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Abstract

Permanent magnet biasing, is a known technique for increasing the energy storage capability of
inductors operating in DC applications. The opposing flux introduced by a permanent magnet will
extend the saturation flux limit of a given magnetic material. When full biasing of the core is achieved,
the effective saturation current limit of a given inductor is doubled. This results in a smaller
requirement in number of turns and area cross-section, allowing for smaller and/or more efficient
inductors. By adding some switching elements, the benefits of biased inductors can also be used in AC
applications. This paper presents a review of the scientific literature on biased hybrid inductors and the
evolution of the used magnets and cores configurations. A recently developed biasing configuration,
the saturation-gap, will also be analyzed and the design parameter will be identified using finite
element software. The simulation results will be compared with empirical laboratory measurements on
physical units.

1. Introduction

The use of permanent magnets for bias magnetization is a known technique for increasing the energy
storage capability of DC inductors, resulting in a size reduction or increased efficiency. Full biasing
allows for a reduction of 50% in either core cross-sectional area or number of turns [ref]. This will
result in a 50% smaller core or 50% lower copper losses, respectively. A compromised distribution of
the reduction factor is desired in most cases. The total inductor size and losses reduction will be
dependent of the specific inductor design and application. Even if the first studies of the subject date
back to the early 1960’s, only a limited amount of scientific papers has been published since. The
focus of the available publications covers different topics: The analysis of benefits using permanent
magnet biasing, development of techniques for optimal inductor design, and practical test on physical
inductors with different configurations of permanent magnets and soft magnetic core shapes. Fig. 1.
shows the timeline of publications. The public research on this technique has been absent for almost
four decades. In the last decade a small amount of papers has been published. During this time, the
advancements on the subject have been almost limited to patent publications. More than 20 patents
have been found on the subject. In [11] we presented a new biasing configuration, the Saturation-gap.
This configuration is proven to achieve full biasing in ferrite and iron materials [11][12]. It uses
standard non-gapped core shapes and it is free from patent restrictions.

The following section 2 presents a brief theoretical background on permanent magnets and inductor
biasing and design. Section 3 summarizes the state of the art with the evolution of the different design
approaches found in the literature. In section 4 a finite element analysis of the Saturation-gap topology
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Fig. 1. Timeline of scientific publications on magnetic biased inductors. Numbers in square brackets
are the references number.

will be used in order to characterize its operation and identify the relevant parameters for this hybrid
inductor design. Finally section 5 presents the conclusions and future research on the subject.

2. Background theory

Inductors intended for DC applications present a highly asymmetric magnetizing current. Their
working point on the load line is restricted to the first quadrant. The energy storage capability on the
third quadrant is totally unused. Hybrid inductors, uses permanent magnets in order to introduce a
negative bias flux in the core material and accordingly extend its maximum DC flux limit.

In Fig. 2. it is sketched the BH loop of a hypothetical inductor, we will concentrate in its linear region.
In the case of a standard DC inductor (Fig. 2.a) the maximum allowable flux density will be that of
saturation, Bg,:. When introducing an opposing magnetic bias, —Bp;,s, the maximum flux excursion
will be the sum of By, plus Bp;qs (Fig. 2.b). The maximum allowable biasing flux will be equal to the
saturation flux of the core. It can be graphically appreciated that when full biasing is achieved the
energy capacity (green areas) has increased by a factor of four and the core energy loss per cycle (red
areas) has only increased by a factor of two. We can define that full biasing is achieved when the

BH loop of a DC inductor
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Fig. 2. Linear BH loop of normal and biased inductors. Green areas represent energy stored. Red
areas represent energy loss per cycle.



BH curve of a linear PM

Br

Operation Stored energy

point

S

B

| Effective energy
—| product

i
HC\H

Coenergy

Fig. 3. BH curve of a linear PM. Green area represents energy stored in the permanent magnet. Blue
area is the effective energy or BH product. Operation point is defined by the external H field. The grey
area is representative of the magnetic coenergy.

initial operation point (at zero current) of the core is at the edge of the saturation knee in the third
quadrant. That would be full linear biasing. If applying more biasing flux, the energy capacity will be
greatly increased and the inductor will present non-linear inductance profiles characterized by very
low inductance at zero current and a positive slope inductance versus current profile [11].

Typical core materials are used for their properties as magnetic conductors, presenting high
permeability. On the other hand, their magnetic energy capacity is very low for practical applications.
An air-gap cut into the core is typically used for energy storage. Distributed air-gap materials are
another possibility. In hybrid inductor design is important to mention that the biasing flux is only
required in the core material, since the saturation flux density of the core is the limiting factor.

