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Abstract: We consider the problem of controlling plants that 
are subject to multiple saturation constraints. Especially, we 
are interested in linear systems whose input is subject to 
amplitude and rate constraints of saturation type. 
Furthermore, the considered systems output is also subject to 
an intrinsic saturation. Then, aiming to design global (and 
asymptotic) output tracking of compatible output-reference 
trajectories, we propose a suitable saturated linear controller 
following the direct approach (where the constraints are taken 
into account during the regulator design). The (non-linear) 
closed-loop control system is analyzed using input-output 
stability tools. Thus, conditions guaranteeing l2-tracking 
performances are formally defined. Interestingly, the proposed 
controller is shown to ensure perfect output-reference tracking 
in presence of varying with l2-vanishing rate inputs. On the 
other hand, in the case of arbitrary inputs, the proposed 
controller guarantees that the less changing the inputs are the 
better the output-reference tracking. 

I. INTRODUCTION 

Studies that address stabilization in presence of amplitude 
and rate saturation started to appear only in the 90’s. A first 
semi-global stabilization result is given in [1]. Then, using a 
low and high gain approach, solutions to global and semi-
global stabilization problems are provided in [2]. The global 
stabilization problem was also stated using scheduled low 
gain state feedback [3]. Nonetheless, it should be noticed 
that the above works have only considered continuous-time 
systems and the rate limitation was considered in the 
modelling of the actuator using the so-called position-
feedback-type model [4], which seems to be unsuitable when 
dealing with the rate saturation phenomenon in discrete-time 
context. Thus, in order to deal with the rate saturation 
problem, an alternative approach has been proposed for 
discrete-time systems [5]. The idea consists of introducing a 
rate limiter inside the controller, which was performed by 
adding a nonlinear integrator in the controller structure. On 
the other hand, the asymptotic stabilization of linear systems 
with input and output saturation was also dealt in many 
works (e.g. [6], [7] and [8]).  
Presently, considering the discrete time context, this paper 
develops a control strategy for output saturated linear 
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systems that are driven by an actuator whose output is also 
subject to amplitude and rate saturations. To deal with all 
these constraints, in addition to possible external 
disturbances, similar ideas to the ones proposed in [5], [8] 
and [11] are used. However, the above papers have not 
tackled the tracking issue in presence of the above three 
constraints with disturbance rejection, as either the focus 
was only put on closed-loop asymptotic stabilization [5] 
either the study did not consider all these constraints 
simultaneously ([8], [11]).  
Therefore, in this paper, we consider the problem of 
controlling linear systems that are subject to multiple 
saturation constraints. Then, aiming to ensure tracking of 
any compatible output-reference sequences, a suitable 
nonlinear controller is designed. Thereafter, using input-
output tools [9], the closed loop system is analyzed, which 
allows getting the necessary real positivity conditions that 
guarantee 2l -tracking performances. Roughly, it is shown 
that perfect output-reference tracking could be ensured in 
presence of varying with 2l -vanishing rate inputs (output 
references and external disturbances). Moreover, in case 
these inputs are arbitrary, the tracking error power is shown 
to be bounded (up to a multiplicative gain 𝛼) by the inputs 
rate power, which means that, the less changing (in the 
mean) the inputs are, the better the average (output-
reference) tracking quality. 

This paper is organized as follows: the control problem 
statement is formally given in Section 2; the controller 
design is given in Section 3 and the closed-loop is analyzed 
in Section 4. Then, the controller performances are 
illustrated by an example in Section 5 and a conclusion ends 
the paper. 

For clarity, notations that are used throughout this paper 
are as follows: 1-q  is the backward shift operator, ∆  stands 
for the polynomial (1 − 𝑞−1), which means that ∆𝑋(𝑞−1) =
(1 − 𝑞−1)𝑋(𝑞−1) for any polynomial )( -1qX  and { })(ts∆  
represents the increment sequence { })1()( −− tsts  of any real 
sequence { })(ts . 

II. CONTROL PROBLEM STATEMENT 

In discrete-time context N)∈tei for..( , the controlled 
plant is described as follows: 

)()())(())(1()( 11 tuqBx,txsatqAtx M
−− +−=  (1) 

)())(()( tx,txsatty M η+=  (2) 
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))(()( Mu,tvsattu =   (3) 

Dutu ≤∆ )(    (4) 
The rate constraint (4) is assumed to be imposed either by 
the actuator either by the system dynamics. 
In (1), )( 1−qA  and )( 1−qB are polynomial of the form: 
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 (6) 
In (1-4), )(ty  and )(tx  are the saturated and the 

unsaturated plant output, respectively. )(tη  is a bounded 
signal accounting for modeling errors and external 
disturbances. )(tv  and )(tu  denote  the actuator input and 
output, respectively. )(tu∆  is the increment of )(tu . Mu , 

Du  and Mx  are the maximal magnitudes of )(tu , )(tu∆ and  
)(tx  respectively. na , nb  and d  are nonnegative integers. 

