
 

  

 

Aalborg Universitet

A Systematic Approach to Design High-Order Phase-Locked Loops

Golestan, Saeed; Fernandez, Francisco Daniel Freijedo; Guerrero, Josep M.

Published in:
I E E E Transactions on Power Electronics

DOI (link to publication from Publisher):
10.1109/TPEL.2014.2351262

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Golestan, S., Fernandez, F. D. F., & Guerrero, J. M. (2015). A Systematic Approach to Design High-Order
Phase-Locked Loops. I E E E Transactions on Power Electronics, 30(6), 2885 - 2890 .
https://doi.org/10.1109/TPEL.2014.2351262

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 17, 2024

https://doi.org/10.1109/TPEL.2014.2351262
https://vbn.aau.dk/en/publications/51aef0fa-dad1-43b2-9d3e-df36bb537b54
https://doi.org/10.1109/TPEL.2014.2351262


IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON POWER ELECTRONICS 1

Letters

A Systematic Approach to Design High-Order Phase-Locked Loops

Saeed Golestan, Francisco D. Freijedo, and Josep M. Guerrero

Abstract—A basic approach to improve the performance of
phase-locked loop (PLL) under adverse grid condition is to in-
corporate a first-order low-pass filter (LPF) into its control loop.
The first-order LPF, however, has a limited ability to suppress
grid disturbances. A natural thought to further improve the dis-
turbance rejection capability of PLL is to use high-order LPFs.
Application of high-order LPFs, however, results in high-order
PLLs, which rather complicates the PLL analysis and design pro-
cedure. To overcome this challenge, a systematic method to design
high-order PLLs is presented in this letter. The suggested approach
has a general theme, which means it can be applied to design the
PLL control parameters regardless of the order of in-loop LPF.
The effectiveness of suggested design method is confirmed through
different design cases.

Index Terms—Phase-locked loop (PLL), synchronization.

I. INTRODUCTION

IN RECENT years, the increased harmonic pollution caused
by proliferation of nonlinear electrical loads such as ad-

justable speed drives, arc furnaces, switching power supplies,
rectifiers, etc. has made the synchronization of grid-connected
equipment with the utility grid a challenging task [1]. To deal
with this challenge, several advanced phase-locked loops (PLLs)
have been proposed recently. These PLLs are typically based
on applying some modifications to the structure of a standard
PLL. Fig. 1(a) and (b) shows the structure of a standard single-
phase and three-phase PLL, respectively, in which PD, LF,
and VCO are abbreviations of phase detector, loop filter, and
voltage-controlled oscillator, respectively.

To deal with the problem of synchronization under distorted
and unbalanced grid conditions, the inclusion of moving average
filter (MAF) into the PLL control loop is recommended in [2]
and [3]. The MAF is a linear-phase filter that effectively blocks
the grid disturbances in the PLL control loop, but at the cost
of slowing down its transient response. A detailed analysis of
MAF-based PLLs and improving their dynamic response can
be found in [4] and [5].
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Fig. 1. (a) Standard single-phase PLL; (b) standard three-phase PLL.

Inspired from the concept of delayed signal cancellation [6],
[7] the idea of cascaded delayed signal cancellation (CDSC) has
recently been introduced as an effective solution to improve the
disturbance rejection capability of PLL under adverse grid con-
dition [8], [9]. The CDSC operator is a finite impulse response
filter that can be used as an in-loop filter or a prefiltering stage
for the PLL. A detailed analysis of PLL with in-loop CDSC
operator can be found in [10].

Another approach is to include one or more notch filters (NFs)
into the PLL control loop [11], [12]. The NFs may be adaptive
or nonadaptive. The adaptive form is often preferred as they
can block the grid disturbances even under off-nominal grid
frequency conditions.

Using the complex coefficient filters (CCFs) is another
method that can be applied to improve the filtering capabil-
ity of three-phase PLLs [13], [14]. The main advantage of CCfs
over the real coefficient filters is that they can make distinction
between the positive and negative sequences (polarities) of the
same frequency.

The filters that work based on the instantaneous symmetri-
cal component method are also popular to improve the filtering
capability of three-phase PLLs. The dual second-order general-
ized integrator based filter [15] is a well-known member of this
class.

Probably, the most straightforward approach to improve the
performance of PLL under distorted grid condition is to include
a simple first-order low-pass filter (LPF) in its control loop. A
first-order LPF, however, has a limited ability to suppress the
grid disturbances. To further improve the disturbance rejection
capability of PLL, using higher order LPFs are sometimes rec-
ommended. For example, using a fourth-order LPF is suggested
in [16]. Application of these high-order LPFs, however, results
in high-order PLLs, which rather complicates the PLL analysis
and design procedure.

0885-8993 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Structure of PLL under study.

Fig. 3. Small-signal model.

In this letter, a systematic approach to design high-order PLLs
is presented. The suggested method has a general form and,
therefore, is applicable to design the PLL parameters regardless
of the order of in-loop LPF.

