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l. INTRODUCTION 

Identification of physical properties from the dynamic response of 
structural systems - often called experimental modal analysis or system 
identification - is an area where a huge amount of research has been 
carried out, and where the interest for research results and practical 
applications is still increasing. 

The growing interest for these techniques can be explained in different 
ways. One explanation is that computational possibilities in structural 
dynamics are getting better and new structural designs are introduced 
calling for a better and more detailed knowledge about the physical 
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properties of the structures and how these properties are affected by 
damage and changes in load conditions. Another explanation is that by 
introduetion ofthe computer in the measurement system, the possibility of 
handling large amounts of data became available, and the potential of the 

techniques were revealed. 

The many possibilities of practical applications can be illustrated by 
studying one of the latest conference proceedings about experimental 
modal analysis, for instance one of the latest IMAC proceedings, see [20]. 

Only a few examples of applications will mention ed here. 

One of the first applications of structural dynamic measurement was in 
the 1940's where the problem of describing the loads on aircraft wings was 
studied and where especially the problems of flutter gave rise to 
experimental studies of the dynamical properties of aircraft structures. 
Masts, chimneys and wind turbines are examples of structures where 
experimental studies of flutter and dynamic wind load might be wanted. 
Measurements on offshore structures loaded by sea waves have been 
performed in many locations for determination of sea loads and structural 

response, see e.g. Jensen [10]. 

One of the interesting applications is damage detection. When a specimen 
or even a large complex structure is damaged, the damage will cause a 
change of the dynamic properties. For instance if a structural mernher is 
cracked, the crack will decrease the stiffness and thereby decrease the 
eigenfrequencies of the structure and it may increase the damping due to 
local piasticity and thereby change the energy flow and the overall 

damping in the structure. 

When dynamical properties of a structure are to be identified from an 
experiment, one would expect that the best way to perform the 
measurements would be to excite the structure by artificial loading and 
make the measurements when the natural loads are small. In this case 
the loading and the response is approximately deterministic, and the 
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dynamical parameters can be obtained by simple methods. However, there 
is several reasons for not using thi s approach. U sing artificial loading is 
expensive and it is difficult to get a reasonable signal to noise ratio 
without introducing non-linearities that arenon-relevant to the conditions 
of operation. I practice therefore, one will aften have to deal with the more 
complex situation of accepting the natura} loading as the input. In this 
case the parameters has to estimated from stochastic processes. 

The modem techniques for identification of system parameters from the 
stochastic system responses are quite powerfuL V ery small system 
changes can be detected relatively fast. For instance using the two-stage 
techniques proposed in this paper on a specimen with an eigenfrequency 
of l kHz excited by white noise, the average Youngs modulus can be 
obtained from the eigenfrequency estimate in about one second with no 

systematic errorsand with a coefficient ofvariation ofless than 10-3
. This 

ineludes the time for data aquisition, correlation furretion estimation and 
system parameter identification. 

This example introduces the two most important concepts in parameter 
identification: systematic and random errors - in estimation theory 
denoted bias and variance. Let the physical properties of the system be 
deseribed by a limite"d number of scalars 9; forming the vector !! = { e,} and 

let the values f, !! be the true value and the value estimated by 
parameter identification respectively. Since we are always dealing with 

limited information, the estimated parameters ~ will not be identical to 

the true properties f. However we want the deviation to be as small as 
possible. Therefore the method of system identification should be chosen 

in such a way th11t the systematic errors defined by the expected value 

E [~ - fJ - also denoted bias - and the elements of the covariance matrix 

Cov [~~ are minimum. If the bias is zero and the covariences are 
minimum then we are dealing with an unbiased and effective estimator, 
Papoulis [4]. 
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When parameter identification techniques are used in structural 
applications, and the parameters are to be identified from the time series 
obtained by measuring the loads and the structural responses, different 
strategies can be followed. There are two main strategies: one-stage 
techniques and two-stage techniques. 

In one-stage techniques the pararneter identification is performed by 
fitting a model directly to the time series obtained from the experiment. In 
this case "blackbox" models in discr,ete time like Auto Regressive Moving 
Average (ARMA) models or oversized Auto Regressive (AR) models (also 
denoted method of maximum entropy) are frequently used, Ljung [1], 
Soderstrom and Stoica [2], Pandit and Wu [3]. These techniques have been 
developed mainly for applications in electrical engineering, but they are 
considered to be very accurate - in practice the closest one can get to 
unbiased effective estimators. For applications in structural engineering 
se e.g. Jensen [10]. In these techniques the parameter identification is 
based on nonlinear optimization and therefore the techniques require a 
relative ly large computation power. However if the computation time and 
the time for transferring and storage of the large amounts of data can be 
accepted, these techniques will be an obvious choice. 

If it is essential to keep the estimation time down to a minimum, other 
and less accurate techniques like two-stage techniques can be used. In 
two-stage techniques the basic idea is to transfer the most important 
porperties of the time series by small characteristic sequences like 
spectral density functions or correlation functions. The characteristic 
sequences acts as interface functions. They carry the most important 
information hidden in the time series in compressed form and thereby 
provide a basis for simple parameter identification by extracting this 
information from the interface fimetion estimates. The advantage is that 
significantly smaller amounts of data has to be tranferred and stored, and 
that the system identification proces becomes much faster because models 
are fitted to a significantly smaller number of data points. 
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However there is a price to pay for this data compression: information is 
lost, and bias might be introduced. 