The ia ’s  and ib ’s are arbitrary real numbers with 00 ≠b .  

Remark 1. The considered plant model (1-2) does 
account for the intrinsic feedback that characterizes most 
physical output saturated linear systems. Accordingly, the 
internal state )(tx  does depend not only on the input )(tu  
but also on its saturated value )),(( Mxtxsat . This fact is 
emphasized by the feedback loop in the block diagram of 
Fig. 1. However, if )(tx  stops saturating for at least na  
successive sampling periods, the plant may simply be 
described by the following linear model,  

)()()()()()( 111 tqAtuqBtyqA η−−− +=   (7) 

 
Fig. 1: Actuator and output saturated linear system 

Now, taking into account the above saturation constraints, 
our aim is to design a controller able to achieve the 
following objectives: 
i).  (Global) bounded input bounded output stability, 

provided the disturbance )(tη  is bounded. 
ii).  The output )(ty  must match (as closely as possible) any 

compatible output-reference trajectory )(tyr . 

Let us recall that global stabilization of input saturated 
systems is only possible for asymptotically or marginally 
stable systems [10]. Then, in view of our objective, the 
considered class of systems should necessarily meet this 

requirement. That is, the achievement of closed-loop 
stability, together with the output-reference matching 
property, requires the following assumption: 

A1. )( 1−qA  is Schur. 

On the other hand, even if the disturbance signal )(tη  is 
absent, the output-reference trajectories should be 
compatible with the input and output (amplitude) limitations. 
In this sense, this leads to the necessary condition: 

( ) ( )( )MMr
t

xuqAqBtySup ,)()(min)( 11 −−
∞≤ γ  (8)

  
where ( ))(/)( 11 −−

∞ qAqBγ  denotes the ∞l -gain of the linear 

operator )(/)( 11 −− qAqB . 

Remark 2. Assumption (A1) only ensures that all zeros of 
)( 1−zAz na  should be inside the open disk. Of course, this 

allows that the plant dynamics could be inversely unstable. 

Therefore, this tracking problem is not an obvious issue 
as one is presently facing two difficulties: the presence of 
saturations and the possible non-minimum phase nature of 
the plant dynamics. Then, even if the actuator saturations 
were absent, perfect matching of arbitrary-shape output-
references would not be possible since non-minimum phase 
dynamics are involved.  

Now, as global asymptotic tracking are sought, let us 
make use of the fact that the controlled subsystem should be 
asymptotically stable. First, by including an integrator in the 
controller, it turns out that perfect tracking may be 
achievable in the absence of saturations for constant inputs. 
Then, the tracking objective may make the tracking quality 
dependent on the input rates )(tyr∆  and )(tη∆ . This fact 
could be formalized by requiring that the mapping [11]: 

)(~)( tyt →δ   is 2l -stable with finite gain, (9) 

where 
T

r ttyt )]()([:)( ηδ ∆∆= , input rate vector (10) 

{ })()(:)(~ tytyty r−= , output tracking error. (11) 

Indeed, the 2l -stability of (9) means that there exists a pair 
of positive real constants ),( βα  so that, for any bounded 
input )(tδ  and any integer 0>T , one gets: 

βδα +







≤


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

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Then, using the inequality 2/12/12/1)( baba +≤+  with 
)0,( >ba , these statements, referred to ‘ 2l -tracking 

performance’, entail the following features:  
i) If 2)( lt ∈δ ,  one gets from (10) and (12): 

u + x

)(1 1−− qA
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ii)  In the general case (i.e. ∞∈ lt)(δ ), dividing both sides of 

(12) by 2/1T  and letting  ∞→T , one gets: 
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Then, it follows that: 

( )apaprap ttyty )()()(~ ηα ∆+∆≤  (14) 

where the following notation is used: 
2/1

21suplim: 





=

∞→
T

T
ap s

T
s  

        
2/11

0

2)(1suplim 
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T

tT
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for any real sequence s(t). 