II. PLL STRUCTURE AND SMALL-SIGNAL MODELING

Fig. 2 shows the schematic diagram of PLL under study,
which is a standard three-phase PLL with an in-loop LPF. In
this structure, the proportional-integral (PI) controller acts as
the main filter of control loop as it is responsible to provide a
zero steady-state average phase error for the PLL. The LPF, on
the other hand, supports the PI controller as it is responsible to
improve the disturbance rejection capability of control loop un-
der adverse grid condition. Throughout this letter, Butterworth
LPF is considered. The LPF transfer function is considered to
be of the form

LPF(s)

=
a0(ωp)

n

ansn + an−1ωpsn−1 + · · · + a1(ωp)
n−1s + a0(ωp)

n (1)

where ωp is the cutoff frequency, n is the LPF order, and ai

(i = 0, 1, 2, . . . , n) are the LPF coefficients.
Obtaining the small-signal model of the PLL under study

is very straightforward [17]. Fig. 3 shows this model in which
D(s) denotes the Laplace transform of grid voltage disturbances
in the dq frame. Notice that the loop gain depends on V +

1 ,
i.e., the amplitude of fundamental frequency positive sequence
component of the grid voltage. Therefore, any variation in the
grid voltage amplitude affects the PLL stability and dynamic
behavior. This problem can be simply avoided by incorporating
an amplitude normalization mechanism into the PLL structure
[18], [19].

III. SYSTEMATIC DESIGN APPROACH

A. Model Order Reduction

The key to determine the reduced-order model lies in the fact
that the in-loop LPF causes phase delay in the PLL control loop,
so to ensure the PLL stability, its crossover frequency should

Fig. 4. Reduced-order small-signal model.

be sufficiently lower than the LPF cutoff frequency. The higher
the LPF order, the greater the low-frequency phase delay is,
and therefore, the smaller the PLL crossover frequency (com-
pared to the LPF cutoff frequency) should be. According to this
fact, the reduced-order model can be obtained by neglecting the
high-frequency dynamics of LPF and approximating its transfer
function with a first-order transfer function, i.e.,

LPF(s) ≈ a0(ωp)
n

a1(ωp)
n−1s + a0(ωp)

n =
a0ωp/a1

s + a0ωp/a1
︸ ︷︷ ︸

ω ′
p

. (2)

The reduced-order model is shown in Fig. 4. This model is
accurate at low frequency range (i.e., frequencies lower than
the PLL crossover frequency). Therefore, it can only be used to
study the stability and dynamic behavior of PLL.

B. Stability

From Fig. 4, the open-loop transfer function of the PLL can
be obtained as

Gred
ol (s) =

θ̂+
1 (s)

θe(s)
= V +

1
ω′

p

s + ω′
p

kps + ki

s

1
s

= V +
1 ω′

pkp
s + ωz

s2
(

s + ω′
p

) (3)

where ωz = ki/kp , and superscript “red” denotes this transfer
function is obtained using the reduced-order model. This trans-
fer function has two poles at the origin with a nonzero pole-zero
pair. For such systems, the symmetrical optimum (SO) method is
a standard design approach [20]–[22]. According to this method,
the PLL crossover frequency ωc should be selected at the geo-
metric mean of corner frequencies of open-loop transfer func-
tion, i.e., ωc =

√

ω′
pωz . This selection provides the maximum

phase margin (PM) for the PLL.
By application of the SO method to the open-loop transfer

function (3), the PLL control parameters can be obtained as

kp = ωc/V +
1

ki = ω2
c /

(

V +
1 b

)

(4)

ω′
p = bωc

where b =
√

ω′
p/ωz is a design constant. So, the PLL control

parameters can be obtained by selecting appropriate values for
the crossover frequency ωc and the design constant b.

By substituting (4) into (3), the open-loop transfer function
(3) can be rewritten as

Gred
ol (s) = bω2

c

(s + ωc/b)
s2(s + bωc)

. (5)
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Fig. 5. Asymptotic magnitude plot of open-loop transfer function (9).

Using this transfer function, the PM of the PLL can be obtained
as

PMred = 180◦ + ∠Gred
ol (s)

∣

∣

s=jωc
= tan−1

(

b2 − 1
2b

)

. (6)

It can be observed that the PM only depends on the design
constant b. So, b can be determined by selecting a proper value
for PM. In most control texts, 30◦ ≤ PM ≤ 60◦ is recommended
which corresponds to

√
3 ≤ b ≤ 2 +

√
3. We select a PM in

the middle of this range, i.e., PM = 45◦, which corresponds to
b = 1 +

√
2.

C. Filtering Capability

In this section, the filtering capability of the PLL is studied.
This study is conducted using the original small-signal model
because the reduced-order model is not accurate at high fre-
quency range.

Defining D′(s) = D(s)/V +
1 as the normalized disturbance

input to the model, the disturbance transfer function of the PLL
can be obtained as

Gorig
d (s) =

θ̂+
1 (s)

D′(s)
=

Gorig
ol (s)

1 + Gorig
ol (s)

(7)

where the superscript “orig” denotes the transfer function is
obtained using the original (not reduced-order) small-signal
model.

From (7), it is clear that to achieve a high disturbance re-
jection capability, the magnitude of open-loop transfer func-
tion must be very small at high frequency range. There-
fore, we can approximate (7) by (8) at high frequency
range

Gorig
d (s) ≈ Gorig

ol (s). (8)

This approximation simplifies the analysis and design proce-
dure.

