-PLL’s control parameters was
also shown.
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