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Abstract—In sparse Bayesian learning (SBL) approximate
Bayesian inference is applied to find sparse estimates from
observations corrupted by additive noise. Current literature only
vaguely considers the case where the noise level is unknown
a priori. We show that for most state-of-the-art reconstruction
algorithms based on the fast inference scheme noise precision
estimation results in increased computational complexity and
reconstruction error. We propose a three-layer hierarchical prior
model which allows for the derivation of a fast inference
algorithm that estimates the noise precision with no complexity
increase. Numerical results show that it matches or surpasses
other algorithms in terms of reconstruction error.

I. INTRODUCTION

Sparse signal representation from overcomplete dictionaries
has found increasingly many applications in recent years, e.g.
within compressed sensing [1], [2], machine learning [3] and
channel estimation [4]. The canonical problem of interest can
be formulated as

y = Φw + n. (1)

The N × 1 observation vector y is corrupted by additive
white Gaussian noise n with variance λ−1. We seek a sparse
representation w in the N ×M dictionary Φ. The ith column
φi in the dictionary is the basis vector pertaining to the ith
weight wi. The number of observations N is much smaller
than the number of basis vectors M , i.e. N �M . We consider
both the case where y,Φ,w and n are all real-valued and the
case where they are all complex-valued.

The reconstruction algorithms already proposed can gener-
ally be classified into three categories: a) methods based on
convex optimization, (e.g. [5], [6]), b) iterative constructive
greedy algorithms (e.g. [7], [8]) and c) approaches based on
Bayesian inference in sparsity-inducing probabilistic models.
The latter are known as sparse Bayesian learning (SBL)
approaches and they are the focus of this work.

Based on (1) the probabilistic model used in SBL for the
observations y consists of a Gaussian likelihood function with
mean Φw and covariance matrix λ−1I

p(y|w) = N
(
y|Φw, λ−1I

)
(2)

where I denotes the identity matrix. A prior probability density
function (pdf) is specified for the noise precision λ. For the
weight vector w a (possibly hierarchical) sparsity-inducing
prior is selected. Through Bayesian inference a sparse estimate
of the weights in w is obtained. The inference is typically

done with an iterative scheme, because a closed form solution
is infeasible.

Following a Bayesian approach the noise precision λ could
be integrated out of the model (marginalized) prior to applying
the inference scheme. As this is intractable in most cases, a
point estimate of λ is obtained instead. The point estimate is
either fixed at an initial rough estimate or updated periodically
within the iterative inference. As seen in Section IV, SBL
algorithms depend strongly on the accuracy of the point
estimate of λ. Despite this fact, the estimation of λ has
received surprisingly little attention in current literature.

A widely used SBL algorithm is the relevance vector
machine (RVM) [3]. The original formulation of the RVM
uses the expectation maximization (EM) algorithm [9] for
inference. Inclusion of the estimation of noise precision in
this iterative procedure is straightforward. The EM-based al-
gorithm, however, requires a large number of iterations before
convergence and has high computational cost per iteration. To
improve on these aspects the ‘fast inference scheme’ for the
RVM is introduced in [10]. This inference method, unlike EM,
does not provide an integrated, simple way to estimate the
noise precision. In fact, the computational cost of an iteration
of the algorithm increases dramatically if the estimate of the
noise precision is updated during that iteration. To circumvent
this, it is proposed in [10] to only re-estimate λ once every
few iterations while keeping its value fixed for the remaining
iterations.

In [11] the fast inference scheme is used in combination
with a hierarchical Laplace prior on w. The resulting algorithm
is shown to perform better than the RVM in terms of mean-
squared error (MSE) of the weights. In the numerical results
the noise precision is kept fixed through all iterations at an
initial estimate λ̂ = 0.01 ||y||22. It is argued that the noise
precision cannot be estimated in practice, as the fast inference
scheme produces unreliable estimates in the first few iterations.

In [12] a hierarchical model of the Bessel K prior is pre-
sented. Algorithms resulting from applying the fast inference
scheme to the Bessel K prior model are shown to perform
extremely well, but they also suffer from higher computational
complexity when estimating the noise precision.

