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On the Optimal Location of Sensors for 

Parametric Identification of Linear Structural Systems 

P. H. Kirkegaard & R. Brincker 

Department of Building Technology and Structural Engineering 

Aalborg University 

Sohngaardsholmsvej 57, 9000 Aalborg, Denmark 

ABSTRACT: A survey of the field of optimallocation of sensors for pararnetric 

identification of linear structural systems is presented. The survey shows that 

few papers are devoted to the case of optimal location of sensors in which the. 

measurements are modelled by a random field with non-trivial covariance function. 

Most often it is assumed that the results of the measurements are statistically 

independent random variables. In an exarnple the importance of considering the 

measurements as statistically dependent random variables is shown. The example 

is concerned with optimallocation of sensors for pararnetric identification of modal 

parameters for a vibrating bearn under random loading. The covariance of the 

modal parameters expected to be obtained is investigated to variations of number 

and location of sensors. Further, the influence of the noise on the optimallocation 

of the sensors is investigated. 

l. INTRODUCTION 

When performing experiments one faces the problem of choosing the exper­

imental conditions (test signals, sampling strategy, location of sensors etc.) so 

that the information provided by the experiment is maximized. The problem of 

experiment design has been given much attention in the literature. The theory of 

the design of static experiments originated in the early thirties, see e.g. ref.l, and 

has been considerably developed in the statisticalliterature after the second world 

war, ref.2 and ref.3 can be mentioned as basic references. However, the models 

considered in the statisticalliterature are generally static and their applicability to 

dynamic models has become clear only recently. Design of experiments for para­

metric identification of dynamic systems has been a subject of research during the 

last decades mainly developed in relation to identification of electrical systems. 
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The problem of experiment design can be regarded as a generalisation of the prob­

lem of optimal input signal design that has been comprehensively treated in the 

literature, see e.g. ref.4. Representative surveys of the problem of experiment 

design for dynamic system identification are given in the system identification 

textbooks ref.5, ref.6, ref.7, ref.8 and ref.9. Beyond these textbooks many research 

papers exist, mainly on the problem of optimal input design for system identifica­

tion. Especially, the paper ref.lO may be noticed as a contribution to the literature 

concerned with experiment design for dynamic system identification. 

Design of experiments in relation to structural problems seems a subject 

which only has received littie attention during the last decade and will be a subject 

of research in the future, see ref.ll. Just recently papers have appeared about 

optimal number and location of sensors. The choice of the location of sensors 

can have a significant infiuence on the quality of the results of the experiment. 

Therefore, ideally, the number of sensors, usually limited to minimize the cost of 

the instrumentation, is always located in a way regarded as optimal. 

In the past, the optimal sensor location problem (OSLP) has often found its 

solution from practical considerations, e.g. as closely as possible to the antinedes 

of the lower frequency mode shapes (problem of signal-to-noise ratio) or deck level 

in offshore structures (problem of cost ). However, if there is more than ane mode 

and, above all, more than one sensor, the OSLP is very difficult to salve by the 

antinode technique. Based on the antinode technique and experience ref.12 has 

given guidelines for piacement of sensors for measuring the earthquake response 

of buildings. 

The aim of this paper is to survey the field of optimal location of sensors for 

parametric identification of linear structural systems. In section 2 several mathe­

matical solutions to the OSLP proposedin the literature are reviewed and classifled 

according to their main characteristics. It will be seen that few researchers have 

tried to salve the problems menticned above. Especially, the problem of estimat­

ing the optimal number of sensors seems nearly unsolved. In section 3 an example 

is given concerned with optimallocation of sensors for parametric identification 

of modal parameters for a vibrating beam subjected to the action of a transverse 

random load. The covariance of the modal parameters expected to be obtained is 

investigated to variations of number and location of sensors. Further, the infiu­

ence of the noise on the optimallocation of the sensors is investigated. At last in 

section 4 condusions are given. 