Remark 3.  
i)  Recall that, in discrete-time context, if signals )(tyr∆  

and )(tη∆  do belong to 2l  then, they converge to zero. 
Thus, (13) implies that 0)(~

∞→
→

t
ty , which means that 

perfect asymptotic tracking will be achieved for varying 
inputs with 2l -vanishing rate. 

ii)  In case of not 2l -vanishing rate inputs, the statement 
(14) means that the tracking error power is bounded (up 
to a multiplicative gain α ) by the power of the input 
rate. That is, the less changing the inputs are, the better 
the average tracking quality. Indeed, this is an appealing 
control feature since, except for boundedness, no 
assumption is made on the inputs { })(tyr  and { })(tη . 

Now, as the inputs )(tyr  and )(tη  are bounded, there exists 
a positive real apµ  such that: 

( ) apapapr tty µη =∆+∆ )()(  (16) 

Thus, the control objective can be reformulated as follows: 

 Find a controller such that there exist real constants, 0>µ  
and 0>K , so that if  µµ ≤≤ ap0  then apap Kty µ≤)(~ . 

III. CONTROLLER  SYNTHESIS 

First, let us notice that, by considering the tracking error 
)(~ ty , the initial tracking problem could be transformed into a 

regulation one. Then, the tracking error )(~ ty  and the control 
input increment )(tu∆  will represent the main performance 
indices of the proposed control strategy. 

Now, as )( 1−qA  and )( 1* −qB  are not necessarily 
coprime, let us factorize these polynomials: 







Λ=
Λ=

−−−

−−−

)()()(
)()()(

1
0

11*

1
0

11

qBqqB
qAqqA

  (17) 

Then, using assumption (A1), )( 1-qΛ  is Schur and may be 
of the form: 

m
m

- qλ...qλq  
−− +++=Λ 1

1
1 1)(  (18) 

with  ),min(0 nbnam ≤≤ . 

In addition, let  )(C 1−q be any Schur polynomial of the 
form: 

nc
nc

- q... cqc qC −− ++= 1
1

1 1)(  (19) 

with  mnnc −−≤≤ 120 and  ),1max( dnbnan ++= . 

To alleviate the text, let us define: 

)()()( 111 --- qqCqP Λ=  (20) 

Therefore, as )( 1
0

-qA∆  and )( 1
0

-qB  are coprime, solving 
the following Diophantine-Bezout equation: 

)()()()()( 11111 ----- qPqSqBqRqA =+∆ , (21) 

guarantees the existence and uniqueness of polynomials pair: 
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 (22) 

Thus, using these notations, the proposed regulator is given 
by: 

)(~)()())(1)( 11 tyqStuqR-(= tw −− −∆  (23) 

))(' Du (t),wsat(= tw  (24) 

)1()(')( −+= tu twtv  (25) 

))( Mu sat(v(t),= tu  (26) 

In (23-26), )(tw  and )(' tw  are respectively the computed 
and the saturated values of the control input rate. Similarly, 

)(tv  and )(tu are respectively the computed and the 
saturated values of the control input.  

Remark 4.  
In case the saturation nonlinearities are no longer 
active, it is readily seen that (23-26) become: 

0)(~)()()( 11 =+∆ −− tyqStuqR ,  (27) 
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which corresponds to a unitary feedback linear regulator.  

IV. CONTROL SYSTEM ANALYSIS 

The performances of the proposed regulator, especially 
its ability to track compatible slowly varying output-
reference trajectories will now be established. The following 
theorem shows that the control system is actually bounded 
input bounded output (BIBO) stable and gives necessary 
conditions that ensure 2l -tracking performances to the 
overall control system. 

Theorem 1. Consider the system (1-4), subject to 
assumption (A1), in closed-loop with the saturated 
controller (23-26). Suppose that the disturbance )(tη  is 
bounded, the output-reference trajectory )(tyr  verifies the 
compatibility condition (8) and the pair ))(),(( ttyr η  is 
slowly varying in the mean with a mean rate apµ  as defined 

in (16). Let )( 1−zP  be any Schur polynomial of the form 
(20). Then,  
1) All signals of the closed-loop remain bounded whatever 

their finite initial conditions.  
2)  If  )( 1−zP  is chosen such that, 

0
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where  





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
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Then, the 2l -tracking performance (9) is achieved and 
consequently, the controller (23-26) enjoys the tracking 
features (14). Accordingly,  
a) if 2lyr ∈∆  and 2l∈∆η  then, { }y~ , { }y∆ , { }x∆ ,

{ }uw ∆−  and { }uv −  belong to 2l  (33) 
b)  if ∞∈ lyr   or  ∞∈ lη ,  there exists a constant 0>K , 

such that : 

{ } { }







≤−≤∆−

≤∆≤∆≤

apapapap

apapapap

KuvKuw

KxKyKy

µµ

µµµ

,

,,~
 (34)   

Because of space limitation, the proof of the above 
theorem is omitted. Nevertheless, the corresponding author 
invites any reader to contact him if he is interested in the 

details of the proof. 

