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SUMMARY

Many dynamical systems are modeled as vector second order differential equations. This paper presents
analysis and synthesis conditions in terms of Linear Matrix Inequalities (LMI) with explicit dependence
in the coefficient matrices of vector second-order systems. These conditions benefit from the separation
between the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially
reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent
Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems.
The conditions introduced in this work have the potential to increase the practice of analyzing and controlling
systems directly in vector second-order form. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many physical systems have dynamics governed by linear time-invariant ordinary differential

equations (ODEs) formulated in the vector second order form

Mq̈(t) + Cq̇(t) +Kq(t) = Ff(t) (1)

where q(t) ∈ Rn,M ∈ Rn×n,C ∈ Rn×n,K ∈ Rn×n, F ∈ Rn×nf and f(t) ∈ Rnf is the force input

vector. Depending on the type of loads (i.e., conservative, non-conservative), matricesM ,C,K have

a particular structure. Conservative systems (i.e., pure structural systems) possess symmetric system

matrices. Non-conservative systems yielding from the fields of aeroelasticity, rotating machinery,

and interdisciplinary system dynamics usually possess non symmetric system matrices. For control
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2 F. D. ADEGAS, J. STOUSTRUP

purposes, system (1) is often re-written as first-order differential equations

ẋ(t) = Ax(t) +Bf(t) (2a)

commonly referred to as state-space form. The relationship between the physical coordinate

description (1) and the state-space description (2) is simply

x(t) :=

(
q(t)

q̇(t)

)
, A :=

[
0 I

−M−1K −M−1C

]
, B :=

[
0

M−1F

]
(3)

where a nonsingular matrix M is assumed. Working with the model in physical coordinates has

some advantages over the model in state-space form [1], [2], [3]:

• Physical interpretation of the coefficient matrices and insight of the original problem are

preserved;

• Natural properties of the coefficient matrices like bandedness, definiteness, symmetry and

sparsity are preserved;

• Unlike first-order systems in which the acceleration is composed as a linear combination of

position and velocity states by an additional circuitry, the acceleration feedback can be utilized

in its original form;

• Physical coordinates favour computational efficiency, because the dimension of the vector

x(t) is twice that of the vector q(t);

• Complicating nonlinearities in the parameters introduced by inversion of a parameter-

dependent mass matrix are avoided.

The stability of vector second-order systems received considerable interest during the last four

decades. In [4] several sufficient conditions for stability and instability using Lyapunov theory are

derived. Necessary and sufficient conditions of Lyapunov stability, semistability and asymptotic

stability are proposed in [5]. This work also brings a substantial literature survey up to 1995. In [2]

the necessary and sufficient conditions of stability are based on the Generalized Hurwitz criteria.

A desirable property of these works is the explicit dependence of the conditions on the system

coefficient matrices. An undesirable fact is that conditions are particular to systems under different

dynamic loadings.

Most of the research on feedback-control design of vector-second order systems has focused on

stabilization, pole assignment, eigenstructure assignment and observer design. Identification errors

in mechanical systems might be quite large. Therefore, robust stability of the closed-loop system

is of utmost importance. The fact that stability of some classes of vector-second order systems can

be ensured by qualitative condition on the coefficient matrices has facilitated the design of robust

stabilizing controllers. In [6] conditions for robust stabilization via static feedback of velocity and

displacement were motivated by the stability condition M T =M � 0, CT + C � 0, KT = K � 0

in the coefficient matrices An extension to dynamic displacement feedback control law is presented

in [7]. Dissipative system theory is exploited in [8, 9] for the synthesis of stabilizing controllers. All

these approaches result in closed-loop systems inherently insensitive to plant uncertainties. Based

on the eigenvalue analysis of real symmetric interval matrices, in [10] the authors propose sufficient

conditions for robust stabilizability considering structured uncertainty in the system matrices. A

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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LMIS FOR ANALYSIS AND CONTROL OF LINEAR VECTOR SECOND-ORDER SYSTEMS 3

transformation on the system matrices suitable for modal control is proposed in [3]. Partial pole

assignment techniques via state feedback control are proposed in [11, 12]. Robustness in the partial

pole assignment problem is considered in [13]. An effective method for partial eigenstructure

assignment for systems with symmetric mass, damping and stiffness coefficients is presented in

[14]. Robust eigenstructure assignment is treated in [15]. Vector second-order observers and their

design are addressed in [16, 17, 18].

Despite these efforts, the first-order state-space remains the preferred representation due to the

abundance of control techniques and numerical algorithms tailored for such. As far as modern,

optimization-based control theories are concerned, the literature lacks on results to handle the

systems directly in second-order form. An interesting contribution towards this goal is the stability

results of [19] for systems in standard phase-variable canonical form, given in terms of linear matrix

inequalities (LMI) extended with multipliers. The numerical tools of modern convex optimization

can solve these problems efficiently [20]. The authors of [19] also mentioned the possibility of

generalizing these results to systems described by higher order vector differential equations. Also

interesting is the work of [21] which associates Lyapunov functions with higher-order derivatives of

the state vectors of a state-space system, and proposes a redundant state-space system description to

derive a generalization with reduced conservativeness of some of the robust stability results of [19].

The present manuscript extend the results in [19] by presenting conditions for analysis and

synthesis of vector second-order systems given in terms of LMI. We believe that the conditions

here introduced have the potential to increase the practice in analyzing and controlling mechanical

systems explicitly in physical coordinates. Necessary and sufficient LMI criteria for checking

stability of vector second-order systems is presented in Section 2. Some of these benefit from

the separation between the Lyapunov matrix and the system matrices by introducing Lagrange

multipliers, which potentially reduce conservativeness in robust and other hard control problems

[22, 19, 23, 24]. The multipliers facilitate the usage of parameter-dependent Lyapunov functions as

certificates of stability of uncertain and time-varying systems. They also allow structural constraints

on the controller to be addressed less conservatively. Elimination of multipliers is investigated

to determine in which circumstances multipliers can be removed without loss of generality. The

stabilization problem by a full vector second-order feedback as well as the problem of clustering the

closed-loop system poles in a convex region of the complex plane, namelyD-Stability, completes the

results related to stability. A gradual extension for systems with inputs and outputs during Section

3 leads to the criteria of synthesis subject to Integral Quadratic Constrains (ICQ). Conditions for

the design of static state and output feedback controllers in vector second-order form are addressed,

with focus on theL2 toL2 gain performance measure due to its importance in robust control. Section

5 concludes the paper and suggest topics for future work.

The notation used in this paper is standard. R and C denotes the set of real numbers, whereas Sn

indicates the set of symmetric n× n matrices. For a matrix X , XT and XH indicate its transpose

and complex conjugate transpose, respectively. The d× d identity matrix is denoted by Id, while

1d represents a column vector composed of 1’s with dimension d. For a matrix X ∈ Sn, X ≺ (�) 0
indicates that X is negative (semi-)definite. The symbol ⊗ denotes the matrix Kronecker product.

In long symmetric matrix expressions, the meaning of the symbol � will be inferred by symmetry.

For instance, if X is symmetric, then

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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4 F. D. ADEGAS, J. STOUSTRUP

[
X +N + (�) QT

� Y

]

will be read [
X +N +NT QT

Q Y

]
.

2. ASYMPTOTIC STABILITY

Let us recall some concepts of Lyapunov stability for first-order state-space systems before working

with vector second-order representation. Consider the dynamics of a continuous-time linear time-

invariant (LTI) system governed by the differential equation

ẋ(t) = Ax(t), x(0) = x0, (4)

where x(t) : [0,∞]→ R2n andA ∈ R2n×2n. Define the quadratic Lyapunov function V : R2n → R

as

V (x) := x(t)TPx(t) (5)

where P ∈ S
2n. According to Lyapunov theory, system (4) is asymptotically stable if there exists

V (x(t)) > 0, ∀x(t) 
= 0 such that

V̇ (x(t)) < 0, ẋ(t) = Ax(t), ∀x(t) 
= 0. (6)

In words, if there exists P � 0 such that the time derivative of the quadratic Lyapunov function (5)

is negative along all trajectories of system (4). Conversely, if the linear system (4) is asymptotically

stable then there always exists P � 0 that satisfies (6). These two affirmatives imply the well known

fact that Lyapunov theory with quadratic functions is necessary and sufficient to prove stability of

LTI systems. The usual way to obtain a linear matrix inequalities (LMI) condition equivalent to (6)

is to explicitly substitute (4) into (5) [20], that is

V̇ (x(t)) = x(t)T
(
ATP + PA

)
x(t) < 0, ∀x(t) 
= 0. (7)

The condition (7) is equivalent to the LMI feasibility problem

∃P ∈ S
2n : P � 0, ATP + PA ≺ 0. (8)

The fact that (6) is a set characterized by inequalities subject to dynamic equality constraints is

explored in [19] to propose a constrained optimization solution to the stability problem. It is then

possible to characterize the set defined by (6) without substituting (4) explicitly into V̇ (x(t)) < 0 of

(6) [19]. The well know Finsler’s Lemma [25, 26] is the main mathematical tool to transform the

constrained optimization problem into a problem subject to LMI constraints.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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LMIS FOR ANALYSIS AND CONTROL OF LINEAR VECTOR SECOND-ORDER SYSTEMS 5

Lemma 1 (Finsler)

Let x(t) ∈ Rn, Q ∈ Sn and B ∈ Rm×n such that rank(B) < n. The following statements are

equivalent.

i. x(t)TQx(t) < 0, ∀ Bx(t) = 0, x(t) 
= 0.

ii. B⊥TQB⊥ ≺ 0.

iii. ∃μ ∈ R : Q− μBTB ≺ 0.

iv. ∃X ∈ Rn×m : Q+ XB + BTX T ≺ 0.