2. ON THE OPTIMAL SENSOR LOCATION PROBLEM 

In what follows attention is focused on the hest choice of location of sensors 
in the problem of parametric identification of the parameter vector B from the 

output of the sensors inelude in the vector -ym(t) given by the measuring equation 

-ym(t) =y( t IB)+ e( t) (1) 

where y(tiB) denotes a prediction of :ym(t) basedon a model and the parameter 

vector B. The additivenoise e(t) is normally assumed to be Gaussian stationary 

white noise both in spaceand time parameters. 

Since the estimate B N of the parameter vector B to be estimated from the ex­

periment is dependent on random processes the accuracy of B N must be considered 

in a statistical sense. For experiment design purposes, it is normally assumed that 

the accuracy of the parameter estimate is most conveniently expressed in terms of 

the parameter covariance matrix C0N. Many authors postulate the existence of an 

asymptotically effi.cient unbiased estimater as a basis for the experiment design. 

This implies that there is a lower bo~nd, the Cramer-Rao lower bound, on the 

achievable covariance of the estimate B N irrespective of the estimater algorithm 

used, provided it is unbiased. This leads to a great simplification, since the min­

imum variance given by the Cramer-Rao lower bound can be easily computed in 

several estimation problems. The Cramer-Rao lower bound is given by 

(2) 

= __ -[(alogj-ym(YmiØ)) (alogfym(ymiØ))T] 
J- Eymi(J ae ae (3) 

where J is the Fisher information matrix, see e.g. ref.5, which depends on the 

experimental conditions, e. g. the optimal location of the sensors. fy m (ym IB) is 

the conditional joint probability density furretion of Ym. Eymj"elJ is an expectation 

operator. 

For comparing different informative experiments it is necessary to have a 

measure of the applicability of the experiment. A logical approach is to choose 

a measure related to the expected accuracy of the parameter estimates to be 

obtained from the data collected. Clearly, the parameter accuracy depends on both 

experimental conditions 'H and the parameter estimator. Formally, the problem 

of optimal experiment for parametric identification experiment design could be 
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stated as 

(4) 

where A(·) is a scalar function of the covariance matrix. Typically, such scalar 

functions are e.g. the determinant (D-OPTIMUM), the trace (A-OPTIMUM) or 

the maximal eigenvalue of the covariance matrix (E-OPTIMUM), see e.g. ref.lO, 

ref.4, ref.7 and ref.l3. In ref.14 a detailed discussion of design criteria related 
to experiment design is given. It is seen from ( 4) that the basic idea underlying 

the experiment design theory is that a design should be chosen to make a scalar 

measure of the inverse of the Fisher information matrix as small as possible. By 

doing so a design is chosen to get as much information as possible about the 

parameter vector 7J in a Fisherian sense. 

The approach, mentianed above, for determination of the optimal experimen­

tal design has been studiedin few papers with regard to optimallocation of sensors· 

for parametric identification of structural systems, see e.g. ref.15, ref.16 and ref.17. 

In these papers the Fisher information matrix is established for a multi-degrees of 

freedom structural system. 

In ref.15 an example is given to investigate the properties of the solution to 

the OSLP. The example considers the infiuence of the changes in prior parameter 

estimates and the input characteristics on the optimal sensor location. From the 

results shown in ref.l5, i t is noted that the optimal sensor location for estimation of 

7J actually depends not only on the actual values of parameters not to be identified, 

but also on the values of the parameter 7J itself which is to be identified. Thus 

it is necessary to have some a priori information about the system parameters to 

be able to ascertain the optimal sensor location. The condusion of the example 

is that design of an experiment on purely heuristic grounds may be diffi.cult since 

the example has yielded results showing that the OSLP appears to depend in a 

more or less complex manner on the actual parameter values of the system and 

the excitation. 

In ref.16 optimal parameter identification experiment design has been con­

sidered for lightly damped fiexible structures. The main result of the paper is 

a separation principle that decouples the problems of optimal input design and 

optimal sensor location design such that each is solved independently utilising 

simplified criteria. The decoupling effect is seen to give a significant simplifica­

tion of the experimental design. The decoupling results indicate that for lightly 

damped structures the sensors can be optimally placed by utilising mode shape 

information only. This is significant since sensors can be roughly placed based on 

mode shape information which is less uncertain prior to the measurements than 

information about the modal frequencies and damping ratios. 
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In ref.l 7 an analytical expression for the determinant of the Fisher informa­

tion matrix is given for a multi-degrees of freedom system. Further, the relation 

between necessary number of measuring points and the number of excitation fre­

quencies is established. At last the information that can be gained only by dynamic 

testing with regard to model parameters is investigated. 

