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SIZE EFFECTS ON THE BENDING BEHAVIOUR OF
REINFORCED CONCRETE BEAMS

R. BRINCKER, M.S. HENRIKSEN, F.A. CHRISTENSEN and G. HESHE,
Aalborg University, Sohngaardsholmsvej 57,
9000 Aalborg, Denmark

ABSTRACT

Load-deformation curves for reinforced concrete beams subjected to bending show size effects due
to tensile failure of the concrete at early stages in the failure process and due to compression
failure of the concrete when the final failure takes place. In this paper these effects are modelled
using fracture mechanical concepts, and size effects of the models are studied and compared with
experimental results.
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INTRODUCTION

The considered problem is the bending behaviour of simply supported concrete beams, Figure
1. The basic variables are the beam geometry given by the width b, the depth h and the span
[, the concentrated load F acting at the middle of the beam and the corresponding displacement u.

The bending response of the beam is described by the load-deflection curve, Figure 1, depicting
the loading force F' as a function of the displacement u.

It is assumed, that the parameters influencing the bending response of the beam, apart from the
basic parameters mentioned above, are the concrete type described by Young’s Modulus £ and the
softening relations in tension and compression, the reinforcement type given by the stress-strain
relation for the steel and the shear friction stress 7; for the debonding, the reinforcement ratio ¢,
the number of re-bars n and the placement of the re-bars as given by the distance h.; from the
top of the beam. Note, that no softening relation is considered for the reinforcement. Thus, in
this analysis, the contribution from necking of the re-bars, is neglected.

At early stages of the failure process, the response is governed by the tensile properties of the

concrete, the elastic properties of the reinforcement steel, and the debonding process between
concrete and steel. Typically, the response will show a local force maximum F; where the concrete
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Figure 1. Fundamental problem of the investigation. A: The test case, B: Response curve.

starts cracking, a decrease afterwards, and then a slowly increasing response as the reinforcement
starts debonding taking over the stresses relieved by concrete tensile failure. Later, when the
tensile stresses in the concrete have decreased to zero, and yielding of the reinforcement bars is
fully developed, the response curve reaches a nearly constant value F,. For convenience, here F,
is just defined as the maximum value of the response in the "yielding regime”.

Since concrete tension failure is highly size dependent, the first part of the response curve will show
strong size effects. For large beams, the concrete contribution will be small and brittle compared
to smaller beams, meaning that the ratio F;/F, will be size dependent. Thus, the ratio Fy/F,
is a central parameter for description of the size effects at early stages of the failure process. It
describes, one can say, the size effect on the load scale. In most standards, the minimum reinforce-
ment requirements aim at keeping this ratio below a certain value, securing a ductile behaviour of
the beam in load control. Therefore, size effects at early stages of the failure process are closely
associated with the minimum reinforcement issue.

In the first main section of this chapter, size effects on the load scale are studied under different
assumptions using a non-linear fracture mechanical model for the tension failure of the concrete,
and a simple friction model for the reinforcement debonding. Size effects on the bending response
are studied for constant reinforcement ratios and constant values of Carpinteri’s brittleness num-
ber.

When studying size effects on the late stages of the failure process, it is necessary to focus on
the deformation scale. Thus, it might seem natural to choose a corresponding set of displacement
parameters u; and Umayx, See Figure 1, and then define the corresponding ratio as the key parameter.
However, since both displacements are influenced by the elastic response of the beam, in this
chapter a non-dimensional parameter § describing size effects on the displacement scale is defined
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by the work equation

oM, = [ Fau (1)
0

where M, is the yield moment corresponding to the yield force F;,. Now, using the simple rela-
tionship M, = % F,l, the parameter 6 is given by

4 (o F
g==z[ =
1/0 R (2)

As it appears, the integral has the dimension of length, describing the total plastic deformation
of the beam. This measure is not influenced by elastic contributions and is non-sensitive to the
tension failure behaviour of the concrete as long as the contribution to the area under the response
curve is small.

The geometric interpretation of the parameter 6 is the total concentrated rotation at the yielding
section under the loading force. Thus, it is a measure of the rotational capacity of the beam.