In order to introduce the biasing flux, a permanent magnet is used. Fig. 3. presents a generic load line
of a linear magnet and the areas representing energy storage and effective energy product. Ferrite,
NdFeB and SmCo magnets are known to presents a linear load line in the second quadrant. If the
operation point of a PM is brought below the knee of its linear region, demagnetization effects will
take place. The operation point of the PM can be calculated as a function of the applied demagnetizing
field, H. In cases where no demagnetization field is applied, the operation point is dependent on the
ratio between the PM internal reluctance, Rp), and the load reluctance, R;. [13]-[15] The actual flux
value, ¢ at operation point of the magnet is calculated by:

H_.l
=A,,B=A4 B + H)=—¢21_ 1
O="A.py cPM( - T Hpy ) R, +R (1
Where B,, is the remanent flux density, H. is the coercive force of the used material, upy, is the
permeability of the PM material and [p), is the PM length through its axes of magnetization. The PM
internal reluctance is defined by:

[
Ry = P—Z 2
HpvAepy

The load reluctance, R; will be defined by the materials surrounding the magnetic poles. In hybrid
inductor configurations, this reluctance is defined by the core material. The permeability of the core is
a non-linear function of the instantaneous flux density. Accordingly, the load reluctance, R; is a
function of the applied current in the inductor windings.

Laminated steel materials present high saturation flux density, at expenses of a high electric
conductivity. They are typically used in low frequency applications. On the other hand ferrite type
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Fig. 4. Lvsl profile of an inductor as function of air-gap length. Blue curve is a generic unity LI
product region. Orange line represents the Lvsl profile for each air-gap length. Left: short air-gap;
Center: long air-gap; Right: non-constant length air-gap.

materials offer lower electric conductivity at expenses of a lower saturation flux density. These are
typically used in high frequency applications, where eddy currents will be a dominant factor.

PM materials can offer similar compromises. Ferrite magnets will produce the lower flux level while
having the lower electric conductivity. Sintered NdFeB magnets will present the highest flux levels at
expenses of a high electric conductivity. A compromise PM material can be done by using a NdFeB
material bonded with resin. SmCo magnets preset lower flux levels than NdFeB, but present better
thermal stability.

The relationship between the inductance, L and current, I requirements and the physical inductor
design parameters is given by:

LI =B,_,NA, (3)

Were By, is the saturation flux density of the core material, A, is the area cross-section of the core
and N is the number of turns. Full biasing will double the flux limit, and the required NA, product
can be reduced by a factor of two. The LI product is a constant of each specific design, and it defines
the maximum operation area into the Lvsl profile of a given inductor design. In order to define a
nominal inductance range, the air-gap length must be adjusted. Assuming the total reluctance is
dominated by the air-gap we can define the nominal inductance by:

lz _ 11’10140]\[2
R [

g 4
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Where R, is the reluctance of the air-gap, o is the permeability of air and [, is the length of the air-
gap. Fig. 4. presents a unity LI product region and the LvsI profile of three hypothetical air-gaps. The
use of non-constant length air-gaps will produce non-linear LvslI profiles and can optimize the used LI
product.

By adding some switching elements, a biased DC inductor can be used in AC applications. In order to
verify this possibility a small simulation was made using LTspice. Fig. 5. shows the schematic and the
simulation results. The same sinusoidal stimulus was use in two different inductors: a standard AC
inductor, and a hybrid DC inductor with a four thyristors switch. It can be appreciated how the line
currents (IRgrid) in both cases are identical while the current in the DC inductor is always positive.
The simulation results indicate that the use of a thyristor switching arrangement can extend the
usability to AC applications while having the benefit from the size reduction advantages of a hybrid
biased inductor.
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Fig. 5. Simulation of permanent magnet biased DC inductor performing on AC by the use of thyristor
switching arrangement. Top curve is voltage AC stimuli; Middle curves are current through series
resistors, both curves are identical; Bottom curve is current at the PM biased inductor.

3. State of the art

The specific core and magnet configurations used in hybrid inductors have been evolving from its
early stages. The basic characteristics and the advantages and limitations of the different
configurations found in the literature will be indicated.

Basic configuration: Magnet inside the air-gap.

The first designs of magnetic biased inductors consisted of standard gaped inductors with a permanent
magnet inserted in the air-gap [1]-[4][6]-[8]. Fig. 6. shows the basic configuration. Red vectors
represent flux produced by the coil and green vectors represents flux produced by the PM. This
arrangement can effectively produce a certain amount of bias flux. There is however several
limitations intrinsic to this configuration:

e The flux from the coil is passing directly through the magnet. Demagnetization and eddy
currents become a design limitation when selecting a permanent magnet material.

e The area cross section of the magnet cannot be bigger than the cross section of the core. This
implies a limitation in the maximum producible bias flux.