In [13] a slightly modified version of the model used in the
RVM is presented. In this model it is tractable to integrate out
the noise precision and an estimate of λ is thus not required
for inference. Our numerical investigations indicates that this
algorithm has performance similar to that of the RVM.
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Fig. 1: Bayesian network of probabilistic model A and B.

Density Model A Model B

Observations, p(y|w, λ) N
(
y|Φw, λ−1I

)
Prior on λ, p(λ) Ga(λ|a, b)
Layer 1 on weights, p(w|γ) N(w|0,Γ) N

(
w|0, λ−1Γ

)
Layer 2 on weights, p(γ|η)

∏M
i=1 Ga(γi|ε, ηi)

Layer 3 on weights, p(η)
∏M
i=1 Ga(ηi|c, d)

Definitions: We define the vector η = [η1, . . . , ηM ]T and the diagonal
matrix Γ = diag(γ) with the vector γ = [γ1, . . . , γM ]T.
The multivariate normal density is parameterized to encompass both the
real (ρ = 1

2
) and complex (ρ = 1) case:

N(x|µ,Σ) =
( ρ
π

)ρ dim(x)
|Σ|−ρ exp

(
−ρ(x−µ)HΣ−1(x−µ)

)
where (·)H denotes the (Hermitian) matrix transpose.
The gamma pdf with shape α > 0 and rate β > 0 is

Ga(x|α, β) = βαΓ(α)−1xα−1 exp (−βx)

where Γ(α) is the gamma function.

TABLE I: Probability densities in probabilistic model A and
B.

From the above discussion, it is clear estimation of the
noise precision is not straightforward, that many different
approaches have been proposed and further investigation is
needed to identify the most promising options.

In this paper we present an algorithm that includes es-
timation of the noise precision in the inference framework
without any increase in the computational complexity. We
propose a generalization of the hierarchical prior model in
[13] from which a novel fast inference algorithm is derived.
A comparison is made with the hierarchical model in [12].
Unlike many other SBL algorithms, the performance of the
proposed algorithm is the same whether the noise is estimated
or fixed to its true value.

The paper is organized as follows; in Section II we present
the two investigated probabilistic models and relate them to
models currently used in the literature. In Section III we
derive a novel sparse estimation algorithm by applying the
fast inference scheme to our proposed model. Results of our
numerical investigation are presented and discussed in Section
IV and conclusions follow in Section V.

II. PROBABILISTIC MODELLING

In this paper we investigate two different probabilistic
models denoted as model A and model B, respectively. Fig. 1

shows the Bayesian network of the two models. Table I shows
the pdfs used. Model A is presented in [12]. We propose model
B as a generalization of the models in [13] and [14]. The sole
difference between model A and B lies in the specification of
the variance in the first layer on the weights. For model A
the variance of wi is specified by γi, while for model B it is
given by γiλ

−1. In model B each γi can be interpreted as a
signal-to-noise ratio (SNR) for the basis vector φi.

Notice how the weights w are modelled through a three-
layer (3L) hierarchical prior specification. We also refer to
two-layer (2L) versions of the models, where the prior on η
is disregarded and ηi, i = 1, . . . ,M is instead considered as
parameters of the model.

The model used to derive the RVM [3], [10] is different
from the models presented above. It can however be derived
from model A by selecting a flat (improper) prior on γi, i =
1, . . . ,M (as done in [15]). Similarly, the model used in [13]
is obtained by imposing a flat prior on γi in the 2L version of
model B. Therefore, the algorithm in [13] can be considered
an analogue to the RVM. The flat prior on γi is in both models
obtained by selecting ε = 1 and letting ηi → 0. The Laplace
prior model presented in [11] is obtained with an exponential
prior on γi in model A, which is realized when ε = 1. Notice
that in [11] ηi = η, ∀ i.

III. BAYESIAN INFERENCE

Based on the presented probabilistic model we derive an
estimator of the weights. In the following we apply the fast
inference scheme to the 3L version of model B and refer to
[12] for corresponding algorithms based on the 2L and 3L
versions of model A. We follow the conventional approach
within SBL (e.g. [3], [10]–[12], [15]) and obtain estimates (γ̂,
λ̂, η̂) of the hyperparameters (γ, λ, η). The estimate of w is
then obtained as the mode of p(w|y, γ̂, λ̂).