Information will be lost in a data compression process, because it is not 
possible to contain all the detailed information hidden in the time series in 
the estimates of correlation functions or spectral density functions. 
Therefore, system parameters estimated from interface functions, will 
show larger variance than parameters estimated by effective fitting of 
models directly to the time series as mentioned above. In practice, 
however, the choice is governed by a trade-off between accuracy and 
speed, and sometimes it is beneficial to accept a small incease in variance 
for a large decrease in the time used in the estimation process. 

It is well known that spectral density fimetions estimated by Fourier 
transform techniques will be biased, and that bias in the frequency 
domain can be reduced, but not prevented or removed. The bias problems 
are much easier to handle in the time dornain, in faet it is possible to 
prevent bias in the time domain, e.g. by estimation of correlation 
functions. This is the major advantage of representing the properties of 
the time series by correlation functions instead of spectral density 
functions. 

In this paper a simple and self-contained presentation of three known 

techniques for non-parametric correlation function estimation is given: the 
direct method where the correlation function is estimated by direct 
calculation of the correlation integral, the FFT technique, where the 
correlation function is estirnated by the Fast Fourier Transform, and 
finally the Randorn Decrement technique, where the correlation fimetion 
is estimated by simple averaging. The basic ideas of the three techniques 
are reviewed, sources ofbias are pointed out, methods to prevent the bias 
problems are presented, and the methods are evaluated by comparing the 
speed and the accuracy estimating the auto correlation function for a 
single-degree-of-freedorn (SDOF) systern loaded by white noise. 
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The main aim ofthis paper is to investigate and illustrate the possibilities 
of using a two-stage parameter identification technique where correlation 
functions are used as interface functions. Since the Random Decrement 
technique is the fastest t echnique for correlation function estimation, this 
technique is used in the two-stage identification method. The results from 
the two-stage techniques are compared to the results of fitting an Auto 
Regressive Moving Average (ARMA) model directly to the original time 
series. In the investigation auto correlation functions are estimated on the 
response from a SDOF system, and the system parameters are then 
identified from the auto correlation fimetion estimates. Three 
identification techniques are used: a simple non-parametric technique, 
calibration of Auto Regressive (AR) models by solving the overdetermined 
set ofYule-Walker equations by linear regression and finally least square 
fitting of the theoretical correlation function. 

The simple SDOF problem treated in this paper does not reflect the 
complex situations of nonlinearities, overlapping resonance peaks and 
broad-banded but non-white excitation often present in practical 
applications. However, if a single and well separated resonance peak is 
considered, and if the load spectrum is approximately constant in the 
neighbourhood of the considered resonance peak, the signal can be 
band-pass filtered and the presented methods can be used as an 
approximation. 

In this paper the response from the SDOF system loaded by white noise is 
simulated using an ARMA (2,1) model. 

2. ESTIMATION OF CORRELATION FUNCTIONS 

Estimating correlation functions for use in two-stage parameter 
identification technique one would like not to assume very much about 
system properties. This means that only non-parametric estimates are 
relevant for a two-stage technique. 
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As mentioned in the introduction, the accuracy of the non-parametric 
correlation function estimation is essential. Therefore the variance and 
the bias errors should be as small as possible. Only a few techniqes for 
non-parametric correlation function estimation are known: the direct 
technique, the Fast Fourier Transform (FFT) technique and finally the 
Random Decrement (RDD) technique. In this section these three 
techniques are reviewed with special emphasis on bias problems. 

2.1 The Direct Method 

The direct method was applied for estimation of correlation functions up 
to the mid sixties where the modern methods of Fast Fourier 
Transfornation were introduced. The algorithm is simple and easy to use 
and programme, but slow in most cases. 

For the stationary stochastic processes X(t), Y(t) the correlation fimetion 

R.n{t) is defined by, Bendat and Piersol [6] , 

Rn{t) = E [X (t + t)Y(t)] (l) 

In practice, however, it is not possible to perform ensemble averaging. 
Instead the processes are assumed to be ergodic, and the ensemble 
averaging is replaced by time averaging on the realizations x( t), y( t). 

RXY('t:) = lim ~ f r x(t + 't: )y(t)dt 
T-?oo O 

(2) 

Real time series are always limited, they are known over some finite time 
domain, say [O;TJ. To keep the arguments inside the definition set, for 
positive time lags the upper integration limit eannot exceed T - 1:, and the 
natura} modification of eq. (2) is then 
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1\ l J Rn{t) = -T T - < x(t + 't)y(t)dt, 't E [O;TJ 
-'t o 

(3) 

forming a correlation function estimate. The corresponding result for 
negative time lag is found by modifying the lower integration limit, or 
using that RXY(- 't)= RYX('t). The estimate given by eq. (3) is unbiased since 

the expectation ofthe estimator is equal to the definition given by eq. (l), 

E [RXY('t)] = _T l J T-< E [X(t + 't)Y(t)]dt = RXY('t) 
- 't o 

(4) 

The corresponding biased estimate is defined by 

1\ l J ~RXy('t) = T 
0 

T - < x(t + 't)y(t)dt, 't E [O;TJ (5) 

1\ 1\ 

I t is seen that the estimates are related by RXy{'t) = w( 't) RXY('t), where 
-w-(t) is a triangular window, the so-called "basic lag window", given by 

w('t) = (T - 't)IT, Newland [9]. 