Determination of the optimallocation of sensors for parametric identification 

of structural systems has also been studiedin ref.18, ref.19 and ref.20. One of the 

first solutions to the OSLP basedon the parameter covariance matrix seems to be 

given in ref.l8 (1977). In brief, a linear relationship between small perturbations 

in a firrite dimensional representation of the system parameters B to be estimated 

and a firrite sample of observations of the system response is used to determine 

approximately the covariance matrix. In ref.19 and ref.20 it is adopted that the 

optimal solution to the OSLP is the one giving the hest value of a scalar measure 

of the covariance matrix of the Bayes parameter estimates. 

Papers concerned with optimal location of sensors for parametric identifi­

cation of parameter distributed systems where the design is based on the Fisher 

information matrix have also been produced. In ref.21 the Fisher information ma­

trix is associated with the system parameters while ref.22 considers the system 

eigenvalues, i.e. parameters representing the natural frequencies of the undamped 

system. Beyond these papers the OSLP for parameter distributed systems has 

also been considered in ref.23. The basic idea in that paper is to place sensors 

in a distributed parameter system deseribed by the diffusion equation such that 

the identification error sensitivity with respect to the location of a new sensor is 

maximized. So ref.23 does not really deal with a method for optimallocation of 

sensors. 

Beyond the papers concerned with optimallocation of sensors for parametric 

identification the OSLP has also been considered from the standpoint of a re­

searcher who does experimental modal testing, see e.g. ref.24, ref.25, ref.26 and 

ref.27. 

The literature mentianed above deals with the OSLP assuming the mea­

surements to be statistically independent random variables. However, the OSLP 

becomes more realistic and more interesting if the measurements are assumed to 

be statistically dependent random variables. Such problems have been considered 

in e.g. ref.28, ref.29 and ref.30. In ref.28 the aim of the experiment is parametric 
identification of continuous mechanical systems subjected to random load, where 

the response can be given, by a model, which is linear in the parameters. 

Themost recent results (and a large literature) concerning the OSLP can be 

found in e.g. ref.ll, ref.23, ref.28 and ref.29. A throughout review of the sensor 
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piacement literature concerning distributed system is given in ref.31. 

It may be noticed that the OSLP for parametric identification is closely 

related to the problem of optimallocation of sensors and controllers for control 

of systems. This problem seems extensively studied, especially for large space 
structures. References considering the problem of optimallocation of sensor and 

controller are e.g. ref.32, ref.33, ref.34, ref.35, ref.36, ref.37, ref.38 and ref.39. 

Further, the OSLP is also related to the problem of optimallocation of sensors for 
failure detection of systems by vibration monitoring considered in e.g. ref.40 and 

ref.41. 

3. EXAMPLE: OPTIMAL LOCATION OF SENSORS IN A VIBRATING BEAM 

This example is concerned with optimallocation of sensors for parametric 

identification of modal parameters for a vibrating beam subjected to the action of 

a transverse random load. The covariance of the modal parameters expected to be 

o b tained is investigated to variations of number and location of sensors. Further, 

the influence of the noise on the optimallocation of the sensors is investigated. 