Note that p(w|y,γ, λ) ∝ p(y|w, λ)p(w|γ, λ) is the Gaus-
sian pdf given by

p(w|y,γ, λ) = N
(
w|µ, λ−1Σ

)
(3)

where

µ = ΣΦHy, Σ =
(
ΦHΦ + Γ−1

)−1
. (4)

Hence, the mode of p(w|y,γ, λ) coincides with µ in (4).
The fast inference scheme estimates the hyperparameters

(γ, λ,η) based on iterative maximization of the posterior pdf

p(γ, λ,η|y) ∝ p(y|γ, λ)p(γ|η)p(η)p(λ), (5)

where

p(y|γ, λ) =

∫
p(y|w, λ)p(w|γ, λ) dw = N

(
y|0, λ−1B

)
(6)

with
B = I + ΦΓΦH. (7)

The matrix B can be decomposed as

B = I +
∑
k 6=i

φkγkφ
H
k + φiγiφ

H
i = B−i + φiγiφ

H
i . (8)
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From Woodbury’s matrix inversion identity and the matrix
determinant lemma, we get

B−1 = B−1
−i −

B−1
−iφiφ

H
i B−1
−i

γ−1
i + φH

i B−1
−iφi

, (9)

|B| = |B−i|
(
1 + γiφ

H
i B−1
−iφi

)
. (10)

Taking the log of the posterior in (5) and inserting (9) and
(10) yields

L(γ,η, λ) = log p(γ, λ,η|y)

= (ρN + a− 1) log λ− ρ log |B−i| − ρ log(1 + γisi)

+

M∑
j=1

((ε− 1) log γj + (ε+ c− 1) log ηj − (γj + d)ηj)

+ ρλ

(
|qi|2

γ−1
i + si

− gi
)

+ const. (11)

where we have defined the quantities

si = φH
i B−1
−iφi, qi = φH

i B−1
−iy, gi = yHB−1

−iy +
b

ρ
.

(12)

The decomposition (8) enables maximization of (11) with
respect to one set of hyperparameters (γi, ηi). We could now
proceed by maximizing sequentially with respect to γi and
then ηi. However, numerical results show that maximizing
jointly with respect to (γi, ηi) reduces the number of required
iterations to reach convergence by more than a factor of two
in most scenarios. We choose ε = 1, such that the second
layer is governed by an exponential density. This simplifies
the derivations and yields algorithms with good performance
as our numerical results show. Through differentiation and
substitution, the stationary points of (11) with respect to
(γi, ηi) are found by solving

γ2
i s

2
i (ρ+ c) + γi(2sic+ dρs2

i + ρ(si − λ|qi|2))

+ c+ dρ(si − λ|qi|2) = 0. (13)

By analyzing (13) we realize that; a) when no positive root of
(13) exists, the global maximizer of (11) on R+ is at γi = 0, b)
in the case of one positive root, this root is a global maximizer
on R+ and c) when there are two positive roots, the largest is
a local (in some cases global) maximizer. However, empirical
results show that discarding solutions obtained from case c)
increases the reconstruction performance of the algorithms.
The solutions obtained from this case have been observed to
give very small values of γi compared to those obtained in case
b). As this results in small values for the corresponding wi it
intuitively makes sense to force those γi to zero. Only using
the maximizers from case a) and b), the update expression
reads

γ̂i =

{
ρ(λ̂|qi|2−si)−2sic−dρs2i +

√
∆i

2s2i (ρ+c)
if λ̂|qi|2 − si > c

dρ

0 otherwise

η̂i =
c

γ̂i + d
(14)

Model A Model B

Fixed λ̂ O(MN) O(MN)

Updating λ̂ O(MNŜ) O(MN)

TABLE II: Computational cost of each iteration using the fast
inference scheme. It is assumed that Ŝ ≤ N ≤M , where Ŝ is
the number of nonzero components in ŵ in the given iteration.