2.2 The Fast Fourier Transforms Method 

The Fast Fourier Transform is an effective algorithm for calculation of 
Fourier coefficients, Brigham [5]. The basic ideas were discovered in the 
forties by Danielson and Lanczos, [11], but the technique became known 

by the work of Cole and Tukey [12] and was implemented in larger scale 
from the the mid-sixties. 

Application of the Fast Fourier Transform (FFT) technique is base d on the 
periodic estimate 
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1\ l J Rh('t) = T 
0 

T x(t + 't:)y(t)dt (6) 

where the data segment pair x(t), y( t) originally defined on [O;TJ is made 

periodic by setting x(t + T) = x(t), y(t + T) = y( t). U sin g the results from 

appendix A, it is easy to see that the periodic estimate can be written as a 

convolution 

1\ 

Rh('t) = X( 't) *y(- 't) (7) 

1\ 

and that Rh('t) is periodic with period T. Therefore the length of the 

periodic estimate is only T and not 2T as for the direct estimates 
introduced in the preceeding section. Let y(t) and Yn be a Fourier 

Transform pair, y(t) H Y n , then y(- t) H Yn where the overbar denotes 

complex conjugation, se (A.3) in appendix A, and the Fourier Transform Sn 
1\ 

ofR~ ('t) is therefore given by 

(8) 

where x( t) H Xn. Thi s equation, together with the FFT algorithm, form the 

basis of correlation function estimation by the Fast Fourier Transform. 

The idea is to take the time series, divide them into smaller data segment 

pairs of the length T, estimate the spectral values Sn for all the data 

segment pairs, average over the pairs to reduce random uncertainty and 
finally transform back to the time domain to obtain the correlation 
function e stimate by inverse FFT. 

The advantage is, that this technique- because ofthe efficiency ofthe FFT 
algorithm - is faster than the direct method.-The problem is that the 
estimate is biased. 
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The bias is introduced in the calculation of the correlation integral (6) by 
the assumption ofperiodicity ofthe data segments. Ifthe argument t+ 't is 
larger than T, then the factor x(t + 't) in the correlation integral is replaced 
by x(t + 't - T), and the ends of the periodic estimate of the correlation 
function is polluted by "wrap around bias". 

The bias might be large or small depending on how well the assumption of 
periodicity is satisfied, but once the bias is there, it eannot be removed. 
The bias might be reduced in the frequency domain by introduetion of 
suitable windows, Brigham [5]. 

In the time domain, however, the bias can be prevented by padding zeroes, 
Bendat and Piersol [6]. From the original data segment pair x(t), y(t) 

defined on [O;TJ a new pair is defined 

{ 
[x(t), y(t)] t E [O;TJ 

[xo(t), Yo(t)] = 0 t E [T;2TJ (9) 

This completely removes the wrap around bias on the periodic estimate. 
The reason is that the added zeroes make sure that the integrand in the 
convolution integral vanishes outside the original definition set [O;TJ. 
Thus the zero padding doubles the length of the correlation fimetion 

1\ 

estimate, and makes it correspond exactly to the biased estimate Rn{t). 

The effect of padding zeroes is therefore that the more or less arbitrary 
wrap around bias is replaced by the well defined window bias. As it 
appears from the previous section, the window bias is simply removed by 
division by the basic lag window w( 't) = (T - 't)/T. 

This technique of unbiased correlation function estimation by FFr is 
illustrated in figure l. Since the variance increases at the ends of the 
estimate due to decreasing information, it might be considered to discard 

Measurement 

l 
Dato segment 
copturing 

l 
Zero podding 

Fast Fourier 
Transform 

l 
Spectrol 
estimation 

Figure 1: 
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the outermost parts of the correlation function estimate. In figure 1 the 
possibility of discarding the last half part of the e stimate is indicated. 

2.3 The Random Decrement Method 

The Random Decrement (RDD) t echnique is a fast technique for 
estimation of correlation functions for Gaussian processes by simple 
averaging. 

The RDD technique was developed at NASA in the late sixties and early 
seventies by Henry Cole and co-workers [13-16], just a littie later than the 
development ofthe FFT technique. 
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The basic idea ofthe technique is to estimate a co-called RDD signature. If 
1\ 

the time series x(t), y(t) are given, then the RDD signature estimate DXY('t) 

is fonned by averaging N segments of the time series x( t) 

N 
1\ l 
DXY('t) = N L X( 't+ ti) l Cy(t;) 

i= l 

(lO) 

where the time series y(t) at the times ti satisfies the trig condition Cy(ti), 

and N is the number of trig points. The trig condition might be for 
instance that y(ti) = a (the level crossing condition) or some similar 
condition. The algorithm is illustrated in figure 2. In eq. (10) a cross 
signature is estimated since the accumulated average calculation and the 
trig condition are applied to two different time series. If instead the trig 
condition is applied to the same time series as the data segments are 
taken from, an auto signature is estimated. 

One of the problems of the technique is that the theoretical basis has been 
unclear and is still being discussed. Most of old references on the RDD 
Technique, including the original papers by Cole and co-workers argue on 
a more or less heuristic basis that the RDD signature fonned by averaging 
time series segments from the output of a stochasic loaded system should 
describe system properties only. 