Hybrid configuration: Magnet Inside Air-Gap

Fig. 6. Basic configuration. Permanent magnet inside air-gap. Red vector represent flux from the coil.
Green vectors represent flux from the PM.



Hybrid configuration: Magnets Outside Air-Gaps
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Fig. 7. Magnets in the vicinity of air-gaps. Red vector represent flux from the coil. Green vectors
represent flux from the PM.

Magnets in the vicinity of the air-gaps

In order to overcome the limitations of placing the PM inside the air-gap, a logical approach has been
to place the PMs in the vicinity of the air-gaps. This configuration requires special core shapes and the
relevant documentation is mostly limited to patent documents. Only three scientific publications
[5][8][9] have been found regarding the design of this hybrid configuration. Fig. 7. presents an
inductor configuration having the biasing magnets in the vicinity of the air gaps.

Having the magnets outside the core and out of the path of the coil’s flux present several advantages.
The size of the magnets, and accordingly the amount of bias flux, it is no longer limited by the area
cross section of the core. The flux-path of the coil is not crossing the PM. Accordingly, variations in
the coil’s flux will not induce EMF in the PM material and eddy currents will not be directly
produced. On the other hand, a smaller level of indirectly induced eddy currents will be present in the
magnet. Indirect eddy currents are stimulated by variations in the PM operation point, rather than
variations in the coil’s flux acting on the PM material. From (1) can be calculated the amount of PM
flux variations as function of the variations of R;. Eddy currents produce through reluctance variations
will be lower than through direct induction and high flux density and low resistivity magnets like
sintered NdFeB can be used in these configurations. This allows for higher bias flux levels than with
the basic magnet inside the gap configurations. These benefits come at expenses of using nonstandard
core shapes which require an individual design and manufacturing process. The use of nonstandard
core shapes also difficult the design and optimization of the inductor.

Combination of ferrite and distributed air-gap materials

Another alternative to core with air-gaps is the use of distributed air-gap materials (DGM) or a
combination of. Recently, a private company published some details about a new biased inductor

Ferrite

Distributed air-gap
material

Permanent
magnets

Fig. 8. Inductor configuration using a combination of ferrite and distributed air-gap material. Left:
standard; Right: possible hybrid configuration. Red vectors represent flux from the coils. Green
vectors represent flux from the PMs.



Fig. 9. The Saturation-gap biasing configuration. Red vectors represent flux from the coils. Green
vectors represent flux from the PMs.

design [16]. The publication does not disclosure the actual placing of the magnets, but the used
topology can be accomplished with a combination of ferrite and DGM. Fig. 8. shows a configuration
with a combination of materials and its possible hybrid version. This configuration uses two single
layer coils wound on cylindrical segments of a DGM. The two cylinders with coils are connected
using ferrite segments with square section. This topology is normally used in high frequency and high
power applications, since it presents a better thermal performance compared to standard gapped cores
[17][18]. A possible strategy could be to introduce the PMs inside the distributed air-gap material.
Since the saturation flux density of DGM is quite high, the required A, it is defined by the ferrite
sections and the A, of the DGM cylinders can easily allow space for the PMs. The permeability of the
ferrite sections it is typically 50 to 500 higher than distributed air-gap materials. Accordingly, the flux
from the PMs will be mostly concentrated through the ferrite sections, producing the desired bias.

Magnets on un-gapped cores: The Saturation-Gap

In [11][12] we developed and presented a new biasing configuration where some of the limitations
mentioned for the previously configurations are addressed. This new core-magnet configuration
consists of externally placed permanent magnets and standardized magnetic cores with no air gaps.
The function of the permanent magnets in this configuration is a twofold: to produce saturation in a
localized segment of the core which will behave as a virtual air gap (the saturation-gap section) and to
create a biasing flux in the rest of the core. Fig. 9. shows the Saturation-gap configuration. Red
vectors represent flux from the coils, green vectors represent flux from the PMs. Flux lines in

The saturation-gap concept was tested in two different inductor applications: in [11] an EE30 ferrite
core operating as a flyback transformer is been used and its saturation current extended more than
double; in [12] a hybrid inductor design using iron laminations is presented. Fig. 10. shows the half
size core reduction strategy which was also implemented in physical units. This strategy uses the total
reduction factor to the required A, in order to achieve minimal core weight. The number of turns in
each winding is equal to the number of turns in the standard design. The A, of the UI cores is ¥ of the
standard design. The total perimeter of the hybrids A, (including the two Ul coils) will be equal to the
perimeter of the A, of the standard design. Single layer coil inductors will present the same copper
resistance. Additional coil layers will introduce an increment in the hybrid coils resistance up to a

Stack
L Stack \ T

p Ac k--
~ A S
AC\\ ' [ m
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Fig. 10. Half core size reduction, design strategy with saturation-gap. A standard EI core is replaced
by two UI cores with half the stack length.