In the last main section of this chapter, size effects on the rotational capacity of concrete beams
are studied using a semi-classical approach for the lightly reinforced case, where the rotational
capacity is controlled by the number of cracks in the tension side of the beam, and using a fracture
mechanical approach for the heavily reinforced regime, where the rotational capacity is controlled
by compression failure in the concrete.

In the following model results are compared with experimental results from a large number of tests
on concrete beams of different sizes, different types of concrete (normal strength, high strength),
and different reinforcement ratios. The experimental results are described in Appendix A.

MINIMUM REINFORCEMENT

A commonly accepted idea behind minimum reinforcement requirements has for a long time been
that the load corresponding to tension failure of the concrete F} should be smaller than the load-
bearing capacity F), of the cracked beam section, thus

F, > F, ®3)

Now, approximating F; by the bending strength, according to a Navier distribution of the stresses
(not a good approximation) and neglecting the reinforcement contribution, yields Ft-;- = ftébh2
where f; is the tensile strength of the concrete. Using the approximate formula for the load-bearing
capacity of the cracked beam section Fy% = khA,f,, where k is a factor typically in the range
0.8 — 0.9, and defining the reinforcement ratio as usual by ¢ = A,/A., Equation (3) can then be
written as

1
Y > =7 = Pmin (4)
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This might be seen as the background for most minimum reinforcement requirements in the codes.
The requirement states that, for a certain choice of steel and concrete, the reinforcement ratio
should just be chosen larger than a certain value. This kind of classical reinforcement criteria are
investigated in detail in the following subsection.

The weakness of the classical kind of reinforcement criteria is the simplicity of the Navier type of
bending strength that does not include any size effects. Thus, using the criterion (4) in practice
a value for the tension strength f; must be used that somehow includes the size effect. Usually
this is done by using a value of the tensile strength estimated from bending tests on moderate size
beams. A totally different approach would be to express a criterion for stable crack growth across
a reinforced concrete section. Using linear fracture mechanics and some simplifications, this leads
to a criterion of the type

Np > Nupin (5)

where Np is Carpinteri’s brittleness number for reinforced concrete

Vh
Np = 11‘7\'/:99 (6)

and where K. is the fracture toughness of the concrete. In the second subsection, the crite-
rion given by (5) is investigated assuming that the fracture toughness can be approximated by

K. = VEGF.

Both the classical reinforcement criterion given by Equation (4), and the fracture mechanical cri-
terion given by Equation (5) are investigated by simulating the failure responses using a fictitious
crack model for the concrete failure and a pure frictional model for the reinforcement-concrete
debonding, and finding the minimum values of the reinforcement ratio ¢ and the brittleness num-
ber Np corresponding to fulfilment of Equation (3).

Classical Requirements for Minimum Reinforcement

The classical requirements for minimum reinforcement are investigated by simulating the failure
response of beams of different size using a fictitious crack model for the concrete tension failure
and a friction model for the reinforcement-concrete debonding. Details of the investigation are
given in Appendix B.

Three different concretes are considered: a normal strength concrete with linear softening, a
normal strength concrete with bi-linear softening, and a high strength concrete with bi-linear
softening. The softening relations are shown in Figure 5 in Appendix B.

The size of the "valley” on the response curve often seen in experimental results, occurring just
after the local maximum F; corresponding to the concrete tension failure, is totally controlled
by the shear friction stress 7;. In the limit where the shear friction stress becomes infinite, the
response follows a "master curve”, and cases with a finite shear friction stress appear as deviations
from this curve, Figure 4, Appendix B. In the simulations, the shear friction stress was chosen as
75 =5 MPa for all cases, a lypical value reported in the literature for ribbed reinforcement.
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Figure 2. Reinforcement ratios corresponding to Fy, = F; for different beam sizes and different
softening relations. Left: No initial crack. Right: Initial crack with a depth of 7.5 % of the beam
depth.

Using the simulation model so defined, the minimum reinforcement ratio ¢ corresponding to the
smallest ratio that satisfies the overall static requirement given by Equation (3) is determined for
different beam sizes. The results are shown in Figure 2. The diagrams show the results for two
cases: the case of no initial crack, and the case where an initial crack is present with an initial
depth of 7.5 % of the beam depth.