This interpretation was modified by V andiver et al, [17], who defined the 
RDD auto signature as the conditionale expectation Dxx('t) = 

E [X( 't) l X(o) = a], and proved that in the case of the level crossing trig 
condition applied to a Gaussian process, the RDD signature is simply 
proportional to the auto correlation fimetion 

Dxx('t) =E [X('t) l X(O) = a] = Rxx;'t) a 
crx 

(11) 
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Figure 2. Determination of the Random Decrement signature. 
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where a is the trig level and cr_i. is the variance of the proces. The original 
interpretation of the RDD signature is therefore correct only under the 
asumption of white noise loading where the free decay is proportional to 
the correlation function. 

It is not difficult to generalize Vancliver's result to the cross signature 
case. Let X(t) and Y(t) be stationary, zero mean, Gausian processes. The 
dependency between the processes is then completely deseribed by the 
covariance matrix 
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jX('t)] _ [ cri RXY(t)] Cov't_ Y(O) [X( 't) Y(O)]] - RXY('t) 0~ (12) 

Now, using the definition of the RDD signature as a conditional 
expectation and using (B.4) in appendix B, taking the Gaussian vectors K 
and X: as scalars equal to X( 't) and Y(O) respectively, the generalization of 
eq. (11) is easily obtained 

DXY('t) = E [X(t) l Y(O) = a] = R~ 't) a (13) 

One of the qualities of the RDD technique is that the RDD estimate is 
"bom unbiased". This is easily verified 

N 
1\ l 

E (DXY('t)] = N L E [X( 't)+ t) l Y( t) = a] = DXY('t) 
i= l 

(14) 

The result given by eq. (13) is limited to the case ofthe level trig condition. 
It is possible however, to derive a kind offundamental solution, forming a 
basis for application of different trig conditions. Conditioning on both Y 

. T . 
and y defining the Gaussian vectors K= X('t) and r = [Y(O) Y( O)] = [a v] 

and using eq. (B.4) in appendix B we obtain, Krenk and Brincker [18] 

· RXY('t) R'XY('t) 
DXY('t) = E [X('t) l Y(O) = a, Y(O) = v]=~ a-~ v 

y y 

(15) 

where R'XY('t) is the derivative of the correlation function and where cr~ is 
the variance of the derivative proces Y( t), for a Gaussian proces given by 

cr~ =- R" yy(O). From this fundamental solution i t is possible to explain the 
meaning of the RDD signature for several trig condition of practical 
interest 
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B: . Y (O) = v 
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(16) 
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The result fortrig condition A is found using that the distribution ofY(t) is 
symmetrical and independent of Y(t). The last term in eq. (15) will 
therefore vanish, and the result becomes proportional to the correlation 
function in agreement with eq. (13). The result for condition B is obtained 
by a similar argument, and the results for the conditions C and D follows 
directly from eq. (15). 

An estimate of the variance on the RDD signature in closed form might be 
found by obtianing the conditional variance using eq. (B.5) and assuming 
the averaged data segments to be independent, Krenk and Brineker [18]. 

Even though the RDD estimates are "horn" unbiased as shown above, the 
implemetation might introduce bias. At least two sourees of bias are 
known at present, but if these bias errors are prevented, the remaining 
bias errors will be small at least for ligtbly damped systems. The two bias 
sourees are "trig point sorting" bias and "trig window" bias, both 
illustrated and discussed in Brincker et al. [19]. 

"Trig point sorting" bias means bias introduced by non-representative 
data segments, typically obtained by sorting the trig points. The bias is 
prevented by using time series containing a large number of trig points, 
and by using all the trig points in the time series. 

The "trig window" bias is introdueed by improper implementation of the 
trig eondition. A sampled time series is only known at eertain times t;. 

Thi~ means that it is not possible for instance to obtain the exaet time t 
the realization y(t;) crosses through the level a, and therefore the 

theoretieal level erossing condition eannot be realized on sampled data. 
The condition must be modified by introduetion of a finite size trig 
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window. V ertical, horizontal and general slanted trig windows might be 
used, and it is possible to show that the bias as a first approximation will 
give rise only to a time shift of the RDD estimate, Krenk and Brincker 
[18]. The bias can be removed by shifting the signature back to the right 
origin, or prevented by using self-compensating trig windows. 

Some of the important elements of the theory of the RDD technique, the 
fundamental solution, closed form solutions for the variance on the 
estimate and bias introduced by different kind of windows are developed 
in Krenk and Brincker [18], and applications are illustrated in Brincker et 

al [19], [20]. 

3. EVALUATION OF CORRELATION FUNCTION 
ESTIMATION TECHNIQUES 

In this section the three techniques are evaluated comparing the speed 
and accuracy for estimation of auto correlation functions. The 
autocorrelation functions are estimated on the output from a single 
degree-of-freedom (SDOF) system loaded by white noise. 

The output Xn formed by sampling the continuous output signal from a 
SDOF system at the fixed sampling rate 1/!!.T is simulated by an ARMA 
(2,1) model as explained in appendix C. The autocorrelation function ofthe 
simulated proces is therefore known to be Rxx (mM) where Rxx (.) is the 
auto correlation function for the system output in continuous ti_!!le given 
by eq. (C.2). Therefore, if an e stimate of the correlation function Rxx (t m) is 

obtained from the simulated time series, the estimation error e can be 

calculated directly 

M 
l A 2 

e2 = ~ L (Rxx (m!!.T) - Rxx (m!!.T)) 
Max m = O 

(17) 
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where M IS the number of points m the one-sided auto correlation 
estimate. 