L[mH] vs I[A] Simulated and Measured

——FEMM 42 MGOe 2mm

= = Measured: 400mV AC+ DC
bias

——FEMM Standard EIEE 34mm

<Et 1.400 / — = Measured 400mVac_Standard
— | 1200 — =

) === =--=-=-L

Q = i

< | 1000 == = =

© - S \

=l P, S

S | oa0 ~i~

=) i \

£ | os00

o 5 10 15 20 25 30 35 40

DC Current [A]

Fig. 11. Standard and Hybrid inductors measured and simulated Inductance versus DC current.
Measured with WK3260B magnetic analyzer: Stimuli is 400mV AC 300Hz for a set of DC bias
currents. Simulated with FEMM.

30%. This increase in the copper resistance of the hybrid inductor is also avoided when using the
hybrid design to replace two individual inductors sharing the same DC current.

In [12] the basic hybrid inductor design strategy and a simulation analysis using magnetic equivalent
circuit (MEC) modeling was presented. Empirical measurements on physically units were also
performed. The experimental results showed a 50% smaller core in the hybrid configuration, while
presenting a slightly lower inductance. The measured LvslI profile of the two units can be seen in the
dashed lines in Fig. 11. The MEC simulation results were not accurate enough for design purposes. On
the other hand, they provided a good analysis of the different operation behaviors found in the
saturation-gap configuration. MEC simulations uses very approximated models of the overall
geometry. In the following section, a finite element analysis of the physical units presented in [12] is
performed using FEMM. This analysis will be used to characterize more precisely the behavior of this
configuration and to identify the specific PM dimensions required for the design of the equivalent air-

gap.

4. Finite Element Analysis

The standard and the hybrid design presented in [12] were analyzed using FEMM software. The
standard design uses EI66 laminations with stack length of 34 mm. The hybrid design uses two UI30
cores with 20 mm of stack length. The used magnets are 2 mm length NdFeB 42MGOe. Each coil has
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Fig. 12. Flux density as function of current. Values are measured in FEMM model as the average flux
density at each position of the marked color lines. Red: flux density inside the coil (Coil); Purple: flux
density at the saturation-gap region (SG) and Green: Permanent magnet flux density (PM).
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Fig. 13. Inductance versus current for different PMs. FEMM simulations. Left: Different NdFeB
grades in MGOe units; Right: Different PM lengths through magnetization axes.

36 turns of 2.25 mm diameter copper wire. The an-hysteretic DC BH curve of the laminations material
was used in the FEMM models. The two physical units were also tested with a WK3260B magnetic
analyzer. The Lvsl profiles were measured using a 400mV AC stimulus over a range of DC bias
currents. FEMM uses magneto-static based calculations. In order to calculate the incremental
inductance, the analysis is repeated for a set of currents, ranging from zero to 50A in increments of
0.5A. Since the analysis is magneto-static, eddy currents in the core or in the permanent magnets are
not considered by the simulations.

Fig. 11. shows the measured and simulated Lvsl profiles of the standard and the hybrid inductor
designs. The measured curves present lower inductance values, especially close to the saturation
current. It is known that the effective permeability of a magnetic material will present differences
when using different stimuli. When DC stimuli are applied the irreversible permeability effects will be
dominant. When small signal AC is applied over DC bias current levels, the reversible permeability
effects are the dominant factor. The measured inductance using small AC stimuli will present lower
inductance values, since the slope of the small BH loop will always be lower than the actual
incremental slope [19].