It is assumed that the equation of motion for the beam is given by 

EifJ4y(z, t) C ay(z, t) 82y(z, t) _ ( ) 
f)z4 + d 8t + Pm 8t2 - u z, t (5) 

where y( z, t) is the detleetion of the beam at the time t and distance z from its 

end. L is the beam length, Pm is the beam mass per unit length, Cd is the viscous 

damping coefficient per unit length and El is the bending stiffness of the beam 

assumed to be constant along the length of the beam. The boundary conditions 

describing the simply supported beam are 

f)2y(O, t) = f)2y(L, t) = (O ) = (L ) =O 
f)z2 f)z2 y 't y 't (6) 

The beam load u(z, t) is modelled as a zero-mean stationary Gaussian stochastic 

process {U( z , t)} with a covariance given by 

(7) 

where o is the Dirac delta function, i.e. it is assumed that the stochastic load is 

white noise in both time and space with va.riance l. The load is modelled as a 

stochastic load, due to the inevitable faet that loadings acting on structural sys­

tems are stochastic. Due to the system linearity the solution for the dispiacement 
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y( z, t) is as follows if a modal approach is used 

00 

y( z, t)= L qj(t)</>j(z) (8) 
j=l 

where qj(t) is a generalised coordinate and </>j(z) is the mode shape of the jth 

mode. See e.g. ref.42 for a solution of qj(t) and </>j(z). The response problem is 
therefore in principle solved once the modal dispiacements are determined. The 

mode shape o f the j t h mode is given by 

,i,. ( ) • J1CZ 
'!'j z = sm-

L 
(9) 

The mode shapes satisfy the foliowing orthogonality relations 

(10) 

(11) 

Mj is the generalized modal mass. qj(t) is the solution of the foliowing second 

order differential equation 

.. ( ) l" • ( ) 2 ( ) Pj(Z, t) qj t + 2._,jWjqj t +w qj t = M· 
J 

(12) 

where Pj(z, t) is the generalized modalloacis given by 

(13) 

(j and Wj are the modal damping and the undamped frequencies of the jth mode, 

respectively, given by 

(14) 

The beam is assumed to be modelled so that the lowest undamped eigenfrequency 

w1 = 2.0 rad/sec implying that ( 1 = 0.04. 

The parameters assumed to be estimated are the modal parameters of the 

n-modes 
. (15) 
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In the foliowing the optimal locations of two sensors are determined by as­

suming the measurements to be modelled as independent random variables and 

dependent random variables, respectively. 

First, the Fisher information matrix will be given assuming the measurements 

modelled as independent random variables. The Fisher information matrix J, in 

continuous time, associated with identification of the parameters in the parameter 

vector B associated with a system deseribed by a partial differential equation is 

given as follows for a measuring time T,, see ref.5 

(16) 

Each element of Jii represents the cross-sensitivity of a measurement with respect 

to the response y(zk, t) at the location Zk. Since it is assumed above that the 

system is lightly damped the optimallocation of Ns sensors can be determined by 

maximizing the determinant of the Fisher information matrix which is similar to, 

see ref.16 

(17) 

It is assumed that the variance of the noise .Af isequalin each measuring point. 

If i t is assumed that the N measurements inelucled in the vector Y are depen­

dent then by taking the expectation in (3) the Fisher information matrix becomes 

(18) 

It is seen from (18) that a N x Ns-dimensional integral has to be solved if the 

Fisher information matrix is to be estimated directly from the definition which is 

much more cumbersome than using (17). To see the difference between calculating 

the Fisher information matrix from (17) and from (18) it is assumed that an obser­

vation is taken only once at each measuring point simultaneously. Assuming two 
measuring points the integral in (18) becomes 2-dimensional. Since the response 

is assumed to be Gaussian with zero means the 2-dimensional probability den­

sity function for the two measuring points can now be written by a 2-dimensional 

Gaussian joint density function of the two continuous random variables Y1 and Y2 



where cr1 and cr2 are the standard deviations of the response at the two measur­

ing points, respectively. p12 = ..zu.. is the correlation coefficient and cr12 is the 
0'10'2 

covariance between Y1 = Yi(zb t) and Y2 = Y2(z2, t), respectively. The variances 

(er i, er i) and covariance ( cr12 ) of the stochastic response processes { Yi ( z1 , t)} and 

{Y2(z2, t)} aregiven by the eross-correlation funetion Ryy(zl, t1 ; z2 , t2) of the re­

sponse in the the two points z1 and z2 • By using (19) and an analytical expression 

for the eross-correlation furretion it is easy to calculate the derivatives in (18) and 

thus the Fisher information matrix, see ref.ll. 