All the simulations were performed modeiling a system with a period of 
0.5 seconds corresponding to Wo = 12.57 rad/s, the time spacing !!.T 

between sample points was 0.051 seconds and the length of all the time 
series was 4000 points. The simulations were performed using the PC 
version of the MATLAB software package, [21], except the algorithm for 
estimation of the RDD signature which was programmed in the C 
programming language and linked to the MATLAB software by the 
MATLAB user function interface. All calculations were made on a 33 MHz 
386-based PC with a 387 mathematical co-processor. 

Only unbiased versions of the techniques were used as explained in the 
preceeding section, and the RDD technique was used with the trig 
condition C in eq. (16) and a= crx. 

Figure 3 illustrates the accuracy of the three techniques. M denotes the 
number of points in the one-sided correlation function. Thi s corresponds to 
an e stimate length of T= (M- 1)!1T. For the FFT estimates, M den o tes the 
number of points in the one-sided correlation fimetion estimate after the 
last half part of the estimate has been discarded. The reduced e stimate is 
a littie more accurate and a littie faster to calculate. The difference in 
accuracy between the reduced FFT estimates and the estimates obtained 
by the direct technique is small, and the FFT results can be considered 
representative for the direct unbiased technique also. Each point in the 
figure is the average of ten values, each estimated from time series of 4000 
points. 

In figures 3a and 3b the estimation error is shown as a function of M for 
three different damping ratios, heavy damping ~ = 0.1, moderate damping 
~ = 0.01, and light damping ~ = 0.001. It appears from the results that for 
heavy damping and short estimates the FFT technique is more accurate 
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In figure 3.c and 3.d the estimation error is showri as a function of the 
damping ratio for three different lengths, short estimates M = 16, medium 
length estimates M = 64 and long estimates M = 256. The estimation 
errors for the long and the medium lenghts estimates are about the same 
for the two techniques, but for the short estimates, the estimation error 
for the RDD estimates is smaller than the estimation error for the FIT 
estimates in the low damping region' = 0.001. 

.., 100 a ·.:::: 

1(}-2 
100 
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Estimation times 

101 

number of points M 

Figure 4. Times for calculation of autocorrelation function estimates by 
the Random Decrement technique (RDD), the Fast Fourier 
Transform (FFT) technique and the direct technique for a time 
series of 4000 data points using a 33 MHz 386 PC with 387 
co-processor. 

Figure 4 shows the observed estimation times for the three techniques as 
a function of the number of points M in the one-sided correlation fimetion 
estimates. As it appears from the results, the direct technique is always 
the slowest and the RDD technique is always the fastest ofthe three. This 
migth change for extremely long estimates, M> 512, but for all the 
investiagted values of M the RDD technique is significantly faster than 
the two others. For the short estimates the RDD technique is about a 
factor of 100 faster than the FIT technique. 
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However, the speed results reflects not only the efficiency of the 
techniques, but also the way the computer treats numbers. The results 
reflects the ratio between computation time for addition (RDD estimation) 
and multiplication (FFT estimation and direct estimation). This ratio is 
di:fferent from computer to computer, and therefore the results given in 
figure 4 are not universal. The results are a strong indication that in the 
most cases the RDD technique will be the most efficient for estimation of 
correlation functions ofrnoderate length. 

4. IDENTIFICATION OF SYSTEM P ARAMETERS 

From the results in the previous sections, the RDD technique seems to be 
the fastest and in some cases the most accurate technique for estimation 
of correlation functions. The RDD technique is therefore used in the 
further in vestigation s. 

After the response simulation and auto correlation estimation by the RDD 
1\ 1\ 1\ 

technique, the parameter estimate 9= [T~] is obtained from the auto 
correlation estimates. A typical RDD auto correlation estimate is shown in 
figure 5a. 

In this section three methods of identifying system properties from 
correlation function estimates are described: a simple non-parametric 
technique, estimation of AR models by linear regression and fitting of the 
theoretical auto correlation function by non-linear optimization. Finally it 
is deseribed how system parameters can be estimated directly from the 
original time series by calibration of an ARMA model. 

4.1 A Simple Non-Parametric method 

In the non-parametric method denoted RDD-NP the damping and the 
eigenperiod are found simply by estimating crossing times and the 
logarithmic decrement. 
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21 

Figure 5. 5a: a typieal auto eorrelation funetion estimated by the 
Random Deerement teehnique for M = 50, M = O.JT and~ = 

0.01. o: RDD estimate, solid line: exaet solution. 5b: estimation 
of the extreme values (peaks and valleys) and erossing times o n 
the auto eorrelation funetion and the erossing times of the 
derivative. 

First all the extremes r i - both peaks and valleys - on the correlation 
function are found. The logarithmic decrement o can then be expressed by 
the initial value ro of the correlation function and the i'th extreme 

2 ro 8 =-:- ln ( - ) 
z l ri l 

(18) 

The logarithmic decrement and initial value of the correlation fimetion 
can then be found by linear regression on io and 2ln( l ri l), and the 
damping ratio then is, Thomson [8], 

(19) 

A similar procedure was adopted for determination ofthe eigenperiod. The 
estimated times corresponding to the estremes and the zero crossing times 
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of the correlation function fonns an number of time points 'ti equally 
spaced by a quarter of the damped eigenperiod. The damped eigenperiod 
Td and the time shift of the correlation function can then be found by 
linear regression on the crossing times 'ti, and the eigenperiod is then 
given by 

(20) 

The extreme values and the corresponding times were found by quadratic 
interpolation, fig 5b. The crossing times of the correlation function itself 
were found by linear interpolation, figure 5b. 