A similarity between statement i. of the above lemma and (6) can be noticed. In contrast to (7),

the space of statement i. is composed of x(t) and ẋ(t) that can be seen as an enlarged space [19].

Statements iii. and iv. can be seen as an equivalent unconstrained quadratic forms of i. [19]. The

equality constraint ∀ẋ(t) = Ax(t) is included in the formulation weighted by the Lagrangian scalar

multiplier μ or matrix multiplier X .

In order to obtain a stability condition for an unforced system of the form (1) (f(t) = 0), define

the quadratic Lyapunov function V : R2n → R as

V (q(t), q̇(t)) :=

(
q(t)

q̇(t)

)T

P

(
q(t)

q̇(t)

)
:=

(
q(t)

q̇(t)

)T [
P1 P2

PT
2 P3

](
q(t)

q̇(t)

)
(9)

where P ∈ S
2n is conveniently partitioned into P1, P3 ∈ S

n, P2 ∈ R
n. Resorting to Lyapunov

theory once again, system (1) is asymptotically stable if, and only if, there exists V (q(t), q̇(t)) > 0,

∀q(t), q̇(t) 
= 0 such that

V̇ (q(t), q̇(t)) < 0, ∀Mq̈(t) + Cq̇(t) +Kq(t) = 0,

(
q(t)

q̇(t)

)

= 0 (10)

with the time derivative of the quadratic function as

V̇ (q(t), q̇(t)) =

(
q̇(t)

q̈(t)

)T [
P1 P2

PT
2 P3

](
q(t)

q̇(t)

)
+

(
q(t)

q̇(t)

)T [
P1 P2

PT
2 P3

](
q̇(t)

q̈(t)

)
< 0. (11)

Let an enlarged state space vector be defined as x(t) :=
(
q(t)T , q̇(t)T , q̈(t)T

)T
. For this enlarged

space, the constrained Lyapunov stability problem becomes

⎛
⎜⎝
q(t)

q̇(t)

q̈(t)

⎞
⎟⎠

T ⎡
⎢⎣

0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎥⎦

⎛
⎜⎝
q(t)

q̇(t)

q̈(t)

⎞
⎟⎠ < 0,

∀Mq̈(t) + Cq̇(t) +Kq(t) = 0,

⎛
⎜⎝
q(t)

q̇(t)

q̈(t)

⎞
⎟⎠ 
= 0.

(12)

An LMI stability condition for vector second-order systems results from the direct application of

Finsler’s Lemma 1 to the problem above.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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6 F. D. ADEGAS, J. STOUSTRUP

Theorem 1

System (1) is asymptotically stable if, and only if, one of the following equivalent conditions holds:

i. ∃P2 ∈ R
n×n, P1, P3 ∈ S

n :

⎡
⎢⎣
E11 E12

E21 E22

E31 E32

⎤
⎥⎦
T ⎡

⎢⎣
0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎥⎦

⎡
⎢⎣
E11 E12

E21 E22

E31 E32

⎤
⎥⎦ ≺ 0, (13a)

⎡
⎢⎣
E11 E12

E21 E22

E31 E32

⎤
⎥⎦ :=

[
K C M

]⊥
,

[
P1 P2

PT
2 P3

]
� 0. (13b)

ii. ∃P2 ∈ Rn×n, P1, P3 ∈ Sn, λ ∈ R :

⎡
⎢⎣−λK

TK P1 − λKTC P2 − λKTM

� P2 + PT
2 − λCTC P3 − λCTM

� � −λMTM

⎤
⎥⎦ ≺ 0, (14a)

[
P1 P2

PT
2 P3

]
� 0. (14b)

iii. ∃Φ, Γ, Λ, P2 ∈ Rn×n and P1, P3 ∈ Sn :

⎡
⎢⎣
KTΦT +ΦK P1 +KTΓT +ΦC P2 +KTΛT +ΦM

� P2 + PT
2 + CTΓT + ΓC P3 + CTΛT + ΓM

� � MTΛT + ΛM

⎤
⎥⎦ ≺ 0, (15a)

[
P1 P2

PT
2 P3

]
� 0. (15b)

Proof

Assign

x(t)←

⎛
⎜⎝q(t)

q̇(t)

q̈(t)

⎞
⎟⎠ , Q ←

⎡
⎢⎣ 0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎥⎦ , BT ←

⎡
⎢⎣K

T

CT

MT

⎤
⎥⎦ , X ←

⎡
⎢⎣ΦΓ
Λ

⎤
⎥⎦

and apply Lemma 1 to the constrained Lyapunov problem (12) with P � 0.

Notice the diagonal entries of the first inequality of statement ii., i.e., λKTK � 0 and λMTM �
0, which implies that λ > 0 and K, M nonsingular. The condition reflects that asymptotic stability

of mechanical systems requires that no eigenvalues of matrix K should lie at the origin, i.e., no

rigid body modes. At last, notice that the condition does not enforce any specific requirement on

the structure of the damping matrix C (except C 
= 0). Thus, applicable to system under different

loadings.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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LMIS FOR ANALYSIS AND CONTROL OF LINEAR VECTOR SECOND-ORDER SYSTEMS 7

2.1. Elimination of Multipliers

The matrix inequality (15) is a function of the multipliers Φ, Γ, Λ. It is worth questioning if all

degrees of freedom introduced by the multipliers are really necessary. Would it be possible to

constrain or eliminate multipliers without loss of generality? The Elimination Lemma [20, 26] will

serve for the purpose of removing multipliers without adding conservatism to the solution.

Lemma 2 (Elimination Lemma)

Let Q ∈ Sn, B ∈ Rm×n, C ∈ Rn×k. The following statements are equivalent.

i. ∃X ∈ Rn×m : Q+ CTXB + BTX T C ≺ 0

ii. B⊥TQB⊥ ≺ 0 (16a) C⊥TQC⊥ ≺ 0 (16b)

iii. ∃μ ∈ R : Q− μBTB ≺ 0, Q− μCTC ≺ 0.

Notice that Elimination Lemma reduces to the Finsler’s Lemma when particularized with C = I .

In such a case C⊥ = {0} and (16b) is removed from the statement. A discussion on the relation

between these two lemmas can be found in [20, 26]. The elimination of multipliers on LMI

conditions for systems in first-order form was studied in [24]. In general terms, the idea is to select

a suitable C such that (16b) does not introduce conservatism to the original problem while reducing

the size of the multiplier X . The next theorems result from a similar rationale.

Theorem 2

System (1) is asymptotically stable if, and only if, ∃Φ, Λ, P2 ∈ Rn×n and P1, P3 ∈ Sn :

⎡
⎢⎣ΦK +KTΦT P1 +KT (αΦ + Λ)T +ΦC P2 + αKTΛT +ΦM

� P2 + (αΦ + Λ)C + (�) P3 + αCTΛT + (αΦ + Λ)M

� � α
(
ΛM +MTΛT

)
⎤
⎥⎦ ≺ 0, (17a)

[
P1 P2

PT
2 P3

]
� 0. (17b)

for an arbitrary scalar α > 0.

Proof

Assign

Q←

⎡
⎢⎣

0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎥⎦ , BT ←

⎡
⎢⎣
KT

CT

KT

⎤
⎥⎦ , C⊥ ←

⎡
⎢⎣
α2I

−αI
I

⎤
⎥⎦ ,

CT ←

⎡
⎢⎣
I 0

αI I

0 αI

⎤
⎥⎦
T

, X ←
[
Φ

Λ

]
.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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8 F. D. ADEGAS, J. STOUSTRUP

and apply the Elimination Lemma with P � 0. The chosen C⊥ does not introduce conservativeness

to the condition. To see this expand (16b)

C⊥TQC⊥ = −α3P1 − αP3 + α2P2 + α2PT
2 ≺ 0 (18a)




α3P1 + αP3 − α2P2 − α2PT
2 � 0. (18b)

Notice that the following support inequality

−NW−1NT �W −N −NT (19)

with W ∈ Sn, N ∈ Rn×n holds whenever W � 0. Resorting to the support inequality with N :=

α2P2, W := αP3 � 0, (18b) is satisfied whenever

α3(P1 − P2P
−1
3 PT

2 ) � 0. (20)

P1 − P2P
−1
3 PT

2 � 0 is equivalent to (17b) by a Schur complement argument and thus positive

definite. Therefore (20) and consequently (18b) holds for an arbitrary real scalar α > 0.