In figure la and lb the determinant of the Fisher information matrix esti­

mated by (17) and (18), respeetively, is shown for different locations of the two 

sensors. It is assumed that only the modal parameters of the fi.rst two modes 

are of interest. The points in figure lb where z1 = z2 are determined by using 

a l-dimensional probability density furretion in (18) instead of the 2-dimensional 

function. It may be noticed that the Fisher information matrix is not defined for. 

z1 = z2 = O= L. The points Zi =O for Z j ::f. O, L are determined in the same way 

as the points Zi = Zj. 

Figure 1: The determinant of the Fisher information matrix shown as a furretion 

of the location of two sensors. a) basedon (17), b) basedon (18). 

It is seen from figure la that the same information will be obtained from the 

measurements if the sensors are placed at the same point or with the one sensor 

at this point and the other placed at the symmetric point. Further, it is seen 

that the 3D-curve is very flat near its minima. This eauses difficulties in the 

precise choice of the optimal design on the one hand, but it also means that some 

imperfections in the design or in the praetical positioning of the sensors resu)ts in 
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relatively small increase of error. This result implies that the foliowing question 

can be asked: Is it correct that the optimallocations of the two sensors are at the 

same point ? By investigating figure lb it is seen that it is not optimal to place 

two sensors at the same measuring point. This disagrees with the result shown in 

figure la. The disagreement is due to the assumption that the measurements can 

be considered as statistically independent random variables. This implies that the 

spatial correlation is not taken into account in the calculations of the results shown 

in figure la. The results shown in figure lb are obtained from calculations where 

the spatial correlation is taken into account. The optimal locations of the two 

sensors are z 1 = 0.242L and z2 = O. 758L. Intuitively, i t also seems more correct to 

get information from two different measuring points instead of information from 

one measuring point. It is also seen from the above that it is much simpier to 

calculate the Fisher information matrix in the case where it can be assumed that 

the measurements are statistically independent. However, as it is shown above,· 

it is not a good approach when a continuous mechanical system subjected to a 

random load is considered. If the measurements are encumbered with noise it can 

be interesting to look into the optimallocation of the sensors is sensitive to the 

variance of the random noise. 

It is assumed that the measurements are given by 

ym(z, t)= y( z, t)+ e( z, t) (20) 

where the realization e( z, t) of the noise process {t'( z, t)} only models the random 

measuring noise. The noise-to-signal ratio 1 is given by 

(21) 

CI2 is the variance o f the response for z = L /2. In figure 2 the optimal locations 

of the two sensors areshownas functions of the noise-to-signal ratio. The fullline 

in figure 2 shows results where it is assumed that it is the modal parameters of 

the first two modes which are of interest. The dashed line shows results where it 

is assumed that i t is the modal parameters ( ( 1 , w1 ) of the first mode which are of 

interest, i.e. the Fisher information matrix is a 2 x 2 matrix. 
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Figure 2: Optimallocations of two sensors as function of the noise-to-signal ratio 
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It is seen from figure 2 that the optimal locations of the two measuring points . 

are sensitive to the variance of the noise. It is seen that the optimal locations 

are more sensitive to the variance of the noise when it is the parameters of the 
first mode which are of interest . Then the optimal locations of the sensors are 

going against, as expected, the optimallocation of one measuring point, z= L/2. 
Fromthis result it could be expected for an increasing number of sensors that the 

optimallocations of the sensors become less sensitive to the variation of the noise­

to-signal ratio. It may be noticed, as expected, that the amount of information 

from the measurements obtained from the two measuring points decreases when 

the measurements are eneurobered with noise. 

Figure 3 shows the relative change in the determinant of the Fisher informa­

tion matrix, corresponding to the optimallocations of the sensors, as functions of 

the noise-to-signal ratio 'Y· The dashed line and the full line, respectively, corre­

spond to the lines in figure 2. 
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Figure 3: The change in the determinant of the Fisher information matrix as a 

function of the noise-to-signal ratio 'Y· 
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It is seen from figure 3 that the relative loss of information for increasing variance 

of the noise is larger when the parameters of the first two modes are of interest 

than when it is the parameters of the first mode which are of interest. 