Remarks 4.   
i) As finite-order linear systems are concerned, 2l -

stability is equivalent to global exponential stability. 
Then, if the mapping (9) is 2l -stable, it is globally 
asymptotically stable. Thus, the 2l -tracking feature 
(33) entails the achievement of perfect asymptotic 
tracking for varying inputs with 2l -vanishing rate. 

ii) The tracking property (34) is an appealing control 
feature as it holds in presence of arbitrary inputs. Thus, 
the average tracking quality depends on the power of 
the input rates. Nonetheless, as the linear dynamics is 
non-minimum phase, the closed-loop system could not 
track well very fast-changing sequences. 

V.  NUMERICAL EXAMPLE 

Let us consider a system that is described by (1-4) with: 







−=

−=
−−

−−−−

11

111*

8.01)(

)31()(

qqA

qqqBq d

  (35)  

It is readily seen that the linear dynamics (35) does 
comply with assumption (A1). However, this system is 
obviously non-minimum phase.  
The (actuator and system) saturation constraints are 
characterized by: 

1=Mu , 1=Du  and 10=Mx   (36)  

Then, using the proposed design control strategy, the 
polynomial )( 1−qP  is chosen bearing in mind conditions 
(28-30). Accordingly, the following (non-unique) choice is 
made: 

311 )55.01()( −− −= qqP   (37) 

Solving equation (21) gives: 







+−=

+=
−−

−−

11

11

1467.01923.0)(

3423.01)(

qqS

qqR
 (38) 

From the Nyquist plots, it can be easily seen that conditions 
(28-29) are verified. Moreover, it can easily be checked that: 

18103.0
))((

)()(
1
1

1
1

22 <=






 ∆
−
+

−
+

−

−−

ω

ωω
γ

γ
γ

γ
γ

j

jj

b

b

a

a

eP
eSeB  (39) 

which means that the condition (30) is verified. 
The reference trajectory { })(tyr  is a periodic square 

signal switching between -10 and +10, which is the 
maximum allowed compatible value. Then, the resulting 
control performances are illustrated by in Figs. (3-5). 
The system output tracking is then ensured as, in steady 
state, )(ty  is almost confounded with its reference )(tyr  
(Fig. 3).  
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In addition, the control action )(tu  and its rate { })(tu∆  are 
shown to remain inside their physical limits (Fig. 4-5).  
Now, in order to appreciate the relevance of conditions (28-
30), the choice 

3211 512.092.14.21)( −−−− −+−= qqqqP  (40)
  not satisfying condition (30) is considered. The resulting 

performance deterioration is clearly illustrated in (Fig. 6-7). 
 

 
Fig. 3: Output )(ty , reference )(tyr and disturbance )(tη  

when conditions (28-30) are not verified. 
 

 
Fig. 4: Computed input )(tv vs Applied control input )(tu  

when conditions (28-30) are not verified. 
 

 
Fig. 5: Control input rate sequence { })1()( −− tutu  when 

conditions (28-30) are not verified. 

 
Fig. 6: Computed input )(tv vs Control input )(tu when 

conditions (28-30) are not verified. 

 

 
Fig. 7: Output )(ty , reference )(tyr and disturbance )(tη

when conditions (28-30) are not verified. 

 

VI. CONCLUSION 

The problem of controlling systems subject to multiple 
saturations has been addressed. Thus, a magnitude and rate 
saturations on the control input and an intrinsic saturation on 
the plant output were all considered. First, a suitable 
saturated controller is designed, bearing in mind the aim to 
ensure global asymptotic tracking of compatible output-
reference trajectories and the rejection of bounded 
disturbances. Then, using input-output stability tools (circle 
criterion and small gain theorem), the closed loop analysis 
shows that if the regulator parameters are chosen so that 
conditions (28-30) hold, then the entire control system is 
asymptotically stable, which guarantees perfect output-
reference tracking if the inputs are varying with 2l -
vanishing rate. In addition, in case of arbitrary bounded 
inputs, it turns out that the less changing the inputs are, the 
better the average tracking quality. Of course, this is an 
interesting result in presence of multiple saturations and 
non-minimum phase dynamics. 
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