A similar, equivalent characterization of the Theorem above can be derived by assigning

C⊥ ←

⎡
⎢⎣

I

−αI
α2I

⎤
⎥⎦ , CT ←

⎡
⎢⎣
αI 0

I αI

0 I

⎤
⎥⎦
T

and following the same steps presented on the proof.

The number of multipliers can be further reduced by constraining Φ := μΛ in (17a) where μ > 0

is a real scalar. The idea to introduce line search parameters is exploited in the LMI literature

[27, 28, 24]. Unfortunately, this constraint introduce conservativeness leading to a sufficient

condition.

Theorem 3

System (1) is asymptotically stable if ∃P2, Λ ∈ Rn×n, P1, P3 ∈ Sn, μ,∈ R :

⎡
⎢⎣μ(ΛK +KTΛT ) P1 + (1 + αμ)KTΛT + μΛC P2 + αKTΛT + μΛM

� P2 + (1 + αμ)ΛC + (�) P3 + αCTΛT + (1 + αμ)ΛM

� � α(ΛM +MTΛT )

⎤
⎥⎦ ≺ 0 (21a)

[
P1 P2

PT
2 P3

]
� 0, α > 0, μ > 0. (21b)

for an arbitrary scalar α > 0.

A source of conservatism is the appearance of a single multiplier on the block diagonal entries

of (21a). For M � 0, usual property of the mass matrix, the (3,3) block α(MTΛT + ΛM) ≺ 0

with α > 0 is satisfied only if Λ ≺ 0. As a consequence, stability cannot be certified when M � 0

and K is indefinite because μ(KTΛT + ΛK) ≺ 0 never holds when μ > 0 and Λ ≺ 0. Numerical

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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LMIS FOR ANALYSIS AND CONTROL OF LINEAR VECTOR SECOND-ORDER SYSTEMS 9

experiments suggest that a similar situation is encountered when the matrix C is indefinite and M

or K are positive definite. The condition was unable to attest stability of randomly generated stable

systems (M,C,K) in which C had at least one negative eigenvalue and M, K � 0. P2 + PT
2 � 0

holds whenever the condition was able to find a certificate of stability, another contributing fact to

why the (2-2) block cannot be verified as negative definite when C is indefinite.

2.2. Stabilization by Static State Feedback

The dependence of the stability condition to a single multiplier Λ is particularly interesting in the

context of feedback stabilization. The vector second order system is augmented with a controllable

input u(t) ∈ Rnu

Mq̈(t) + Cq̇(t) +Kq̇(t) = Fuu(t), q(0), q̇(0) = 0 (22)

where Fu ∈ Rn×nu . Consider a static state feedback controller of the form

u(t) = −Gaq̈(t)−Gv q̇(t)−Gpq(t) (23)

where Ga , Gv, Gp ∈ Rn×n are static feedback gains from acceleration, velocity and position,

respectively. The plant (22) in closed-loop with the controller (23) yields the equations of motion

Mq̈(t) +Cq̇(t) +Kq(t) = 0 (24a)

M := (M + FuGa) , C := (C + FuGv) , K := (K + FuGp) (24b)

Conditions for controller synthesis often involve products between controller gains and Lyapunov

matrices or multipliers, resulting in nonlinear matrix inequalities. The nonlinear terms can be

linearized by resorting to the change-of-variables, firstly introduced in [29] in which only the

Lyapunov variable is involved, and later in the context of conditions extended with multipliers [22].

Define the following nonlinear change-of-variables

Ĝa := GaΛ, Ĝv := GvΛ, Ĝp := GpΛ. (25)

Notice from (21) that the matrix Λ multiplies the system matrices in a position not suitable for

linearization of the nonlinear terms, i.e., Λ (K + FuGp). A dual transformation of the closed-loop

system

M←MT , C← CT , K← KT (26)

makes the linearizing change of variables possible. A discussion on algebraic duality of vector

second-order system with inputs and outputs is given in the appendix. It is worth mentioning that

the above dual transformation preserves the eigenvalues of the system cast in first-order form, that

is

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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10 F. D. ADEGAS, J. STOUSTRUP

λ

([
0 I

−M−1K −M−1C

])
= λ

([
0 I

−M−TKT −M−TCT

])
.

With these definitions at hand, the stabilizability conditions by static feedback can now be stated.

Theorem 4

System (22) is stabilizable by a static feedback law of the form (23) if ∃ Λ, P2 ∈ Rn×n, P1, P3 ∈
Sn, Ĝa, Ĝv, Ĝp ∈ Rnu×n, α, μ ∈ R :

⎡
⎢⎣
μ(KΛ + FuĜp + ΛTKT + ĜT

p F
T
u ) P1 + (1 + αμ)(KΛ + FuĜp) + μ(CΛ + FuĜv)

T

� P2 + (1 + αμ)(CΛ + FuĜv) + (�)

� �

P2 + α(KΛ + FuĜp) + μ(MΛ + FuĜa)
T

P3 + α(CΛ + FuĜv) + (1 + αμ)(MΛ + FuĜa)
T

α(MΛ + FuĜa + ΛTMT + ĜT
a F

T
u )

⎤
⎥⎦ ≺ 0, (27a)

[
P1 P2

PT
2 P3

]
� 0, μ > 0, (27b)

and Λ is nonsingular.

Proof

The LMI (27) results from a direct application of Proposition 2 to the dual of closed-loop system

(24), together with a dual transformation Λ← ΛT of the multiplier and the change-of-variables (25).

The change-of-variables are without loss of generality when Λ is nonsingular thus invertible. The

original controller gains can then be recovered by the inverse map

Ga = ĜaΛ
−1, Gv = ĜvΛ

−1, Gp = ĜpΛ
−1. (28)

which characterizes the stabilizable control law.

A nonsingular multiplier Λ is not implied by inequality (27). This fact contrasts with stability

criteria for systems in first-order form where nonsingularity of multipliers is a direct consequence

of the structure of the LMI [23, 30]. With some restrictions imposed on the problem formulation,

it is possible to ensure a nonsingular Λ. For instance, the multiplier can be confined to the positive

cone of symmetric matrices, i.e., Λ ∈ Sn, Λ � 0, or to the negative cone of symmetric matrices

Λ ∈ Sn, Λ ≺ 0. In these cases, extra conservativeness is brought into the condition.

An assumption that facilitates a nonsingular Λ without adding conservativeness is to exclude the

acceleration feedback, i.e., Ga = 0. In this case, the lower right block MΛ + ΛTMT ≺ 0 of the

LMI (27) withM nonsingular implies a nonsingular multiplier Λ. Therefore, a stabilizing controller

can be computed according to (28) whenever (27) is feasible. Note that the control law (23) with

Ga = 0 is a full state feedback in the first-order state-space sense.

As mentioned in the introduction section, acceleration feedback is often desirable due to practical

reasons. When position feedback is excluded from the control law (Gp = 0) the multiplier is

assured to be nonsingular. The entry μ(KΛ + ΛTKT ) ≺ 0 located in the upper left of (27) with
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LMIS FOR ANALYSIS AND CONTROL OF LINEAR VECTOR SECOND-ORDER SYSTEMS 11

K nonsingular and μ > 0 implies Λ nonsingular. Therefore, once a solution for the LMI problem

above is found, the controller gains can be reconstructed according to (28).

2.3. D-Stability

Performance specifications like time response and damping in closed-loop can often be achieved

by clustering the closed-loop poles into a suitable subregion of the complex plane. The subclass of

convex regions of the complex plane can be characterized in terms of LMI constraints [31]. A class

of convex subregions representable as LMI conditions extended with multipliers was proposed in

[32]. Let R11, R22 ∈ Sd, R12 ∈ Rd, R22 � 0. The DR region of the complex plane is defined as the

set [32]

DR(s) :=
{
s ∈ C : R11 +R12s+RT

12s
H +R22s

Hs ≺ 0
}

(29)

where s is the Laplace operator. An LMI characterization for DR-stability of vector second-order

systems can be derived fromDR-stability condition of a system in first-order form. The autonomous

system (4) is DR-stable if and only if ∃P ∈ S2n : [32]

R11 ⊗ P +R12 ⊗ (PA) +RT
12 ⊗

(
ATP

)
+R22 ⊗

(
ATPA

) ≺ 0 (30)

A relation between regions of the complex plane and a particular Lyapunov constrained problem

can be deduced from the above LMI. First define the d-stacked system as

xd(t) := 1d ⊗ x(t), Ad := Id ⊗A ⇒ ẋd(t) = Id ⊗Axd(t) (31)

where 1d represents a column vector composed of 1’s and Id is the identity matrix both with

dimension d. For example, the d-stacked system for d = 2 yields

(
ẋ(t)

ẋ(t)

)
=

[
A 0

0 A

](
x(t)

x(t)

)
.