Figure 4 shows, for increasing noise-to-signal ratio, the ratio K 1 

det J1 
(22) 

where det J 1 is the determinant of the Fisher information matrix for the two mea­

suring points placed at the optimal points assuming noiseless measurements and 

det J 2 is the determinant of the Fisher information matrix for optimally located 

sensors, i.e. the ratio shows the loss in information by placing the sensors without 

taking into account that the measurements are encumbered with noise. 

··-r-----
··-
··-
··-
··-
··~·~ .• ~~~.:-r:.2~ ........ ~.~ .• :'"""""~~.~ .• :-""'-"""!"'···:::-"" ....... ~, •• 

Nol ee -~o- e lgn e l r- e ~lo 

Figure 4: The ratio K 1 shown as a function of the noise-to-signal ratio r · 

It is seen from figure 4 that only a little loss of information is obtained if the sensors 

are placed without taking into account that the measurements are eneurobered 

with noise. This is an important result since the noise-to-signal ratio is normally 

not available prior to the experiment. 

Figure 5 shows the ratio K 2 for increasing noise-to-signal ratio[, 

det J4 
K2 = 

det J3 

(23) 

where det] 3 is_the amount of information o b tained if two sensors are op timall y 

placed and det J 4 is the amount of information obtained if one sensor is op timall y 

placed. 
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Figure 5: The ratio K2 shown as a function of the noise-to-signal ratio 1. 

Figure 5 shows, for noiseless measurements, that the amount of information ob­
tained using one sensor is almost equal to the amount of information obtained. 

using two sensors. It is assumed that it is the modal parameters of the first mode 

which are of interest. Further, it is seen for increasing noise-to-signal ratio that 

the ratio K2 becomes smaller. This means that the amount of information ob­

tained with two sensors becomes larger compared with the amount of information 

obtained with one sensor. This resultraises the question: When shall additional 

sensors be used ? To answer this question it is necessary to take into account the 

cost of using an additional sensor. Further, it is also necessary to consider the 

increase in value of information by using an additional sensor. This problem has 

be considered in ref.ll where a method has been proposed which can be used to 

determine the optimal number of sensors. 

It may be noticed that the results in figure 2 indicate that the optimal lo­

cation of the sensors is not sensitive to the noise-to-signal ratio if the aim of the 

experiment is to determine the modal parameters of more than one mode. On 

the other hand it is seen from figure 3-5 that good prior information about the 

noise-to-signal ratio is necessary if the aim is to compare the information which 

can be obtained using different number of sensors. 

4. CONCLUSIONS 

In this paper a survey of different methods for determining optimal location 

of sensors for the parametric identification of structural systems has been given. 

Further, an example has been given concerned with optimal location of sensors 

for parametric identification of modal parameters for a vibrating beam subjected 

to the action of a transverse random load. The condusions of the paper c.an be 
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stated as follows: 

• It is seen that very few papers concerned with the problem of optirnallocation 

of sensors for the pararnetric identification of structural systems exist. Espe­

cially papers in which the subject of rneasurernents is modelled by a randorn 

field with non-trivial covariance function. 

• Design of an optimal experirnent on purely heuristic grounds rnay be diffi­

cult since simple exarnples considered indifferent papers have yielded results 

showing that the optimal locations of sensors appear to depend in a more or 

less camplex rnanner on the actual pararneter values of the systern and the 

excitation. 

• It is evident from the exarnple in this paper that the experirnental conditions 

have an effect on the achievable accuracy. Thus, there is a motivation in 

practice to choose the appropriate sensor locations to optirnise the information. 

return from the experirnent. 

• The optimal locations of sensors seem to becorne less sensitive to e.g. the 

noise-to-signal ratio for increasing number of sensors. 

• The question "What is the optimal number of sensors ?", seems to be unsolved 

in the papers dealing with optimal experirnent design. In arder to answer the 

question it is necessary to take into account the cost of using an additional 

sensor. Further, it is also necessary to consider the increase in the value of 

information by using an additional sensor. 
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