where ∆i = (2sic+ dρs2
i + ρ(si− λ̂|qi|2))2− 4s2

i (ρ+ c)(c+
dρ(si− λ̂|qi|2)). Maximization of (11) with respect to λ leads
to the following update expression for the noise precision
estimate

λ̂ =
N + a−1

ρ

yHB−1y + b
ρ

. (15)

The fast inference scheme starts with an ‘empty’ model by
setting all values in γ̂ to zero. The algorithm proceeds by
iteratively selecting a basis vector for which (γ̂i, η̂i) are recal-
culated according to (14). Depending on the selected index i,
an update can consist of addition or deletion of a basis vector
or re-estimation of the parameters corresponding to a basis
vector already included in the model. In our implementation
we, similarly to [10]–[13], choose to update the pair (γ̂i, η̂i)
which results in the largest increase in L(γ,η, λ) at each
particular iteration. In each iteration the noise precision is re-
estimated through (15).

Algorithms derived from model B can use the update
formulas in [13] to update Σ,µ and (si, qi, gi)∀ i in each
iteration at reduced computational cost. Equivalent update
formulas can be found in [10] for inference in model A. A key
difference between the two models is that the update formulas
for model A are only valid when the noise precision estimate λ̂
is held fixed between two consecutive iterations, whereas they
are applicable in all iterations in model B. When using model
A, the quantities must be computed using their definitions
when λ̂ is updated. The computational complexity in each
scenario is summarized in Table II. In the original work [10]
it is proposed to only update the noise precision estimate after
every fifth iteration.

In model B it also becomes tractable to marginalize out
the noise precision as done for a special case in [13]. When
marginalizing λ, the derivations follow the ones above and due
to space limitations they are not presented here. The increased
tractability in model B arises because the expressions (4) and
(7) no longer depend on the noise precision λ. When deriving
algorithms based on the fast inference scheme, this decoupling
is exploited. We note that similar benefits arise when using
other approaches for inference in model B, e.g. [16].

IV. NUMERICAL RESULTS

In this section we assess the performance of different
algorithms through numerical simulations. Table III lists the
SBL algorithms we consider. The A-RVM [10] and A-Laplace
[11] are established algorithms within SBL and are considered
as important references. B-RVM is the algorithm proposed in
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Iteration Number
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Fig. 2: Performance comparison of different sparse estimation algorithms with known and unknown noise precision. The Python
based simulation code used to generate these plots, can be found at http://www.es.aau.dk/navcom/sbl_index. Note
that the legend in (a) is also valid for (b).

Algorithm Parameters References

A-RVM ε = 1, ηi = 0 ∀i [10], [15]
A-BesselK ε = 0, ηi = 1 ∀i [12]
A-Laplace ε = 1, c = d = 0, ηi = η ∀i [11]
B-RVM, λ marg. ε = 1, ηi = 0 ∀i [13]
B-3L ε = 1, c = 0.5, d = 0.1

TABLE III: List of the investigated SBL algorithms. All
algorithms use a = 1, b = 0, i.e. a ‘flat’ prior is used for
the noise precision λ.

[13]. It is a direct analogue to A-RVM, but uses model B
and the noise precision is marginalized out. The A-BesselK
algorithm is presented in [12]. The B-3L is the algorithm
proposed in this paper. We omit results for the 2L version
of model B (B-2L), as we have been unable to select a
single parameter value for ηi which performs well for all SNR
values. The value of the parameters c = 0.5 and d = 0.1
have been chosen empirically to optimize the reconstruction
performance. Notice that cd affects the sparsity of the obtained
estimates, with larger c

d producing estimates with fewer non-
zero components.

For easier comparison we use a ‘flat’ prior for the noise
precision in all algorithms as in the RVM. As some of
the algorithms severely overestimate the noise precision, we
limit the noise precision estimate to 107 to avoid numerical
instabilities. For the algorithms using model A, the noise
precision estimate is only updated every third iteration. All
algorithms terminate when ||ŵn − ŵn−1||∞ < 10−8 with
ŵn and ŵn−1 denoting the estimate of w in the current
and previous iteration, respectively. In addition we limit the
maximum number of iterations to 500.