The time derivative of the Lyapunov function tailored for DR-stability analysis is defined as

V̇ (xd(t), ẋd(t)) : = xd(t)
TR11 ⊗ Pxd(t) + ẋd(t)

TR12 ⊗ Pxd(t)
+ xd(t)

TRT
12 ⊗ P ẋd(t) + ẋd(t)

TR22 ⊗ P ẋd(t) < 0
(32)

Substitute (31) into (32) and expand to arrive at (30). The usual time derivative of a quadratic

Lyapunov function, i.e., V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TP ẋ(t) is recovered from the above by

choosing R11 = R22 = 0, R12 = 1. The set of solutions of the D-stability problem in time-domain

is defined as

DR(x(t)) :=
{
x(t) ∈ R

n : V̇ (x(t), ẋ(t)) < 0, V̇ (x(t), ẋ(t)) as (32), P � 0
}
. (33)
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12 F. D. ADEGAS, J. STOUSTRUP

For the sake of DR-stability of vector second-order systems the d-stacked system is defined

qd(t) := 1d ⊗ q(t), q̇d(t) := 1d ⊗ q̇(t), q̈d(t) := 1d ⊗ q̈(t), (34a)

Md := Id ⊗M, Cd := Id ⊗ C, Kd := Id ⊗K (34b)

Mdq̈d(t) + Cdq̇d(t) +Kdqd(t) = 0. (34c)

Let the constrained Lyapunov problem in the enlarged space be formalized

⎛
⎜⎝qd(t)q̇d(t)

q̈d(t)

⎞
⎟⎠

T ⎡
⎢⎣ R11 ⊗ P1 R11 ⊗ P2 +R12 ⊗ P1

� R11 ⊗ P3 +RT
12 ⊗ P2 +R12 ⊗ PT

2 +R22 ⊗ P1

� �

R12 ⊗ P2

R12 ⊗ P3 +R22 ⊗ P2

R22 ⊗ P3

⎤
⎥⎦

⎛
⎜⎝qd(t)

q̇d(t)

q̈d(t)

⎞
⎟⎠ < 0,

(35a)

[
P1 P2

PT
2 P3

]
� 0, ∀Mdq̈d(t) + Cdq̇d(t) +Kdqd(t) = 0,

⎛
⎜⎝qd(t)q̇d(t)

q̈d(t)

⎞
⎟⎠ 
= 0. (35b)

The D-stability condition for vector second-order systems is stated in the next theorem.

Theorem 5

System (1) is DR-stable if, and only if, ∃ P1, P3 ∈ Sn, P2 ∈ Rn, Φ, Γ, Λ ∈ Rdn×dn :

J +H +HT ≺ 0, H :=

⎡
⎢⎣
Φ(Id ⊗K) Φ(Id ⊗ C) Φ(Id ⊗M)

Γ(Id ⊗K) Γ(Id ⊗ C) Γ(Id ⊗M)

Λ(Id ⊗K) Λ(Id ⊗ C) Λ(Id ⊗M)

⎤
⎥⎦ , (36a)

J :=

⎡
⎢⎣
R11 ⊗ P1 R11 ⊗ P2 +R12 ⊗ P1

� R11 ⊗ P3 +RT
12 ⊗ P2 +R12 ⊗ PT

2 +R22 ⊗ P1

� �

R12 ⊗ P2

R12 ⊗ P3 +R22 ⊗ P2

R22 ⊗ P3

⎤
⎥⎦ , (36b)

[
P1 P2

PT
2 P3

]
� 0. (36c)

The proof follows similarly to Theorem 1 and is omitted for brevity. Multipliers need to be

eliminated to make the above condition suitable for computing stabilizing controllers. The same

choice of C⊥ and C of Theorems 2 and 3 serve this purpose. However, conservativeness when

eliminating multipliers depend on the particular DR region. Taking (C⊥, C) similarly to Theorem

2, C⊥TQC⊥ ≺ 0 after expansion and some algebraic manipulations yields
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R11 ⊗
(
α4P1 − α3P2 − α3PT

2 + α2P3

)
+R12 ⊗

(−α3P1 + α2P2 + α2PT
2 − αP3

)
+RT

12 ⊗
(−α3P1 + α2P2 + α2PT

2 − αP3

)
+R22 ⊗

(
α2P1 − αP2 − αPT

2 + P3

) ≺ 0
(37)

This inequality depends on the matrices R11, R12, R22 that defines the stability region. Although

it is not trivial to state non-conservativeness independently of the chosen region, one can attest if

the elimination of a multiplier brings any conservativeness for a particular DR-region. To do so,

first note that all of the addends of the above inequality are similar in structure. A correspondence

with the Lyapunov matrix P can be established via a congruence transformation involving α, and

multiplications with a matrix and its transpose, e.g.

Y THT

[
P1 P2

PT
2 P3

]
HY � 0, H := diag(αI, I), Y :=

[
I −I

]T
.

Whenever HTPH � 0 holds, which is always the case because of (36c), α2P1 − αP2 − αPT
2 +

P3 � 0 also holds. Let us take some typical regions as examples. The continuous-time stability

region is determined by R11 = R22 = 0, R12 = 1, rendering non-conservativeness as shown in

Theorem 2. For a region with minimum decay rate β > 0 set with R11 = 2β, R22 = 0, R12 = 1,

if

2αHT

[
P1 P2

PT
2 P3

]
H � 2α2βHT

[
P1 P2

PT
2 P3

]
H � 0 (38)

holds, then (37) also holds. Indeed, multiply the inequality above with Y :=
[
I −I

]T
from

the right and Y T from the left to obtain (37). A set of values of α which does not introduce

conservativeness to the condition can be inferred from (38), that is, {α : α− α2β > 0, α > 0, β >

0}. For the discrete-time stability region, represented as a circle centred at the origin of the complex

plane with R11 = −1, R22 = 1, R12 = 0, if

α2HT

[
P1 P2

PT
2 P3

]
H � HT

[
P1 P2

PT
2 P3

]
H � 0

is satisfied than inequality (37) is satisfied. Therefore, any α > 1 does not bring conservativeness.

3. QUADRATIC PERFORMANCE

The following linear time-invariant vector second-order system with inputs and outputs

Mq̈(t) +Dq̇(t) +Kq̇(t) = Fww(t), q(0), q̇(0) = 0 (39a)

z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) (39b)
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14 F. D. ADEGAS, J. STOUSTRUP

is considered in this section, where w(t) ∈ R
nw and z(t) ∈ R

nz are the disturbance input and

performance output vectors, respectively, U, V, X ∈ Rnz×n. The presence of input signals w(t)

requires a definition of stability.

3.1. L2 to L2 Stability

The notion of stability of a system with inputs it related to the characteristics of the input signalw(t).

Assume w(t) : [0,∞)→ Rnw a piecewise continuous function in the Lebesgue function space L2

‖w(t)‖L2 :=

(∫ ∞

0

w(τ)Tw(τ)dτ

)1/2

<∞.

In the control literature, the quantity ‖w(t)‖L2 is often referred to as the energy of signal w(t).

The system (39) is said to be L2 stable if the output signal z(t) ∈ L2 for all w(t) ∈ L2. Define the

L2 to L2 gain as the quantity

γ∞ := sup
w(t)∈L2

‖z‖2
‖w‖2 . (40)

This quantity can serve as a certificate of L2 stability. If the L2 to L2 gain of a system is finite, i.e.,

0 < γ∞ <∞, then one can conclude that the system is L2 stable. Because γ∞ is bounded by below,

it suffices to find an upper bound γ such that 0 < γ∞ < γ <∞. Consider the modified Lyapunov

stability condition

V̇ (q(t), q̇(t), q̈(t)) < 0, z(t)T z(t) ≥ γ2w(t)Tw(t) (41a)

∀(q(t), q̇(t), q̈(t), w(t), z(t)) satisfying (39), (41b)

(q(t), q̇(t), q̈(t), w(t), z(t)) 
= 0. (41c)

where γ > 0 is a given scalar. Invoking the S-procedure [20] produces a necessary and sufficient

equivalent condition [19]

V̇ (q(t), q̇(t), q̈(t)) < γ2w(t)Tw(t) − z(t)T z(t), (42a)

∀(q(t), q̇(t), q̈(t), w(t), z(t)) satisfying (39), (42b)

(q(t), q̇(t), q̈(t), w(t), z(t)) 
= 0. (42c)

To realize that (42) implies an L2 to L2 gain less than γ, integrate both sides of (42a) over time

t > 0 to get

∫ t

0

V̇ (q(τ), q̇(τ), q̈(τ)) dτ <

∫ t

0

γ2w(τ)Tw(τ) − z(τ)T z(τ) dτ (43)

For t→∞, the resulting Lyapunov function

∫ t

0

V̇ (q(τ), q̇(τ), q̈(τ)) dτ = V (q(τ), q̇(τ), q̈(τ)) > 0 (44)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc



LMIS FOR ANALYSIS AND CONTROL OF LINEAR VECTOR SECOND-ORDER SYSTEMS 15

is positive by definition. From the above and (43) it can be inferred that

‖z(t)‖2L2
< γ2‖w(t)‖2L2

. (45)

which compared to (40) implies γ > γ∞.