From Fig. 3, the open-loop transfer function can be obtained
as

Gorig
ol (s) = V +

1 kp
s + ωz

s2 LPF(s). (9)

Fig. 6. Crossover frequency as a function of attenω d
. Parameters: ωd =

2π(2 · 50) rad/s, and b = 1 +
√

2.

TABLE I
DESIGNED CONTROL PARAMETERS

LPF order,
n

LPF cutoff
frequency, ωp

Proportional
gain, kp

Integral gain,
ki

Case 1 1 411.69 (rad/s) 170.52 12045
Case 2 2 299.18 (rad/s) 87.63 3180.75
Case 3 3 255.05 (rad/s) 52.82 1155.78
Case 4 4 228.12 (rad/s) 36.16 541.62

Fig. 5 shows the asymptotic magnitude plot of the open-loop
transfer function (9) in which ωd is the disturbance frequency of
concern. Assuming the dc offset in the PLL input is negligible,
the fundamental frequency negative sequence component is the
disturbance component that we should be most concerned about.
This disturbance component is sensed as a double-frequency
component (i.e., ωd = 2π(2 · 50) rad/s in a 50-Hz system) by
the PLL control loop. From this plot, the magnitude of open-
loop transfer function at the disturbance frequency ωd can be
approximated in decibels by

20 log
(

∣

∣

∣G
orig
ol (s)

∣

∣

∣

s=jωd

)

≈ −20 log
(

ωd

ωc

)

− 20n log
(

ωd

ωp

)

= − 20 log

(

(ωd)
n+1

ωc(ωp)
n

)

.

(10)

Defining attenωd
as the attenuation that the PLL provides in

decibels at the disturbance frequency ωd , we can approximate
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Fig. 7. Bode plots of open-loop transfer function and disturbance transfer function for four design cases.

TABLE II
INTENDED CONTROL OBJECTIVES AND OBTAINED RESULTS

PM Attenuation at ωd = 2π100 (rad/s)
Intended/Obtained Intended/Obtained

Case 1 45◦/45◦ −15 dB/−15.28 dB
Case 2 45◦/42.7◦ −30 dB/−30.04 dB
Case 3 45◦/43.2◦ −45 dB/−45.05 dB
Case 4 45◦/43.3◦ −60 dB/−60 dB

it, using (8) and (10), by

attenωd
= 20 log

(
∣

∣

∣G
orig
d (s)

∣

∣

∣

s=jωd

)

≈ 20 log
(

∣

∣

∣G
orig
ol (s)

∣

∣

∣

s=jωd

)

≈ − 20 log

(

(ωd)
n+1

ωc(ωp)
n

)

. (11)

According to (2) and (4), we have ωp = a1ω
′
p/a0 = a1bωc/a0 .

Substituting this into (11) yields

attenωd
≈ −20 log

(

(ωd)
n+1

(a1b/a0)
n (ωc)

n+1

)

= − 20 (n + 1) log

(

ωd

ωc

n + 1

√
(

a0

a1b

)n
)

. (12)

Using (12), it is easy to obtain

ωc ≈ n + 1

√
(

a0

a1b

)n

ωd10
( a t t e n ω d

2 0 (n + 1 )

)

. (13)

As (13) shows, the crossover frequency ωc can be simply deter-
mined by selecting a proper value for attenωd

.

D. Selecting LPF Order

During the suggested design procedure, it was assumed that
the LPF order is known. In this section, we are going to show
that how this parameter should be selected.
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Fig. 8. Accuracy assessment of the reduced-order model in prediction of PLL dynamic behavior.

Selecting the LPF order can be easily made according to
the required level of filtering at the disturbance frequency ωd .
To illustrate this fact, Fig. 6 shows the variations of the PLL
crossover frequency ωc as a function of attenωd

for different
orders of in-loop LPF: first-order LPF (solid line), second-
order LPF (dash-dotted line), third-order LPF (dashed line),
and fourth-order LPF (dotted line). These plots are obtained
using (13). In all plots, b = 1 +

√
2 is considered which means

regardless of the order of LPF and the value of crossover fre-
quency, the PM of the PLL is around 45◦. It can be observed
that in region ©1 (i.e., when |attenωd

| < 20 dB), the first-order
LPF gives the highest crossover frequency and, therefore, the
fastest transient response. Therefore, if the required attenuation
at ωd = 2π(2 · 50) rad/s is less than 20 dB, then a first-order
LPF should be selected. Following the same reasoning, it can
be concluded that in region ©2 , the second-order LPF is the best
choice, and in regions©3 and©4 , respectively, the third-order and
fourth-order LPFs are proper choices. It should be emphasized
here that results may slightly be different if a different value for
b is selected.

The above study also shows that the LPFs of order four and
higher may not be suitable to include in the PLL control loop
unless a very slow transient response and high filtering capability
for the PLL in needed.

E. Summary of Design Procedure

This section summarizes the proposed design procedure:
1) Select the LPF order according to what was mentioned in

Section III-D.
2) Approximate the LPF transfer function with LPF(s) ≈

ω′
p/

[

s + ω′
p

]

, where ω′
p = a0ωp/a1 .