We include the oracle estimator as a reference. This estima-
tor knows the support of w and computes a least-squares esti-
mate of the nonzero entries in w. The CoSaMP [8] algorithm is
a state-of-the-art non-Bayesian reconstruction algorithm from

compressed sensing and is also included as a reference.
We use a generic simulation scenario and obtain the ob-

servations in accordance with (1). Each simulation uses a
randomly generated dictionary Φ with entries independently
and identically distributed according to a zero-mean nor-
mal distribution with variance 1/N . The number of nonzero
weights is binomially distributed with mean 15. The location
of the nonzero weights is uniformly distributed and the value
of each nonzero entry is sampled from a standard normal
distribution. Unless otherwise stated, M = 300 and the
number of observations is N = M

2 . The SNR is given by

SNR =
E
[
||Φw||22

]
E
[
||n||22

] =
λS̄

N
(16)

where S̄ is the average number of nonzero entries in w. In
the considered scenario y, Φ, w and n are all real-valued.
The initial noise precision estimate is chosen as λ̂ = 100

var(y) ,
where var(y) denotes the sample variance of y. All results
are averaged over 100 Monte Carlo simulations.

The MSE of the weight vector estimate is shown versus
the SNR in Fig. 2(a). Notice that for A-RVM and A-Laplace
the MSE increases when the noise precision is estimated
compared to when it is known. As depicted in Fig. 2(c) these
algorithms keep increasing their noise precision estimate over
iterations and never reach convergence. We have observed that
the algorithms keep adding basis vectors to the model (not
shown here) and obtain a non-sparse solution, i.e. they do
overfitting. In [11] it is argued that this problem is caused
by the construction of the fast inference scheme, as it starts
with an empty model and therefore produces unreliable noise
precision estimates in the first few iterations. However, our
simulations show that other SBL algorithms (A-BesselK and
B-3L) are able to cope with unknown observation noise level
without any degradation in reconstruction performance.
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In Fig. 2(b) the number of used iterations is plotted versus
M (note that N = M

2 and N is therefore also varied).
The algorithms that have a tendency to produce non-sparse
estimates (A-RVM and A-Laplace with estimated and known
λ and B-RVM) require more iterations when M increases,
as there are more candidate basis vectors to be added. The
number of used iterations for A-BesselK and the proposed B-
3L does not increase with M or N for M ≥ 150. When λ
is known, A-BesselK and B-3L have the same computational
complexity per iteration and use the same number of iterations.
For unknown λ the computational complexity per iteration is
higher for A-BesselK compared to B-3L (O(MNŜ) versus
O(MN)). B-3L is however seen to require a larger number of
iterations before convergence. In summary, the proposed B-3L
algorithm shows as good performance as the best state-of-the-
art SBL estimators and is more computationally efficient per
iteration when estimating the noise precision, at the cost of a
higher number of iterations required before convergence.

V. CONCLUSION

In this paper we have investigated Bayesian compressed
sensing methods and how they deal with unknown obser-
vation noise levels. We have shown that the reconstruction
performance of state-of-the-art algorithms employing the fast
inference scheme by Tipping and Faul [10] is degraded when
the noise precision needs to be estimated. Both the fast RVM
[10] and the algorithm proposed in [11] using a Laplace prior
model overestimate the noise precision and produce non-sparse
estimates. This is a shortcoming of the used prior model.
Using the 2-layer prior model in [12], which favours more
sparse solutions, yields an algorithm that produces an unbiased
estimate of the noise precision and favorable reconstruction
performance of the weights. Estimating the noise in the above
mentioned algorithms, however, increases the computational
complexity of the algorithms.

Through a modified probabilistic model inspired by the
model in [13] it becomes possible to either estimate or
marginalize out the noise precision, while preserving the low
computational complexity of the fast inference scheme. On this
basis we have proposed a novel sparse estimation algorithm
using a three-layer probabilistic model. The reconstruction
performance of this algorithm is on par with current state-

of-the-art algorithms. Conversely to existing algorithms, our
proposed algorithm retains the low computational complexity
per iteration of the fast inference scheme when the noise
precision is estimated.
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