Synthesis of controllers are usually attached to some performance indicator or measure of a

system. The L2 gain also serve as a system performance measure.

3.2. Integral Quadratic Constraints

The notion of system performance can be further generalized by enforcing an integral quadratic

constraint on the input and output signals [33, 34]

∫ t

0

(
z(τ)

w(τ)

)T [
Q S

ST R

](
z(τ)

w(τ)

)
dτ ≥ 0 (46)

where Q ∈ Snz , R ∈ Snw , S ∈ Rnz×nw . Similarly to (43), pose the inequality

∫ t

0

V̇ (q(τ), q̇(τ), q̈(τ)) dτ < −
∫ t

0

(
z(τ)

w(τ)

)T [
Q S

ST R

](
z(τ)

w(τ)

)
dτ (47)

The right hand side of the above inequality can be seen as a quadratic constraint on the Lyapunov

quadratic function V (q(t), q̇(t), q̈(t)). The modified Lyapunov problem then becomes

V̇ (q(t), q̇(t), q̈(t)) < −
(
z(t)

w(t)

)T [
Q S

ST R

](
z(t)

w(t)

)
, (48a)

∀(q(t), q̇(t), q̈(t), w(t), z(t)) satisfying (39), (48b)

(q(t), q̇(t), q̈(t), w(t), z(t)) 
= 0, (48c)

ready to be transformed in an LMI condition by Finsler’s Lemma.

Theorem 6 (Integral Quadratic Constraints)

The following statements are equivalent.

i. The set of solutions of the Lyapunov problem (48) with

[
P1 P2

PT
2 P3

]
� 0 is not empty.

ii. ∃P1, P3 ∈ Sn, Φ1, Γ1, Λ1, P2 ∈ Rn, Π1 ∈ Rnz×n, Ξ1 ∈ Rnw×n, Φ2, Γ2, Λ2,∈ Rn×nz ,

Π2 ∈ Rnz×nz , Ξ2 ∈ Rnw×nz :

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc



16 F. D. ADEGAS, J. STOUSTRUP

J +H +HT ≺ 0,

[
P1 P2

PT
2 P3

]
� 0, where (49a)

J :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 P1 P2 0 0

P1 P2 + PT
2 P3 0 0

PT
2 P3 0 0 0

0 0 0 Q S

0 0 0 ST R

⎤
⎥⎥⎥⎥⎥⎥⎦
, (49b)

H :=

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ1K − Φ2X Φ1C − Φ2V Φ1M − Φ2U Φ2 −Φ1Fw − Φ2Dzw

Γ1K − Γ2X Γ1C − Γ2V Γ1M − Γ2U Γ2 −Γ1Fw − Γ2Dzw

Λ1K − Λ2X Λ1C − Λ2V Λ1M − Λ2U Λ2 −Λ1Fw − Λ2Dzw

Π1K − Π2X Π1C −Π2V Π1M −Π2U Π2 −Π1Fw −Π2Dzw

Ξ1K − Ξ2X Ξ1C − Ξ2V Ξ1M − Ξ2U Ξ2 −Ξ1Fw − Ξ2Dzw

⎤
⎥⎥⎥⎥⎥⎥⎦
. (49c)

Proof

Assign

x(t)←

⎛
⎜⎜⎜⎜⎜⎜⎝

q(t)

q̇(t)

q̈(t)

z(t)

w(t)

⎞
⎟⎟⎟⎟⎟⎟⎠
, Q← (49b), BT ←

⎡
⎢⎢⎢⎢⎢⎢⎣

KT −XT

CT −V T

MT −UT

0 I

−FT
w −DT

zw

⎤
⎥⎥⎥⎥⎥⎥⎦
, X ←

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ1 Φ2

Γ1 Γ2

Λ1 Λ2

Π1 Π2

Ξ1 Ξ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(50)

and apply Finsler’s lemma to the constrained Lyapunov problem (48) with P � 0.

The above condition yields specialized quadratic performance criterias depending on the choice

of Q, S, R. Assign

[
Q S

ST R

]
←

[
I 0

0 −γ2I

]
.

to verify the L2 performance criteria

∫ t

0

(
z(t)

w(t)

)T [
Q S

ST R

](
z(t)

w(t)

)
≥ 0⇔

∫ t

0

z(t)T z(t) dt < γ2
∫ t

0

w(t)Tw(t) dt

⇔ ‖z(t)‖2L2
< γ2‖w(t)‖2L2

⇔ ‖Hzw(jω)‖2H∞ < γ2

also known as bounded real lemma. To check passivity of a vector second order system, select
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[
Q S

ST R

]
←

[
0 −I
−I 0

]
.

reducing the integral quadratic constraint to

∫ t

0

(
z(t)

w(t)

)T [
Q S

ST R

](
z(t)

w(t)

)
≥ 0⇔ −2

∫ t

0

z(t)Tw(t) dt < 0


∫ t

0

z(t)Tw(t) dt > 0⇔ Hzw(jω) +Hzw(jω)
∗ � 0 ⇔ Hzw(jω) is passive,

condition also known as positive real lemma. Sector bounds on the signals z(t) and w(t) can be

enforced by choosing

[
Q S

ST R

]
←

⎡
⎣ I −1

2
(α+ β)I

−1

2
(α+ β)I −αβI

⎤
⎦ .

The integral quadratic constraint yields

∫ t

0

(
z(t)

w(t)

)T [
Q S

ST R

](
z(t)

w(t)

)
≥ 0⇔

∫ t

0

(z(t)− αw(t))T (z(t)− βw(t)) dt > 0

⇔ (z(t), w(t)) ∈ sector(α, β).

Similarly to the stability case, in (49) the product of the multipliers with the system matrices

occurs in a position that does not facilitate possible change-of-variables. One would be tempted

to invoke algebraic duality of the vector second-order system once again. However, as discussed

in the appendix, the presence of outputs bring complicating issues making such an approach not

trivial. Add to this, the multipliers involved in the ICQ condition have different dimensions. An

ICQ condition dependent on a single, square, invertible and well located multiplier is desirable for

synthesis purposes.

A modification on the constrained Lyapunov problem is the first step towards a condition with

such properties. The integral quadratic constraint may depend explicitly on positions, velocities and

accelerations by substituting z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) into (46) yielding

∫ t

0

⎛
⎜⎜⎜⎝
q(t)

q̇(t)

q̈(t)

w(t)

⎞
⎟⎟⎟⎠

T [
ZTQZ ZT (S +QDzw)

� R+DT
zwQDzw +DT

zwS + STDzw

]⎛
⎜⎜⎜⎝
q(t)

q̇(t)

q̈(t)

w(t)

⎞
⎟⎟⎟⎠ ≥ 0, (51a)

Z :=
[
X V U

]
(51b)
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The new constrained Lyapunov problem

V̇ (q(t), q̇(t), q̈(t)) < −

⎛
⎜⎜⎜⎝
q(t)

q̇(t)

q̈(t)

w(t)

⎞
⎟⎟⎟⎠

T [
ZTQZ ZT (S +QDzw)

(S +QDzw)
TZ R̄

]⎛
⎜⎜⎜⎝
q(t)

q̇(t)

q̈(t)

w(t)

⎞
⎟⎟⎟⎠ ,

R̄ := R+DT
zwQDzw +DT

zwS + STDzw

(52a)

∀(q(t), q̇(t), q̈(t), w(t)) satisfying Mq̈(t) + Cq̇(t) +Kq(t) = Fww(t), (52b)

(q(t), q̇(t), q̈(t), w(t)) 
= 0, (52c)

is not dependent explicitly on the output vector z(t). Sufficient conditions with reduced number of

multipliers can be derived from the above Lyapunov problem by applying the Elimination Lemma.

They become also necessary if the acceleration vector (or position vector) is absent in z(t) i.e.,

U = 0 (or X = 0).