3) Define kp = ωc/V +
1 , ki = ω2

c /
(

V +
1 b

)

, and ω′
p = bωc .

4) Select a proper value for the PM of the PLL, and obtain b

according to PM = tan−1
(

b2 −1
2b

)

.

5) Select a proper level filtering at the disturbance frequency
ωd (a proper value for attenωd

), and obtain ωc according

to ωc ≈ n + 1

√
(

a0
a1 b

)n

ωd10
( a t t e n ω d

2 0 (n + 1 )

)

..

6) Calculate kp , ki , and ω′
p from the definitions of step 3.

7) Calculate the LPF cutoff frequency ωp using ωp =
a1ω

′
p/a0 .

Neglect the steps 2 and 7 and consider ω′
p = ωp if a first-order

LPF is used.

IV. ACCURACY ASSESSMENT OF SUGGESTED

DESIGN APPROACH

The suggested design procedure involves several approxima-
tions that their accuracy need to be verified. For this purpose,
we employ the suggested design approach for selecting the PLL
control parameters and then compare the PLL characteristics
with the intended control objectives. Four different cases are
considered in this study:

1) Case 1: The in-loop LPF is a first-order LPF. Achieving
PM = 45◦ and -15 dB attenuation at ωd = 2π100 rad/s
are the control objectives in this case.

2) Case 2: The in-loop LPF is a second-order LPF. Achieving
PM = 45◦ and -30 dB attenuation at ωd = 2π100 rad/s are
the control objectives in this case.

3) Case 3: The in-loop LPF is a third-order LPF. Achieving
PM = 45◦ and -45 dB attenuation at ωd = 2π100 rad/s
are the control objectives in this case.

4) Case 4: The in-loop LPF is a fourth-order LPF. Achieving
PM = 45◦ and -60 dB attenuation at ωd = 2π100 rad/s are
the control objectives in this case.

Table I shows the designed values of control parameters for
all cases. In obtaining the control parameters, V +

1 = 1 p.u. is
considered. Fig. 7 illustrates the Bode plots of original open-loop
transfer function (dark line) and disturbance transfer function
(gray line) of PLL using these values. The obtained results from
these plots are summarized in Table II and compared with the
intended control objectives. It can be observed that, for all four
cases, the obtained results are very close to the intended control
objectives, confirming the accuracy of approximations made
during the suggested design approach.

To further validate the accuracy of approximations, Fig. 8
compares the obtained results from the digital implementation
of PLL in response to a phase angle jump and frequency step
change with those obtained from the reduced-order model. In the
digital implementation, the sampling frequency is set to 10 kHz,
and the Tustin method is used to discretize the PI controller and
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LPF. It can be observed that the reduced-order model provides
good accuracy in all cases.

V. CONCLUSION

In this letter, a systematic approach to design high-order PLLs
was proposed. It was shown that the suggested design approach
has a general form and, therefore, can be applied to design the
PLL control parameters regardless of the order of in-loop LPF.
The effectiveness of suggested design approach was confirmed
through different design cases.

REFERENCES

[1] M. Karimi Ghartemani, Enhanced Phase-Locked Loop Structures for
Power and Energy Applications. New York, NY, USA: Wiley-IEEE Press,
2014.

[2] A. Ghoshal, and V. John, “A method to improve PLL performance un-
der abnormal grid conditions,” presented at the Nat. Power Eng. Conf.,
Bangalore, India, Dec. 2007.

[3] F. D. Freijedo, J. Doval-Gandoy, O. Lopez, and E. Acha, “Tuning of phase-
locked loops for power converters under distorted utility conditions,” IEEE
Trans. Ind. Appl., vol. 45, no. 6, pp. 2039–2047, Dec. 2009.

[4] S. Golestan, M. Ramezani, J. M. Guerrero, F. D. Freijedo, and M. Mon-
fared, “Moving average filter based phase-locked loops: Performance anal-
ysis and design guidelines,” IEEE Trans. Power Electron., vol. 29, no. 6,
pp. 2750–2763, Jun. 2014.

[5] S. Golestan, F. D. Freijedo, A. Vidal, J. M. Guerrero, and J. Doval-Gandoy,
“A quasi-type-1 phase-locked loop structure,” IEEE Trans. Power Elec-
tron., vol. 29, no. 12, pp. 6264–6270, Jun. 2014.

[6] H. Awad, J. Svensson, and M. J. Bollen, “Tuning software phase-locked
loop for series-connected converters,” IEEE Trans. Power Del., vol. 20,
no. 1, pp. 300–308, Jan. 2005.

[7] E. Bueno, F. J. Rodrguez, F. Espinosa, and S. Cbreces, “SPLL design to
flux oriented of a VSC interface for wind power applications,” in Proc.
31st Annu. IEEE IECON, 2005, pp. 2451–2456.

[8] F. A. S. Neves, M. C. Cavalcanti, H. E. P. de Souza, F. Bradaschia, E. J.
Bueno, and M. Rizo, “A generalized delayed signal cancellation method
for detecting fundamental-frequency positive-sequence three-phase sig-
nals,” IEEE Trans. Power Del., vol. 25, no. 3, pp. 1816–1825, Jul. 2010.