The extremes are a part of the envelope of the auto correlation function. 
The envelope only depends on the damping, and therefore even though the 
technique might seem simple, it provides a direct way of separating the 
problems of estimation of the damping and the eigenperiod. This 
observation is still true when nonlinear damping is present, and therefore 
the simple non-parametric technique might be especially usefull in 
situations where the other techniques break down. 

The simple non-parametric algorithm for estimation of the damping ratio 
and the eigenperiod of the auto correlation function was programmed in 
the C programming language and linked to the MATLAB environment by 
the MATLAB user function interface, [21]. 

4.2 Auto Regressive (AR) Model Estimation 

For a SDOF system loaded by white noise the stationary output in 
discrete time space is given by (C.3, appendix C). Using the white noise 

assumption E [ai a1] = cr~ oy where oy is the Kronecker delta and the 

definition of the auto correlation function Rxx('t) =E [X (t + 't) X( t)], a 
difference equation for the auto correlation function can be obtained by 
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multiplying both sides of (C.3) by Xm _ k and then taking the expectation. If 
the estimated auto correlation function is substituted for the theoretical 

auto correlation function, the result is 

A A A 
Rxx (mM) = <'P1Rxx ((m - l)~) + <'PzRxx ((m - 2)t..t) ; l < m <M (21) 

where M is the number of points in the estimated one-sided auto 

correlation function. This is a system of linear equations in the Auto 
Regressive (AR) Parameters <'P1, <'P2 often referred to as the Yule-Walker 
equations. When the number of equations are larger than the number of 
parameters to be estimated, the system becomes overdetennined, and the 
equations maynot have a solution. For such situations, however, standard 
methods exist for detennination of approximate solutions. One possibility 
is to solve the system of equations by least square linear regression. In 

A A 
that case the estimate <'P1, <'P2 is called an overdetennined Yule-Walker 

estimate, Soderstrom and Stoica [2]. 

A 1\ 

From the estimates <'P1, <'Pz found by linear regression calibration of the AR 
model, the eigenperiod and damping ratio are found using the inverse 
closed form solutions given by eq. (C.4) and (C.5). The method of 
estimating the system parameters by AR calibration is denoted RRD-AR. 

All the estimations were performed using the standard estimation 
function for the AR model in the MATLAB system identification toolbox, 

[21]. 

4.3 Fitting the Theoretical Correlation Function 

Since we know that we are dealing with a SDOF system, the form of the 
auto correlation function is known. An obvious way of estimating the 
system parameters !! is therefore to minimize the difference between the 
theoretical auto correlation function Rxx @,mM) given by eq. (C.2) and the 

A 

estimated auto correlation function Rxx (m~t). U sing a le as t square 
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approach, the method is denoted RDD-FIT and the parameter estimate 
1\ 1\ 1\ 

!! = [T ~] is found as the solution to the foliowing set of nonlinear equations 

M 

a " " 2 de; .,t... (Rxx (!!, m!J.t) - Rxx. (mM)) = O 
m = l 

(22) 

Typically the error function has rnany local minima, and therefore to 
prevent false solutions (not corresponding to the global minimum) a good 
initial estirnate is essential. The nonlinear set of equations were solved 
using a quasi-Newton algorithrn with the pararneter estimate from the 
non-parametric method as initial values. 

All the estimations were performed using the standard optimization 
function FMINU in the MATLAB optimization toolbox, [21]. 

4.4 Identification on the Original Time Series 

From the simulation it is known that the true model is an ARMA (2,1). 
The ARMA models were calibrated using a predictor error method, Ljung, 
[1], and all estimations were performed using the standard calibration 
function in the MATLAB systern identification toolbox. 

5. EV ALUATION OF IDENTIFICATION METHODS 

The accuracy of the techniques were investigated by identifying the 
systern pararneters for different sampling times !J.T, different length's M of 
the auto correlation fimetion estirnate and for different damping ratios ~-

For each combination 20 time series of 4000 points each were simulated, 
the parameters were estirnated as explained in the preceeding sections, 

1\ 

and the coeffient of variation SUl [SJ l e; and the empirical bias 
- 1\ 

E [Ø; - e;J l e; were calculated for the eigenperiod and the damping ratio, 
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T and the estimated damping ratio ~ as a function of the 

sampling time !J.T. For all curves M = 50, ~* = 0.001 and the 
symbols mean: o: RDD-NP, *: RDD-AR, +: RDD-FIT, x: 
ARMA 

where std [ ] is the empirical standard deviation and E [ ] is the ernpirical 
expectation. The results are shown in figure 6, 7 and 8. 