Theorem 7

The set of solutions of the Lyapunov problem (52) with P � 0 is not empty if ∃ P1, P3 ∈
Sn, P2, Φ, Λ ∈ Rn×n, α ∈ R :

J +H +HT ≺ 0, where (53a)

J :=

⎡
⎢⎢⎢⎣

0 P1 P2 0

P1 P2 + PT
2 P3 0

PT
2 P3 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
XTQX XTQV XTQU XT (S +QDzw)

� V TQV V TQU V T (S +QDzw)

� � UTQU UT (S +QDzw)

� � � R̄

⎤
⎥⎥⎥⎦ , (53b)

H :=

⎡
⎢⎢⎢⎣

ΦK ΦC ΦM −ΦFw

(αΦ + Λ)K (αΦ + Λ)C (αΦ + Λ)M −(αΦ + Λ)Fw

αΛK αΛC αΛM −αΛFw

0 0 0 0

⎤
⎥⎥⎥⎦ , α > 0, (53c)

[
P1 P2

PT
2 P3

]
� 0. (53d)

This is necessary and sufficient whenever U = 0 in (52).

Proof

Assign
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Q ←

⎡
⎢⎢⎢⎣

0 P1 P2 0

P1 P2 + PT
2 P3 0

PT
2 P3 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
XTQX XTQV XTQU XT (S +QDzw)

� V TQV V TQU V T (S +QDzw)

� � UTQU UT (S +QDzw)

� � � R̄

⎤
⎥⎥⎥⎦

BT ←

⎡
⎢⎢⎢⎣
KT

CT

MT

−FT
w

⎤
⎥⎥⎥⎦ , C⊥ ←

⎡
⎢⎢⎢⎣
α2I 0

−αI 0

I 0

0 I

⎤
⎥⎥⎥⎦ , CT ←

⎡
⎢⎢⎢⎣
I 0

αI I

0 αI

0 0

⎤
⎥⎥⎥⎦ , X ←

[
Φ

Λ

]

and apply the Elimination Lemma with P � 0. This lemma renders a condition without extra

conservatism whenever C⊥TQC⊥ ≺ 0, that is

[
F11(P1, P2, P3) F12

FT
12 −R̄

]
� 0, R̄ ≺ 0,

F11(α, P1, P2, P3) :=2(α3P1 − α2(P2 + PT
2 ) + αP3)−

(
α4XTQX − α3XTQV + α2XTQU

+α2V TQV − αV TQU + UTQU
)
+ �,

F12(α) :=− α2XT (S +QDzw) + αV T (S +QDzw)− UT (S +QDzw).

(54)

Use the support inequality (19) with N := α2PT
2 , W := α3P1 � 0 and a Schur complement with

respect to R̄ to show that (54) is equivalent to

P3 − PT
2 P

−1
1 P2 � 1

2

(
α3XTQX − α2XTQV + αXTQU + αV TQV − V TQU

+α−1UTQU
)− 1

2
(α3XT R̄−1X − α2XT R̄−1V + α(XT R̄−1U − V T R̄−1V )

+α−1(UT R̄−1U − UT R̄−1V )) + � � 0.

(55)

Note that P3 − PT
2 P

−1
1 P2 � 0 implies P � 0 due to a Schur complement argument. When U = 0

the right hand side of (55) is polynomial in α with no constant term. Thus, there exists a sufficiently

small α such that (55) holds which implies no added conservatism as long as α > 0 is considered a

variable in the formulation.

For a constant α the above constraint is an LMI. However, the condition requires a line search in

α. When X = 0 the same rationale with slightly modified C⊥ and C

C⊥ ←

⎡
⎢⎢⎢⎣

I 0

−αI 0

α2I 0

0 I

⎤
⎥⎥⎥⎦ , CT ←

⎡
⎢⎢⎢⎣

0 αI

αI I

I 0

0 0

⎤
⎥⎥⎥⎦

also yields a necessary and sufficient condition.
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The second step towards an ICQ condition for synthesis is to define a nonlinear change-of-

variables between the Lyapunov matrices and a multiplier. Let a congruence transformation be

Y := diag(Γ,Γ), Γ := Λ−T where Λ is assumed invertible. Apply it to the partitioned Lyapunov

variable, leading to the change-of-variables

Y T

[
P1 P2

PT
2 P3

]
Y :=

[
P̂1 P̂2

P̂T
2 P̂3

]
� 0 (56a)

P̂1 := ΓTP1Γ, P̂2 := ΓTP2Γ, P̂T
2 := ΓTPT

2 Γ P̂3 := ΓTP3Γ. (56b)

The original Lyapunov matrices can be reconstructed by the inverse congruence transformation

[
P1 P2

PT
2 P3

]
= Y −T

[
P̂1 P̂2

P̂T
2 P̂3

]
Y −1 � 0 (57)

With the results of Theorem 7 and the previously defined nonlinear change-of-variables at hand,

an ICQ criteria suitable for synthesis can be stated.

Theorem 8

The set of solutions of the Lyapunov problem (52) with P � 0 is not empty if ∃ P̂1, P̂3 ∈
Sn, P̂2, Γ ∈ Rn×n, α, μ ∈ R :

J +H+HT ≺ 0,

[
P̂1 P̂2

P̂T
2 P̂3

]
� 0, where (58a)

J :=

⎡
⎢⎢⎢⎣

0 P̂1 P̂2 0

P̂1 P̂2 + P̂T
2 P̂3 0

P̂T
2 P̂3 0 0

0 0 0 0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
ΓTXTQXΓ ΓTXTQV Γ ΓTXTQUΓ ΓTXT (S +QDzw)

� ΓTV TQV Γ ΓTV TQUΓ ΓTV T (S +QDzw)

� � ΓTUTQUΓ ΓTUT (S +QDzw)

� � � R̄

⎤
⎥⎥⎥⎦ ,

R̄ := R+DT
zwQDzw +DT

zwS + STDzw

(58b)

H :=

⎡
⎢⎢⎢⎣

μKΓ μCΓ μMΓ −μFw

(1 + αμ)KΓ (1 + αμ)CΓ (1 + αμ)MΓ −(1 + αμ)Fw

αKΓ αCΓ αMΓ −αFw

0 0 0 0

⎤
⎥⎥⎥⎦ , α > 0, μ > 0. (58c)

Proof

To derive (58) from (53), first introduce the constraint Φ = μΛ where μ > 0. Apply the

congruence transformation Ya := diag(Γ,Γ,Γ, I), Γ := Λ−T to (53a), congruence transformation

Yd := diag(Γ,Γ) to (53d), and the change-of-variables (56). Notice that the upper left entry of

J +H+HT ≺ 0 in (58), i.e., KΓ + ΓTKT + ΓTXTQXΓ ≺ 0 with K nonsingular implies Γ
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nonsingular. This fact corroborates the assumption of an invertible Γ in the change-of-variables

(56).

The condition from Theorem 8 benefits from some convenient properties. It depends on a single

multiplier Γ in products with M,C,K matrices as well as U, V,X matrices. Moreover the product

occurs at the ”right side” of the matrices. Both properties facilitate change-of-variables involving

the controller data, as will become clear later in this manuscript.

Synthesis of controllers is the subject of the reminder of this paper. It will be given focus to the

design of controllers with guaranteed L2-gain performance for clarity and its practical relevance.

Synthesis conditions considering other ICQ criterias can be derived similarly by particularizing Q,

R, S and appropriate Schur complements involving these matrices.

3.3. Static Full Vector Feedback

The proposed ICQ condition offers the possibility of synthesizing controllers. Consider the vector

second-order system with disturbance and controllable inputs

Mq̈(t) + Cq̇(t) +Kq(t) = Fww(t) + Fuu(t) (59a)

z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) +Dzuu(t) (59b)

in loop with the static full vector feedback (23) yielding the closed-loop system denoted Hzw:

Mq̈(t) +Cq̇(t) +Kq(t) = Fww(t) (60a)

z(t) = Uq̈(t) +Vq̇(t) +Xq(t) +Dzww(t) (60b)

M := (M + FuGa) , C := (C + FuGv) , K := (K + FuGp) (60c)

U := (U −DzuGa) , V := (V −DzuGv) , X := (X −DzuGp) (60d)

The same issues regarding the nonsingularity of the multiplier in the stabilizability case have also

to be consider here. Therefore, the next theorem states the existence of a static controller in which

the acceleration feedback is absent (Ga = 0). This controller structure corresponds to a full state

feedback in the first-order state-space sense.

Theorem 9

There exists a controller of the form (23) with Ga = 0 such that ‖Hzw‖L2 < γ2 if ∃ P̂1, P̂3 ∈
Sn, P̂2, Γ ∈ Rn, Ĝv, Ĝp ∈ Rnu×n, α, μ ∈ R :
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⎡
⎢⎢⎢⎢⎢⎢⎣

μ(KΓ + FuĜp + ΓTKT + ĜT
p F

T
u ) P̂1 + μ(CΓ + FuĜv) + (1 + αμ)(KΓ + FuĜp)

T

� P̂2 + (1 + αμ)(CΓ + FuĜv) + (�)

� �

� �

� �

P̂2 + μMΓ + α(KΓ + FuĜp)
T −μFw ΓTXT − K̂T

p D
T
zu

P̂3 + (1 + αμ)MΓ + α(CΓ + FuĜv)
T −(1 + αμ)Fw ΓTV T − K̂T

v D
T
zu

α(MΓ + ΓTMT ) −αFw ΓTUT

� −γ2I DT
zw

� � −I

⎤
⎥⎥⎥⎥⎥⎥⎦
≺ 0.