It can also be noticed quite some differences in the hybrid inductance at currents below 5A. The lower
inductance values, in the measured result, are related to the effects of indirectly induced eddy currents
in the PMs. These effects will be more clearly understood after looking at some of the result of the
FEMM analysis. Fig. 12. shows the FEMM model of the hybrid inductor and the flux density levels as
a function of current. The tree curves are the average flux density at the positions marked by the color
lines. These simulation results confirm the expected flux behavior in a saturation-gap configuration
according to the MEC analysis presented in [12]. At zero current the flux density at Coil is -1.5 T, this
value can be defined as the limit of the linear region of the core. Accordingly, the simulation indicates

L[mH] vs I[a] Simulated and Measured 43 mGoe 1mm
—— 42 MGOe 2mm
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2500
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Fig. 14. Inductance versus current for three PM lengths. Calculated with FEMM (solid lines) and
measured with WK3260B (dashed lines).



full bias is been achieved. The current can increase up to 35A until the flux density at Coil reaches the
positive saturation of the core, 1.5 T. The flux density at the SG region starts at 1.7 T and slowly
increases, approaching a Quasy-Saturated Equilibrium (QSE) below 2.5 T. The flux present at SG is
the addition of the coil and the PM fluxes. In the DC current range, from 4A to 35A approximately,
the model is working in its linear region. As the flux from the coil is increasing with current, the QSE
at the SG is maintained by the PMs lowering its operation point. Energy is been stored in the PM.

In the current range from OA to 4A approximately, the model is working in its non-linear region. The
initial flux at SG has not yet reached the QSE and the slope of the flux at Coil and at SG is not
constant. Non-linear inductance effects can be undesired or wanted depending on the different
inductor applications [18]. In order to analyze the parameters defining the range and value of the linear
and non-linear inductance, additional FEMM simulation were performed. Fig. 13. shows the Lvsl
curves of the model for different PM lengths and strengths. In the left plot can be noticed the effect of
using different PM strengths. The simulated PM are NdFeB with energy density products ranging
from 38 MGOe to 52 MGOe, which are commercially available. It can be noticed that the PM strength
is defining the maximum saturation flux and the initial flux condition, controlling the possible non-
linear inductance effects. On the right plot of Fig. 13. the LvsI values are presented for different PM
lengths. It can be noticed a clear dependency of the PM length and the equivalent saturation air-gap.
The QSE level will define the linear inductance value. For a given core material, the QSE value is only
dependent on the core and magnets relative geometry while being independent of the PM strength.
Comparing the measured and simulated results in Fig. 11. can be noticed differences in the non-linear
inductance range. Fig. 14. shows the measured and simulated results for three PM lengths. It can be
noticed a clear correlation. On the other hand, measured values tend to be lower, especially at the non-
linear inductance range. The differences become greater as the PM length is decreased. This can be
understood by the behavior of indirect eddy currents in the PMs. Indirect eddy currents, will tend to
maintain the operation point of the PMs. In the hypothetical case of a superconducting magnet (0
Kelvin) the operation point will be always maintained by the eddy currents. In normal conditions,
eddy currents will present resistive losses and the operation point will not be constant. From (1) can be
seen the dependency on the PM flux variations as function of variations in load reluctance, R;. The
amplitude of the EMF inducing the eddy currents will be inversely proportional to the PM internal
reluctance Rp),. Accordingly, magnets with smaller Rpy (shorter length) will present higher eddy
currents and the simulated behavior will differ more form the measured valued.

5. Conclusions and further research

The Saturation-gap biasing configuration has been implemented on a laminated steel 1mH 20A DC
link choke. The hybrid design uses standard UI30 laminations, and presents 50% smaller core while
almost matching the Lvsl profile of the standard EI66 design. The presented designs have been
analyzed using FEMM. The simulation results present higher inductance values compare to the
empirical measurements. FEMM analysis is magneto-static and therefore does not account for eddy
current effects. Indirectly induced eddy currents in the magnets will tend to maintain the operation
point of the PM towards the B, value, resulting in more flux and higher reluctance through the
saturation-gap region. The FEMM analysis presents the required resolution for the design of hybrid
inductors with the saturation-gap. PM length and strength have been identified as the parameters
controlling the equivalent air-gap dimensions defining the linear and/or non-linear Lvsl profile. The
flux analysis with FEMM is consistent with the behavior observed with MEC simulations in [12]. The
QSE value will define the nominal inductance and it will be dependent on the saturation knee profile
of the core material and the PM length, while being independent from the PM strength. NdFeB
magnets with 42 MGOe maximum energy density products were used to produce a linear Lvsl profile.
PMs with lower MGOe values will tend towards non-linear inductance profile with negative slopes.
PMs of higher strength will tend towards non-linear inductance with positive slope.

Further research will focus on the simulation of the eddy current effects and their role in the Lvsl
shape. The core losses measurements presented in [11][12] shows an unexpected profile, having
higher losses at lower currents and lower losses at higher currents. A deeper investigation of the
involved loss mechanisms will be also a focus for further research.
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