[9] Y. F. Wang and Y. W. Li, “Grid synchronization PLL based on cascaded
delayed signal cancellation,” IEEE Trans. Power Electron., vol. 26, no. 7,
pp. 1987–1997, Jul. 2011.

[10] S. Golestan, M. Ramezani, J. M. Guerrero, and M. Monfared, “dq-frame
cascaded delayed signal cancellation-based PLL: Analysis, design, and
comparison with moving average filter-based PLL,” IEEE Trans. Power
Electron., to be published.

[11] F. D. Freijedo, A. G. Yepes, O. Lopez, P. Fernandez-Comesana, and
J. Doval-Gandoy, “An optimized implementation of phase locked loops
for grid applications,” IEEE Trans. Instrum. Meas., vol. 60, no. 9, pp.
3110–3119, Sep. 2011.

[12] F. Gonzalez-Espin, G. Garcera, I. Patrao, and E. Figueres, “An adaptive
control system for three-phase photovoltaic inverters working in a polluted
and variable frequency electric grid,” IEEE Trans. Power Electron., vol.
27, no. 10, pp. 4248–4261, Oct. 2012.

[13] X. Guo, W. Wu, and Z. Chen, “Multiple-complex coefficient-filter-based
phase-locked loop and synchronization technique for three-phase grid
interfaced converters in distributed utility networks,” IEEE Trans. Ind.
Electron., vol. 58, no. 4, pp. 1194–1204, Apr. 2011.

[14] W. Li, X. Ruan, C. Bao, D. Pan, and X. Wang, “Grid synchronization sys-
tems of three-phase grid-connected power converters: A complex vector-
filter perspective,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1855–
1870, Apr. 2014.

[15] P. Rodriguez, R. Teodorescu, I. Candela, A. V. Timbus, M. Liserre, and
F. Blaabjerg, “New positive-sequence voltage detector for grid synchro-
nization of power converters under faulty grid conditions,” in Proc. Power
Electron. Spec. Conf., Jun. 2006, pp. 1–7.

[16] R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A.
F. Souza, “Comparison of three single-phase PLL algorithms for UPS
applications,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2923–2932,
Aug. 2008.

[17] K. Chung, “A phase tracking system for three phase utility interface
inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431–438,
May 2000.

[18] S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Design and
tuning of a modified power-based PLL for single-phase grid connected
power conditioning systems,” IEEE Trans. Power Electron., vol. 27, no.
8, pp. 3639–3650, Aug. 2012.

[19] M. Karimi-Ghartemani, “A unifying approach to single-phase syn-
chronous reference frame PLLs,” IEEE Trans. Power Electron., vol. 28,
no. 10, pp. 4550–4556, Oct. 2013.

[20] K. Shu and E. Sanchez-Sinencio, CMOS PLL Synthesizers-Analysis and
Design. New York, NY, USA: Springer-Verlag, 2005.

[21] W. Leonard, Control of Electrical Drives. Berlin, Germansy: Springer-
Verlag, 1990.

[22] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Pho-
tovoltaic and Wind Power Systems. New York, NY, USA: IEEE-Wiley,
2011.



IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON POWER ELECTRONICS 1

Letters

A Systematic Approach to Design High-Order Phase-Locked Loops

Saeed Golestan, Francisco D. Freijedo, and Josep M. Guerrero

Abstract—A basic approach to improve the performance of
phase-locked loop (PLL) under adverse grid condition is to in-
corporate a first-order low-pass filter (LPF) into its control loop.
The first-order LPF, however, has a limited ability to suppress
grid disturbances. A natural thought to further improve the dis-
turbance rejection capability of PLL is to use high-order LPFs.
Application of high-order LPFs, however, results in high-order
PLLs, which rather complicates the PLL analysis and design pro-
cedure. To overcome this challenge, a systematic method to design
high-order PLLs is presented in this letter. The suggested approach
has a general theme, which means it can be applied to design the
PLL control parameters regardless of the order of in-loop LPF.
The effectiveness of suggested design method is confirmed through
different design cases.

Index Terms—Phase-locked loop (PLL), synchronization.

I. INTRODUCTION

IN RECENT years, the increased harmonic pollution caused
by proliferation of nonlinear electrical loads such as ad-

justable speed drives, arc furnaces, switching power supplies,
rectifiers, etc. has made the synchronization of grid-connected
equipment with the utility grid a challenging task [1]. To deal
with this challenge, several advanced phase-locked loops (PLLs)
have been proposed recently. These PLLs are typically based
on applying some modifications to the structure of a standard
PLL. Fig. 1(a) and (b) shows the structure of a standard single-
phase and three-phase PLL, respectively, in which PD, LF,
and VCO are abbreviations of phase detector, loop filter, and
voltage-controlled oscillator, respectively.

To deal with the problem of synchronization under distorted
and unbalanced grid conditions, the inclusion of moving average
filter (MAF) into the PLL control loop is recommended in [2]
and [3]. The MAF is a linear-phase filter that effectively blocks
the grid disturbances in the PLL control loop, but at the cost
of slowing down its transient response. A detailed analysis of
MAF-based PLLs and improving their dynamic response can
be found in [4] and [5].
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Fig. 1. (a) Standard single-phase PLL; (b) standard three-phase PLL.