Figure 6 shows the identification results as a function of the sampling 
time M for ~ = 0.001 and M= 50. As it appears from the results the 
optimal samling time is relatively close to the Nyquist frequency 
!J. T= T 12. I t is not surprising that all four techniques manage to give 
reasonable estimates for the two well defined system parameters. The ' 
differences in accuracy between the four techniques are smal l. If ~h e 

l ' 
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Figure 7. Coefficient ot variation and bias on the estimated eigenperiod 
A A 
T and the estimated damping ratio ~ as a tunetion ot the 

number ot points M. For all curves AT = 0.41'*, ~· = 0.001 and 
the symbols mean: o: RDD-NP, *: RDD-AR, +: RDD-FIT, x: 
ARMA. 

sampling time becomes too long then the RDD-NP technique becomes 
more unreliable than the other techniques. This was to be expected 
because then the simple algorithm eannot identify the extremes on the 
correlation function estimates. There is a tendency for all the methods to 
overestimate the damping, propably this is due to insufficient information 
in the relatively short time series. 
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Figure 8. Coefficient ot variation and bias on the estimated eigenperiod 
A A 

T and the estimated damping ratio ~ as a tunetion of the 
damping ratio ~- For all curves M = 50, l:lt = 0.4T and the 
symbols mean: o: RDD-NP, *: RDD-AR, +: RDD-FIT, x: 

ARMA. 

Figure 7 shows the identification results as a function of the number of 
points M in the one-sided auto correlation function estimate for At = 0.4T 
and~ = 0.001. Again there is only a small difference in accuracy, allthough 
there is a tendency for the RDD-AR and ARMA estimates to be more 
accurate for short correlation function estimates. The RDD-AR estimates 
are very close to the ARMA estimates, figure 7 a, 7b and 7 d. For short auto 
correlation fimetion estimates the NP estimates seem to be biased, and 
because of problems with formulating a flexible termination eriterion for 
the nonlinear optimization this affects the RDD-FIT estimates through 
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Figure 9. Estimation times for the different techniques as a function of the 
length M of the one-sided auto correlation function estimate using 
a 33 MHz 386-based PC with 387 co-processor. 

the initial values. Therefore nothing seems to be gained by trying to fit the 
correlation function after the non-parametric estimates has been obtained. 

Figure 8 shows the results as a function of the damping ratio ~- As 
expected small damping ratios give a large coefficient of variation on the 
damping estimates, and a small coeficient of variation on the eigenperiod 
estimates. For small damping ratios all damping estimates seem to be 
biased. This is propably due to Jimited information about the damping in 
the time series - propably the time series becomes too short measured in 
correlation times. Again it appears from the results that there is only a 
marginal difference between the accuracy of the four investigated 
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techniques. For large damping ratios, the ARMA and the RDD-AR 
estimates are systematically better than the RDD-NP and RDD-FIT 
estimates, but for dampin,g ratios in the structural range~ E [0.01; 0.001] 
there seems, to be no hig difference. 

Figure 9 shows the estimation times as a function of the length M of the 
correlation functions estimates. The depency of M is small compared to 
mutual differences and the estimation times for the ARMA calibration 
was about 30 s, for the RDD-FIT technique about l - 2 s (10 - 20 
iterations), for the AR estimation about 0.3 s and for the simple 
non-parametric technique about 10 - 20 ms. The time for RDD estimation 
ofthe auto correlation function was in section 3 found to about 0.1 s. This 
means that the total estimation times for the two-stage techniques are 
about 1-2 s for the RDD-FIT technique, about 0.4 s for RDD-AR estimation 
and about 0.1 s for the RDD-NP technique. 

6. CONCLUSIONS 

Three techniques are known for non-parametric estimation of correlation 
functions: the direct technique, the Fourier Transform technique and the 
Random Decrement technique. 

All three techniques can be implemented to yield unbiased correlation 
function estimates, but there are differences in the efficiency and 
accuracy. 

The results in this investigation show that if correlation functions are 
estimated on output from systems with heavy damping then the FFT 
technique seem to be the most accurate. If correlation function estimates 
are short and the correlation functions are estimated on output from 
systems with light damping the accuracy of the Random Decrement 
technique seem to be better than for the two others. 
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The results in this investigation show - in agreement with common 
knowledge - that the direct technique is the slowest of the three, and the 
results indicate that for calcution of short estimates the Random 
Decrement technique will be significantly faster than the Fast Fourier 
Transform. 

The use of different two-stage system parameter identification methods 
has been illustrated on a simple SDOF system loaded by white noise. 

In thi s case the use of interface functions only results in a relativily small 
loss of information. In this investigation about 50 points in the auto 
correlation function estimates were enough to ensure about the same 
estimation uncertainties as an effective one-stage technique (ARMA 
calibration). 

If an unbiased correlation function estimator like the Random Decrement 
technique is used for interface function estimation, then the observed 
empirical bias on the parameter estimates is small compared to random 
errors in the most cases. When bias is present, it seems to be introduced 
by limited information in the relatively short time series used in the 
investigation. 

Three techniques were used for identification of system properties from 
the auto correlation function estimates: a simple non-parametric 
technique, calibration of Auto Regressive models and finally least square 
fltting of the theoretical auto correlation function. The three techniques 
did not ditfer very much in accuracy, allthough a detailed examination 
shows that AR estimation is the most accurate and the most re liable of the 
three techniques. 

However the three techniques showed a significant difference in speed, the 
fit technique being slowest with about 1-2 s per estimation and the 
non-parametric being the fastest with about 10-20 ms per estimation. 
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The simple non-parametric technique can be recommended. It is 
extremely fast and pretty reliable. Purthennore if nonlinear damping is 
present it might be useful in situations where other methods might break 
down. 