(61a)

α > 0, μ > 0,

[
P̂1 P̂2

P̂T
2 P̂3

]
� 0 (61b)

Proof

In order to obtain the above inequalities from (58), first particularize it with Q = I , R = −γ2I
and apply a Schur complement with respect to Q. A direct application of the resulting inequalities

to the closed-loop system (24) together with a change-of-variables of the form (25) involving the

multiplier Γ and the controller data Gv, Gp yields (61). Nonsingularity of Γ is implied by the

entry MΛ + ΛTMT ≺ 0 with M nonsingular. Once a solution to the problem above is found,

invertibility of Γ assures the reconstruction of the controller gains from the auxiliary ones according

to Gv = ĜvΓ
−1 and Gp = ĜpΓ

−1.

The acceleration feedback was removed from the feedback law for theoretical reasons: ensure a

nonsingular Γ. As discussed in the stabilizability section, a nonsingular Γ could also be enforced

by neglecting the position feedback Gp. If all feedback gains are desired, in practice the LMI above

could be augmented with the acceleration gain and solved. The multiplier Γ could be invertible.

In case this happens, the acceleration, velocity and position gains can all be recovered from the

auxiliary controller gains.

Working with the closed-loop system in vector form facilitates the feedback of only the position

or the velocity vector without introducing extra conservatism to the presented formulation. These

controller structures would correspond to partial state feedback in the first-order state-space sense,

to which convex reformulations without loss of generality are not known to exist.

3.4. Static Output Feedback

The acceleration, velocity or position vectors are often partially available for feedback. In such a

case, the vector second order system

Mq̈(t) + Cq̇(t) +Kq(t) = Fww(t) + Fuu(t) (62a)

z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) +Dzuu(t) (62b)

y(t) = Rq̈(t) + Sq̇(t) + Tq(t) +Dyww(t) (62c)
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is augmented with a measurement vector y(t) ∈ R
ny . The interest lies on the synthesis of a static

output feedback controller of the form

u(t) = −Gyy(t) (63)

where Gy ∈ Rnu×ny . To facilitate the derivations that follows, the measurement vector is not

corrupted by noise (Dyw = 0). Assume, without loss of generality, that the output matricesR, S and

T are of full row rank. Then, there exist nonsingular transformation matrices Wa, Wv, Wp ∈ Rn×n

such that

RWa =
[
I 0

]
, SWv =

[
I 0

]
, TWp =

[
I 0

]
. (64)

For any given triple (R,S, T ), the corresponding (Wa,Wv,Wp) are not unique in general. A

particular (Wa,Wv,Wp) can be obtained by

Wa :=
[
RT (RRT )−1 R⊥

]
, Wv :=

[
ST (SST )−1 S⊥

]
, Wp :=

[
T T (TT T )−1 T⊥

]
.

The feedback of a single quantity, that is either accelerations, velocities or positions are addressed

here. Let the measurement vector be composed of position feedback only, i.e., y(t) = Tq(t). From

the coordinate transformation defined as q̈ :=Wp
¨̃q, q̇ :=Wp

˙̃q and q :=Wpq̃, the system matrices of

(62) are substituted according to

M ←MWp, C ← CWp, K ← KWp

U ← UWp, V ← VWp, X ← XWp

R← RWp, S ← SWp, T ←
[
I 0

]
.

The closed-loop matrices of the transformed system related to positions are then

K :=
(
K + Fu

[
Gy 0

])
, X :=

(
X −Dzu

[
Gy 0

])

while the other closed-loop matrices are the same as the open-loop ones. A static output-feedback

gain can be obtained by imposing on the auxiliary controller gain Ĝ and the multiplierΓ the structure

Ĝ :=
[
Ĝy 0

]
, Γ :=

[
Γ1 0

Γ3 Γ4

]
. (65)

This kind of controller/multiplier constraint was firstly proposed in [23] in the context of first-order

state-space systems. This structure is merged in Theorem 9 by imposing the structural constraints

Ĝa := Ĝv := Ĝp := Ĝ and Γ as (65). Supposing Γ nonsingular, and consequently the upper left

block Γ1 invertible, the original controller data can be recovered by the inverse change-of-variables

G =
[
Gy 0

]
=

[
ĜyΓ

−1
1 0

]
. (66)
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Thus, the structure imposed to the state feedback gain matrix G facilitates the output feedback law

u(t) = Gyy(t). The same procedure can be made when the measurement vector is y(t) = Rq̈(t) or

y(t) = Sq̇(t).

3.5. Robust Control

The inherent decoupling of the Lyapunov and system matrices occasioned by the introduction of

multipliers facilitates the usage of parameter-dependent Lyapunov functions [35]. This decoupling

property was firstly exploited under the context of robust stability of first-order state-space systems

in [22] and latter extended to performance specifications [23]. Assume that the matrices of system

(59) are uncertain but belong to a convex and bounded set. This set is such that the matrix

S :=

[
M C K Fu Fw

U V X Dzu Dzw

]

takes values in a domain defined as a polytopic combination of N given matrices Q1, . . . ,QN , that

is,

S :=

{
S(α) : S(α) :=

N∑
i=1

Siαi,

Nα∑
i=1

αi = 1, αi ≥ 0.

}

The operator Vert(S) := {S1, . . . ,SN} reduces the infinite dimensional set S to the vertex Si, i =
1, . . . , N . The LMI conditions for vector second-order systems presented here can turn into

sufficient conditions for robust analysis and synthesis by defining a parameter-dependent Lyapunov

matrix

P (α) :=

Nα∑
i=1

Piαi (67)

and maintaining the multipliers as parameter-independent. In this case, the LMIs are infinite-

dimensional functions of the uncertain vector α. A finite-dimensional problem arises with

Vert (F (x, α) ≺ 0). Consider the robust stability problem as an example. System (22) is robustly
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stabilizable by a static feedback law of the form (23) with Ga = 0, for all S ∈ S, if ∃ Λ, P2,i ∈
Rn×n, P1,i, P3,i ∈ Sn, Ĝv, Ĝp ∈ Rnu×n, α, μ ∈ R :

Ji +Hi +HT
i ≺ 0, Ji :=

⎡
⎢⎣

0 P1,i P2,i

P1,i P2,i + PT
2,i P3,i

PT
2,i P3,i 0

⎤
⎥⎦ , (68a)

Hi :=

⎡
⎢⎣ μ(KiΛ + Fu,iĜp) μ(CiΛ + Fu,iĜv) μ(MiΛ)

(1 + αμ)(KiΛ + Fu,iĜp) (1 + αμ)(CiΛ + Fu,iĜv) (1 + αμ)(MiΛ)

α(KiΛ + Fu,iĜp) α(CiΛ + Fu,iĜv) α(MiΛ)

⎤
⎥⎦ (68b)

[
P1,i P2,i

PT
2,i P3,i

]
� 0, α > 0, μ > 0, (68c)

for i = 1, . . . , N .

4. NUMERICAL EXAMPLES

4.1. Three-Mass System

The simplicity of a three-mass system depicted in Fig. 1 allows an easy analysis and straightforward

interpretation of the results. In this figure, m1, m2 and m3 are system masses, k1, k2, k3 and k4 are

stiffness coefficients, while d1, d2, d3 and d4 are damping coefficients.

f , q1 1

k1

d1

m1

f , q2 2

k2

d2

m2

f , q3 3

k3

d3

m3

k4

d4

Figure 1. Three-mass mechanical system.

The control input u(t) acts at mass 2 and mass 3 in opposite directions. The first disturbancew1(t)

acts at mass 2 and mass 3 in opposite directions, with an amplification factor of 3, and the second

disturbance w2(t) acts at mass 2. The controlled outputs (z1(t), z2(t), z3(t)) are the displacement

of mass 2 with an amplification factor of 3, the velocity of mass 3, and the input u(t), respectively.

The motion of this mechanical system is described by the differential equations

⎡
⎢⎣m1 0 0

0 m2 0

0 0 m3

⎤
⎥⎦ q̈(t) +

⎡
⎢⎣c1 + c2 −c2 0

−c2 c2 + c3 −c3
0 −c3 c3 + c4

⎤
⎥⎦ q̇(t)

+

⎡
⎢⎣k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3 + k4

⎤
⎥⎦ q(t) =

⎡
⎢⎣ 0 0

3 1

−3 0

⎤
⎥⎦w(t) +

⎡
⎢⎣ 0

1

−1

⎤
⎥⎦u(t),

(69a)
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z(t) =

⎡
⎢⎣0 0 0

0 0 1

0 0 0

⎤
⎥⎦ q̇(t) +

⎡
⎢⎣0 3 0

0 0 0

0 0 0

⎤
⎥⎦ q(t) +

⎡
⎢⎣00
1

⎤
⎥⎦u(t). (69b)

For this system, m1 = 3, m2 = 1, m3 = 2, k1 = 30, k2 = 15, k3 = 15, k4 = 30, and C = 0.004K +

0.001M . Magnitude plots of the open-loop transfer functions from disturbances (w1, w2) to outputs

(z1, z2) are depicted in Fig. 3a. The lightly damped characteristics of the system modes are

noticeable.