Inspired from the concept of delayed signal cancellation [6],
[7] the idea of cascaded delayed signal cancellation (CDSC) has
recently been introduced as an effective solution to improve the
disturbance rejection capability of PLL under adverse grid con-
dition [8], [9]. The CDSC operator is a finite impulse response
filter that can be used as an in-loop filter or a prefiltering stage
for the PLL. A detailed analysis of PLL with in-loop CDSC
operator can be found in [10].

Another approach is to include one or more notch filters (NFs)
into the PLL control loop [11], [12]. The NFs may be adaptive
or nonadaptive. The adaptive form is often preferred as they
can block the grid disturbances even under off-nominal grid
frequency conditions.

Using the complex coefficient filters (CCFs) is another
method that can be applied to improve the filtering capabil-
ity of three-phase PLLs [13], [14]. The main advantage of CCfs
over the real coefficient filters is that they can make distinction
between the positive and negative sequences (polarities) of the
same frequency.

The filters that work based on the instantaneous symmetri-
cal component method are also popular to improve the filtering
capability of three-phase PLLs. The dual second-order general-
ized integrator based filter [15] is a well-known member of this
class.

Probably, the most straightforward approach to improve the
performance of PLL under distorted grid condition is to include
a simple first-order low-pass filter (LPF) in its control loop. A
first-order LPF, however, has a limited ability to suppress the
grid disturbances. To further improve the disturbance rejection
capability of PLL, using higher order LPFs are sometimes rec-
ommended. For example, using a fourth-order LPF is suggested
in [16]. Application of these high-order LPFs, however, results
in high-order PLLs, which rather complicates the PLL analysis
and design procedure.

0885-8993 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Structure of PLL under study.

Fig. 3. Small-signal model.

In this letter, a systematic approach to design high-order PLLs
is presented. The suggested method has a general form and,
therefore, is applicable to design the PLL parameters regardless
of the order of in-loop LPF.

II. PLL STRUCTURE AND SMALL-SIGNAL MODELING

Fig. 2 shows the schematic diagram of PLL under study,
which is a standard three-phase PLL with an in-loop LPF. In
this structure, the proportional-integral (PI) controller acts as
the main filter of control loop as it is responsible to provide a
zero steady-state average phase error for the PLL. The LPF, on
the other hand, supports the PI controller as it is responsible to
improve the disturbance rejection capability of control loop un-
der adverse grid condition. Throughout this letter, Butterworth
LPF is considered. The LPF transfer function is considered to
be of the form

LPF(s)

=
a0(ωp)

n

ansn + an−1ωpsn−1 + · · · + a1(ωp)
n−1s + a0(ωp)

n (1)

where ωp is the cutoff frequency, n is the LPF order, and ai

(i = 0, 1, 2, . . . , n) are the LPF coefficients.
Obtaining the small-signal model of the PLL under study

is very straightforward [17]. Fig. 3 shows this model in which
D(s) denotes the Laplace transform of grid voltage disturbances
in the dq frame. Notice that the loop gain depends on V +

1 ,
i.e., the amplitude of fundamental frequency positive sequence
component of the grid voltage. Therefore, any variation in the
grid voltage amplitude affects the PLL stability and dynamic
behavior. This problem can be simply avoided by incorporating
an amplitude normalization mechanism into the PLL structure
[18], [19].

III. SYSTEMATIC DESIGN APPROACH

A. Model Order Reduction

The key to determine the reduced-order model lies in the fact
that the in-loop LPF causes phase delay in the PLL control loop,
so to ensure the PLL stability, its crossover frequency should

Fig. 4. Reduced-order small-signal model.

be sufficiently lower than the LPF cutoff frequency. The higher
the LPF order, the greater the low-frequency phase delay is,
and therefore, the smaller the PLL crossover frequency (com-
pared to the LPF cutoff frequency) should be. According to this
fact, the reduced-order model can be obtained by neglecting the
high-frequency dynamics of LPF and approximating its transfer
function with a first-order transfer function, i.e.,

LPF(s) ≈ a0(ωp)
n

a1(ωp)
n−1s + a0(ωp)

n =
a0ωp/a1

s + a0ωp/a1
︸ ︷︷ ︸

ω ′
p

. (2)

The reduced-order model is shown in Fig. 4. This model is
accurate at low frequency range (i.e., frequencies lower than
the PLL crossover frequency). Therefore, it can only be used to
study the stability and dynamic behavior of PLL.

B. Stability

From Fig. 4, the open-loop transfer function of the PLL can
be obtained as

Gred
ol (s) =

θ̂+
1 (s)

θe(s)
= V +

1
ω′

p

s + ω′
p

kps + ki

s

1
s

= V +
1 ω′

pkp
s + ωz

s2
(

s + ω′
p

) (3)

where ωz = ki/kp , and superscript “red” denotes this transfer
function is obtained using the reduced-order model. This trans-
fer function has two poles at the origin with a nonzero pole-zero
pair. For such systems, the symmetrical optimum (SO) method is
a standard design approach [20]–[22]. According to this method,
the PLL crossover frequency ωc should be selected at the geo-
metric mean of corner frequencies of open-loop transfer func-
tion, i.e., ωc =

√

ω′
pωz . This selection provides the maximum

phase margin (PM) for the PLL.
By application of the SO method to the open-loop transfer

function (3), the PLL control parameters can be obtained as

kp = ωc/V +
1

ki = ω2
c /

(

V +
1 b

)

(4)

ω′
p = bωc

where b =
√

ω′
p/ωz is a design constant. So, the PLL control

parameters can be obtained by selecting appropriate values for
the crossover frequency ωc and the design constant b.