Calibration of an AR model by solving the overdetermined set of 
Yule-Walker equations by least square linear regressic:m seems to be a 
fast, accurate and reliable technique. It is nearly as accurate as 
calibration of an ARMA model directly on the original time series. 
Furthennore, in situations where the system is only aproximately an 
SDOF system, for instance while an output from a 
multi-degree-of-freedom system is band-pass filtered, an oversized AR 
model can be applied in a similar way. 

APPENDIX A. Fourier transforms of finite length data 

The Fourier series of a fimetion f (t) defined on [O;T) is defined by 

00 

f (t) = L Fneinoot' W= :; (A.1) 
n;=-oo 

Using the ortogonality relation 

(A.2) 

where Onm is the Kronecker delta, the Fourier coefficients or the Fourier 

transform of f (t) is obtained 

(A.3) 

The functions f(t) and F n is said to form a Fourier transform pair 
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(A.4) 

Since the base fimetions eincot are all defined on ]- oo; oo[ it is natural to use 
eq. (A. l) to extend the definition set for f(t) to ]- oo; oo[. In that case f(t ) 

becomes periodic with period T . Now let g(t) and h(t) be periodic functions 
with period T. Ifthe convolution is defined as 

l IT g(t) * h(t) = T 
0 

g(t-'t) h('t) d't (A5) 

then by using eq. (A2) it is easy to show that 

g(t) * h(t)HGnH n (A6) 

The corresponding theorem for convolution in the frequency domain 

Gn * Hn = L Gn-kHk 
k=-= 

is found to 

g(t) h(t) H Gn * Hn 

(A7) 

(A8) 

APPENDIX B. Condition on Gaussian variables via 
regression 

Let Æ: and _Kbe Gaussian vectors, i.e. the elementsX1.X2 • •• Xn; Y1• Y2 • •• • Ym 
are jointly normal distributed and are therefore completely deseribed by 
the expectation and the covariance 
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APPENDIX C. System Response Simulation by ARMA 
(2.1) Model 

The response X(t) from a single degree-of-freedoms-system loaded by 
stationary Gaussian white noise is the solution to the second order 
differential equation 

X+ 2~moX+ ~ = Qct> (C. l) 

where Wo is the undarnperl natura! angular frequency, ~ is the damping 
ratio and Q (t) stationary zero mean Gaussian white noise. For this case 
the normalized (corresponding to variance one) autocorrelation function is 
given by, Crandall and Mark [7] 

Rxx('t) = exp(- l,:Wo't) (cos(Wfl) + ;Wo sin(Wfl)) ; 't ;::>: O 
Wd 

(C.2) 

where Wd is the damped natural frequency Wd = Wo ~- The most 
accurate way to perform simulations of a system formulated in continuous 
time, is to transform the system model to the discrete time space. This can 
be done by using an ARMA model. It can be shown, Pandit and Wu [3], 
that a second order system formulated in continuous time may be 
represented in the discrete timespace by a (2,1) ARMA model given by 

C.3) 

where m is the discrete time (tm = mM), <1>1, <l>z are the Auto Regressive 
(AR) parameters, e is the Moving Average (MA) parameter and am is a 
time series of independen t Gaussian distributed numbers with zero mean 

and variance cr~. The model is denoted (2, l) since it has 2 AR parameters 
and l MA parameter. If the ARMA parameters are chosen as 

(C.4) 
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CC.5) 

8 =-P±...fPz - 1 ; 18 1 <l (C.6) 

where 

p _ Wdsinh(2~w~t) - ~wosin(2WdM) 

- 2~Wosin(wdM) cosh(~~t) - 2Wdsinh(~WoM) cos(wdM) 
(C.7) 

then the ARMA model given by eq. (C.3) is the representation of the 
continuous system given in eq. (C.l) in the discrete time space. It can be 
shown, Pandit and Wu [3], that the discrete auto correlation function of 

the time series Xm is equal to the sampled auto correlation function of the 
continuous process X( t). 
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RESUME 

Identifikation af bærende konstruktioner ved anvendelse af korrelations­
funktioner betragtes. En to-trins identifikationsmetode er foreslået. Første 

trin er bestemmelse af korrelationsfunktioner medens andet trin består i 
bestemmelse af systemparametrene udfra korrelationsfunktionsestimater­

ne. Tre metoder til bestemmelse af korrelationsfunktioner præsenteres: 
den direkte metode, FIT efterfulgt af invers FFT samt Random Deere­
ment teknikken . For alle metoderne er der givet en gennemgang af mulige 
årsager til samt metoder til forebyggelse af fejl på korrelationsfunktions­
estimaterne. Herefter præsenteres metoder til bestemmelse af systempa­
rametre fra korrelationsfunktionsestimaterne bestemt ved Random Deere­
ment teknikken : en simpel ikke-parametrisk metode, estimering ved en 
Auto Regressive (ARJ model og ved at fitte et analytisk udtryk for korrela­

tionsfunktionen . Ved en simuleringsundersøgelse sammenlignes resulta­
terne opnået ved disse to-trins metoder med resultater opnået ved at fitte 

en Auto Regressive Moving Average (ARMA) model direkte til acceleratio­
nerne fra et system med en frihedsgrad belastet med hvid støj. 

(modtagetjuni 1991) 
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