H∞ control will be used to reject oscillatory response of these modes in face of disturbances.

Full vector feedback gains of positions and velocities are synthesized using Theorem 9 for different

values of the scalars α, μ. The upper bound γ of the H∞-norm for various (α, μ) is illustrated in

Fig. 2. The minimum achieved upper bound γ∗ = 7.679 occurs at (α, μ) = (0.0060, 0.0820) with

corresponding position and velocity feedback gains

Gp =
[
0.2501 0.0774 −0.0786

]
, Gv =

[
5.2757 1.9574 −1.6351

]
.

Improved vibration performance is corroborated by magnitude plots and impulse responses of the

closed-loop system (Fig. 3a and 3b).
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Figure 2. Upper bound on the H∞-norm of the closed-loop three-mass system with full position and velocity
feedback, obtained by Theorem 9.

4.2. Model Matching Control of Wind Turbines

A different perspective to modern control of wind turbines is given here by considering the design

model in its natural form. For clarity, the turbine model contains only the two structural degrees of

freedom with lowest frequency contents: rigid body rotation of the rotor and fore-aft tower bending

described by the axial nacelle displacement. The simplified dynamics of a wind turbine can be

described by the nonlinear differential equations

Jψ̈ = Qa(v − q̇1, ψ̇, β)(t)−Qg(t) (70)

M1q̈1 +K1q1 = Ta(v − q̇1, ψ̇, β) (71)
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(a) Magnitude Plot

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

O
ut

 1

In 1

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time [sec]

In 2

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

O
ut

 2

0 5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

Time [sec]

Open−loop
Closed−loop

(b) Impulse Response

Figure 3. Comparison of open-loop three-mass system and closed-loop with full position and velocity
feedback (Theorem 9).

where the aerodynamic torque Qa(t) and thrust Ta(t) are nonlinear functions of the relative wind

speed v(t)− q1(t) with v(t) being the mean wind speed over the rotor disk, the rotor speed ψ̇(t),

and the collective pitch angle β(t). Linearization of (70) around an equilibrium point θ yields

(Jr +N2
gJg)ψ̈(t) =

∂Qa

∂ψ̇

∣∣∣∣
θ

ψ̇(t) +
∂Qa

∂V

∣∣∣∣
θ

(v(t)− q̇1(t)) + ∂Qa

∂β

∣∣∣∣
θ

β(t) − η−1NgQg(t) (72)

M1q̈1(t) +K1q1(t) =
∂Ta

∂ψ̇

∣∣∣∣
θ

ψ̇(t) +
∂Ta
∂V

∣∣∣∣
θ

(v(t) − q̇1(t)) + ∂Ta
∂β

∣∣∣∣
θ

β(t) (73)

where Jr and Jg are the rotational inertia of the rotor (low speed shaft part) and the generator (high

speed shaft part), K1 is the stiffness for axial nacelle motion q1(t) due to fore-aft tower bending,M1
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is the modal mass of the first fore-aft tower bending mode, η is the total electrical and mechanical

efficiency, and Ng is the gearbox ratio.

The primary control objective of pitch controlled wind turbines operating at rated power is

to regulate power generation despite wind speed disturbances. To accomplish this, rotor speed

is controlled using the collective blade pitch angle, and generator torque is maintained constant

(Qg(t) = 0 in (72)). Tower fore-aft oscillations are induced by the wind turbulence hitting the

turbine as well as changes in the thrust force due to pitch angle variations. The collective blade pitch

angle can be controlled to suppress these oscillations without degrading rotor speed regulation. The

vector second-order system

[
Jr +N2

gJg 0

0 M1

](
ψ̈(t)

q̈1(t)

)
+

⎡
⎢⎢⎣
∂Qa

∂ψ̇

∣∣∣∣
θ

−∂Qa

∂V

∣∣∣∣
θ

∂Ta

∂ψ̇

∣∣∣∣
θ

−∂Ta
∂V

∣∣∣∣
θ

⎤
⎥⎥⎦

(
ψ̇(t)

q̇1(t)

)
+

[
0 0

0 K1

](
ψ(t)

q1(t)

)

=

⎡
⎢⎢⎣
∂Qa

∂v

∣∣∣∣
θ

∂Ta
∂v

∣∣∣∣
θ

⎤
⎥⎥⎦ v(t) +

⎡
⎢⎢⎣
∂Qa

∂β

∣∣∣∣
θ

∂Ta
∂β

∣∣∣∣
θ

⎤
⎥⎥⎦β(t)

(74)

arise from re-arranging expression (72). In the above, the disturbance vector is w(t) := v(t) and

control input is u(t) := β(t). The open-loop system (74) has a singular stiffness matrix due to the

rigid-body mode of the rotor, which at first may seem inadequate for a direct application of the

conditions presented in this work. However, the closed-loop stiffness matrix is non-singular because

the position of the rotor is part of the feedback law. Feedback of rotor position is analogous to the

inclusion of integral action on rotor speed regulation, usual scheme in wind turbine control.

Controller design follows an H∞ model matching criteria, which has an elegant structure when

considered in vector second-order form. The performance of the system in closed-loop should

approximate a given a reference model

Mr q̈r(t) + Cr q̇r(t) +Krqr(t) = Fwrw(t) (75a)

zr(t) = Ur q̈r(t) + Vr q̇r(t) +Xrqr(t) (75b)

in anH∞-norm sense. The matrices of the reference model are chosen to enforce a desired second-

order closed-loop sensitivity function from wind speed disturbance v(t) to rotor speed ψ̇(t). The

augmented system for synthesis is

[
M 0

−M(1,:) Mr

]⎛
⎜⎝
ψ̈

q̈1

ψ̈r

⎞
⎟⎠

[
C 0

−C(1,:) Cr

]⎛
⎜⎝
ψ̇

q̇1

ψ̇r

⎞
⎟⎠

[
K 0

−K(1,:) Kr

]⎛
⎜⎝
ψ

q1

ψr

⎞
⎟⎠

=

[
Fw

0

]
w(t) +

[
Fu

Fu (1,:)

]
u(t)

(76a)
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z(t) =

[
−1 0 1

0 0 0

]⎛
⎜⎝ ψ̇

q̇1

ψ̇r

⎞
⎟⎠ +

[
0

Dzu

]
u(t) (76b)

where ψ̇r(t) is the reference model velocity and (·)(1,:) stands for the first line of matrix (·).
The reference filter in (76a) is forced indirectly by the the open-loop system (74), which is

convenient for implementation purposes. In this example, Mr = 6.0776 · 106, Cr = 6.1080 · 106,

and Kr = 3.9346 · 106 characterizes a reference system with damped natural frequency ωd = 0.628

rad/s and damping ξ = 0.625.

Full vector feedback gains of positions and velocities are synthesized using Theorem 9 with

α = 0.9 and μ = 1, yielding a guaranteed upper bound γ = 1.462. The true upper bound of the

augmented system in closed-loop computed using Theorem 7 is γ = 0.1058. Controller gains are

Gv =
[
−0.3734 −0.1702 0.0028

]
, Gp =

[
−0.1951 −0.1029 −0.0096

]
Bode plots of the closed-loop, open-loop and reference systems are depicted in Fig.4a. A

good agreement between the closed-loop and reference model is noticeable. The chosen reference

model indirectly impose some damping of the tower fore-aft displacement by trying to reduce the

difference in magnitude between open-loop and reference model at the tower natural frequency.

Step responses of the controlled and reference systems are compared in Fig.4b, showing a good

correspondence.

5. CONCLUSIONS

The analysis and synthesis conditions of vector second-order systems obtained during our studies

have the potential to increase the practice of working with systems directly in vector second-order

form. LMI conditions for verifying asymptotic stability and quadratic performance were shown to be

necessary and sufficient, irrespective of the type of dynamic loading. Due to their linear dependence

in the coefficient matrices and the inclusion of multipliers on the formulation, the conditions are

appropriate to robust analysis of systems with structured uncertainty. Synthesis of vector second-

order controllers with guaranteed stability and quadratic performance are also formulated as LMI

problems. Unfortunately, the synthesis conditions are only sufficient to the existence of full state-

feedbacks. This is the major drawback when compared to synthesis in state-space first-order form,

to which necessary and sufficient LMI conditions are available in the literature. However, when

structural constraints are imposed on the controller gains, the design in vector second-order form

may render less conservative results.
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