By substituting (4) into (3), the open-loop transfer function
(3) can be rewritten as

Gred
ol (s) = bω2

c

(s + ωc/b)
s2(s + bωc)

. (5)
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Fig. 5. Asymptotic magnitude plot of open-loop transfer function (9).

Using this transfer function, the PM of the PLL can be obtained
as

PMred = 180◦ + ∠Gred
ol (s)

∣

∣

s=jωc
= tan−1

(

b2 − 1
2b

)

. (6)

It can be observed that the PM only depends on the design
constant b. So, b can be determined by selecting a proper value
for PM. In most control texts, 30◦ ≤ PM ≤ 60◦ is recommended
which corresponds to

√
3 ≤ b ≤ 2 +

√
3. We select a PM in

the middle of this range, i.e., PM = 45◦, which corresponds to
b = 1 +

√
2.

C. Filtering Capability

In this section, the filtering capability of the PLL is studied.
This study is conducted using the original small-signal model
because the reduced-order model is not accurate at high fre-
quency range.

Defining D′(s) = D(s)/V +
1 as the normalized disturbance

input to the model, the disturbance transfer function of the PLL
can be obtained as

Gorig
d (s) =

θ̂+
1 (s)

D′(s)
=

Gorig
ol (s)

1 + Gorig
ol (s)

(7)

where the superscript “orig” denotes the transfer function is
obtained using the original (not reduced-order) small-signal
model.

From (7), it is clear that to achieve a high disturbance re-
jection capability, the magnitude of open-loop transfer func-
tion must be very small at high frequency range. There-
fore, we can approximate (7) by (8) at high frequency
range

Gorig
d (s) ≈ Gorig

ol (s). (8)

This approximation simplifies the analysis and design proce-
dure.

From Fig. 3, the open-loop transfer function can be obtained
as

Gorig
ol (s) = V +

1 kp
s + ωz

s2 LPF(s). (9)

Fig. 6. Crossover frequency as a function of attenω d
. Parameters: ωd =

2π(2 · 50) rad/s, and b = 1 +
√

2.

TABLE I
DESIGNED CONTROL PARAMETERS

LPF order,
n

LPF cutoff
frequency, ωp

Proportional
gain, kp

Integral gain,
ki

Case 1 1 411.69 (rad/s) 170.52 12045
Case 2 2 299.18 (rad/s) 87.63 3180.75
Case 3 3 255.05 (rad/s) 52.82 1155.78
Case 4 4 228.12 (rad/s) 36.16 541.62

Fig. 5 shows the asymptotic magnitude plot of the open-loop
transfer function (9) in which ωd is the disturbance frequency of
concern. Assuming the dc offset in the PLL input is negligible,
the fundamental frequency negative sequence component is the
disturbance component that we should be most concerned about.
This disturbance component is sensed as a double-frequency
component (i.e., ωd = 2π(2 · 50) rad/s in a 50-Hz system) by
the PLL control loop. From this plot, the magnitude of open-
loop transfer function at the disturbance frequency ωd can be
approximated in decibels by

20 log
(

∣

∣

∣G
orig
ol (s)

∣

∣

∣

s=jωd

)

≈ −20 log
(

ωd

ωc

)

− 20n log
(

ωd

ωp

)

= − 20 log

(

(ωd)
n+1

ωc(ωp)
n

)

.

(10)

Defining attenωd
as the attenuation that the PLL provides in

decibels at the disturbance frequency ωd , we can approximate
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Fig. 7. Bode plots of open-loop transfer function and disturbance transfer function for four design cases.

TABLE II
INTENDED CONTROL OBJECTIVES AND OBTAINED RESULTS

PM Attenuation at ωd = 2π100 (rad/s)
Intended/Obtained Intended/Obtained

Case 1 45◦/45◦ −15 dB/−15.28 dB
Case 2 45◦/42.7◦ −30 dB/−30.04 dB
Case 3 45◦/43.2◦ −45 dB/−45.05 dB
Case 4 45◦/43.3◦ −60 dB/−60 dB

it, using (8) and (10), by

attenωd
= 20 log

(
∣

∣

∣G
orig
d (s)

∣

∣

∣

s=jωd

)

≈ 20 log
(

∣

∣

∣G
orig
ol (s)

∣

∣

∣

s=jωd

)

≈ − 20 log

(

(ωd)
n+1

ωc(ωp)
n

)

. (11)

According to (2) and (4), we have ωp = a1ω
′
p/a0 = a1bωc/a0 .

Substituting this into (11) yields

attenωd
≈ −20 log

(

(ωd)
n+1

(a1b/a0)
n (ωc)

n+1

)

= − 20 (n + 1) log

(

ωd

ωc

n + 1

√
(

a0

a1b

)n
)

. (12)

Using (12), it is easy to obtain

ωc ≈ n + 1

√
(

a0

a1b

)n

ωd10
( a t t e n ω d

2 0 (n + 1 )

)

. (13)

As (13) shows, the crossover frequency ωc can be simply deter-
mined by selecting a proper value for attenωd

.

D. Selecting LPF Order

During the suggested design procedure, it was assumed that
the LPF order is known. In this section, we are going to show
that how this parameter should be selected.
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Fig. 8. Accuracy assessment of the reduced-order model in prediction of PLL dynamic behavior.

Selecting the LPF order can be easily made according to
the required level of filtering at the disturbance frequency ωd .
To illustrate this fact, Fig. 6 shows the variations of the PLL
crossover frequency ωc as a function of attenωd

for different
orders of in-loop LPF: first-order LPF (solid line), second-
order LPF (dash-dotted line), third-order LPF (dashed line),
and fourth-order LPF (dotted line). These plots are obtained
using (13). In all plots, b = 1 +

√
2 is considered which means

regardless of the order of LPF and the value of crossover fre-
quency, the PM of the PLL is around 45◦. It can be observed
that in region ©1 (i.e., when |attenωd

| < 20 dB), the first-order
LPF gives the highest crossover frequency and, therefore, the
fastest transient response. Therefore, if the required attenuation
at ωd = 2π(2 · 50) rad/s is less than 20 dB, then a first-order
LPF should be selected. Following the same reasoning, it can
be concluded that in region ©2 , the second-order LPF is the best
choice, and in regions©3 and©4 , respectively, the third-order and
fourth-order LPFs are proper choices. It should be emphasized
here that results may slightly be different if a different value for
b is selected.

The above study also shows that the LPFs of order four and
higher may not be suitable to include in the PLL control loop
unless a very slow transient response and high filtering capability
for the PLL in needed.

E. Summary of Design Procedure

This section summarizes the proposed design procedure:
1) Select the LPF order according to what was mentioned in

Section III-D.
2) Approximate the LPF transfer function with LPF(s) ≈

ω′
p/

[

s + ω′
p

]

, where ω′
p = a0ωp/a1 .

3) Define kp = ωc/V +
1 , ki = ω2

c /
(

V +
1 b

)

, and ω′
p = bωc .

4) Select a proper value for the PM of the PLL, and obtain b

according to PM = tan−1
(

b2 −1
2b

)

.

5) Select a proper level filtering at the disturbance frequency
ωd (a proper value for attenωd

), and obtain ωc according

to ωc ≈ n + 1

√
(

a0
a1 b

)n

ωd10
( a t t e n ω d

2 0 (n + 1 )

)

..

6) Calculate kp , ki , and ω′
p from the definitions of step 3.

7) Calculate the LPF cutoff frequency ωp using ωp =
a1ω

′
p/a0 .

Neglect the steps 2 and 7 and consider ω′
p = ωp if a first-order

LPF is used.

IV. ACCURACY ASSESSMENT OF SUGGESTED

DESIGN APPROACH

The suggested design procedure involves several approxima-
tions that their accuracy need to be verified. For this purpose,
we employ the suggested design approach for selecting the PLL
control parameters and then compare the PLL characteristics
with the intended control objectives. Four different cases are
considered in this study:

1) Case 1: The in-loop LPF is a first-order LPF. Achieving
PM = 45◦ and -15 dB attenuation at ωd = 2π100 rad/s
are the control objectives in this case.

2) Case 2: The in-loop LPF is a second-order LPF. Achieving
PM = 45◦ and -30 dB attenuation at ωd = 2π100 rad/s are
the control objectives in this case.

3) Case 3: The in-loop LPF is a third-order LPF. Achieving
PM = 45◦ and -45 dB attenuation at ωd = 2π100 rad/s
are the control objectives in this case.

4) Case 4: The in-loop LPF is a fourth-order LPF. Achieving
PM = 45◦ and -60 dB attenuation at ωd = 2π100 rad/s are
the control objectives in this case.

Table I shows the designed values of control parameters for
all cases. In obtaining the control parameters, V +

1 = 1 p.u. is
considered. Fig. 7 illustrates the Bode plots of original open-loop
transfer function (dark line) and disturbance transfer function
(gray line) of PLL using these values. The obtained results from
these plots are summarized in Table II and compared with the
intended control objectives. It can be observed that, for all four
cases, the obtained results are very close to the intended control
objectives, confirming the accuracy of approximations made
during the suggested design approach.

To further validate the accuracy of approximations, Fig. 8
compares the obtained results from the digital implementation
of PLL in response to a phase angle jump and frequency step
change with those obtained from the reduced-order model. In the
digital implementation, the sampling frequency is set to 10 kHz,
and the Tustin method is used to discretize the PI controller and
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LPF. It can be observed that the reduced-order model provides
good accuracy in all cases.

V. CONCLUSION

In this letter, a systematic approach to design high-order PLLs
was proposed. It was shown that the suggested design approach
has a general form and, therefore, can be applied to design the
PLL control parameters regardless of the order of in-loop LPF.
The effectiveness of suggested design approach was confirmed
through different design cases.
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