As it appears from the results, the reinforcement ratio corresponding to F, = F; is clearly de-
pendent upon the size of the beam as well as the type of softening relation. The minimum
reinforcement ratio (for this type of steel) is in range 0.20 — 0.35 for very small beams reducing
to 0.10 — 0.20 for large beams. Further, as expected, high strength concrete requires a higher
minimum reinforcement than normal strength concrete, and a more ductile softening curve (the
linear softening relation for the normal strength concrete has the same tensile strength and the
same critical crack opening) requires a higher minimum reinforcement.

There is also an influence of the initial crack. As it appears, with an initial crack the minimum
reinforcement ratio is less sensitive to the type of softening relation, and there is an overall ten-
dency for the required minimum reinforcement ratio to become smaller. The presence of initial
cracks does not seem to influence the size effect too much, although there seems to be a little less
size effect in the case of initial cracks.

The overall result is that a unique minimum reinforcement ratio is difficult to define since the
ratio corresponding to F, = F, varies considerably. However, there are at least two important
arguments in support of the simple criterion ¢ > pmin.

First, as the results clearly indicate, if a minimum reinforcement ratio ¢@mi, has been determined
from bending tests on small beams, it will be on the safe side to use the criterion ¢ > ¢min o0
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Figure 3. Carpinteri’s brittleness number for reinforced beams corresponding to F, = F; for
different beam sizes and different softening relations. Left: No initial crack. Right: Initial crack
with a depth of 7.5 % of the beam depth.

larger beams.

The second argument is a little more delicate, but in fact even more important. If the length scale
of the softening relation is scaled with the size of the structure, i.e. if the shape of the relation
is constant, and if the critical crack opening w,. = a;h, where a; is a constant and A stands for
the size of the structure, then the failure response curve (the F' — u curve) is shape invariant, and
thus, the reinforcement ratio corresponding to F, = F; becomes size independent. Now, a good
question is, if it is reasonable to assume something like w. = ok in practice. It might very well
be a reasonable assumption since the maximum aggregate size dmax typically increases with the
size of the structure, and as an average it might be reasonable to assume dpax = azh. Further,
micro mechanical considerations as well as some experimental results support the approximate
relation w. = a3dmax. Thus, in practice taking into account the typical application of larger ag-
gregate sizes in larger structures, the reinforcement ratio that corresponds to F, = F; will be less
size-dependent than indicated by the results of this investigation.

Carpinteri’s Brittleness Number

Application of Carpinteri’s brittleness number is investigated in a similar way by determining
the smallest value of the brittleness number that gives a simulated response curve satisfying the
overall static requirement given by Equation (3). Details are given in Appendix B. The results of
the investigation are shown in Figure 3.

The overall impression is that there is a size effect on Carpinteri’s brittleness number. The britt-
leness number increases with the beam size. This is to be expected, since the square root size
dependence is the strongest possible dependence corresponding to the linear fracture mechanical
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case. The tensile bending problem is known to be influenced by fracture mechanical non-linearities
leading to a weaker influence of the size than predicted by the brittleness number. Thus, when the
minimum reinforcement ratio is corrected by a square root factor, it is to be expected that this
will over-correct the size effect on the minimum reinforcement ratio, and therefore, the brittleness
number becomes size depending itself.

As it appears, there is a large difference between the case of no initial crack, and the case of
an initial crack. In the case with no initial crack, there is a relatively strong size effect on the
brittleness number, whereas this size effect is significantly smaller in the case of an initial crack.
In the case of an initial crack, the size effect on the brittleness number is smaller than the size
effect on the reinforcement ratio. Thus, since initial cracks must be assumed to be present in
real structures, it seems that the brittleness number for this reason might be a better choice for
minimum reinforcement requirements than the reinforcement ratio.

On the other hand, a critical brittleness number found from tests on small beams will lead to
results for minimum reinforcement on large beams that are on the unsafe side.

Further, it seems like the brittleness number is less sensitive to the shape of the softening relation,
but depends more on the strength level of the concrete.

ROTATIONAL CAPACITY

In the lightly reinforced regime, the rotational capacity is controlled by the number of cracks and
the local debonding and yielding of the reinforcement around each crack. If no debonding takes
place (case of infinite shear friction stress 77), the length over which yielding takes place tends
to zero, and thus, the contribution from yielding of the reinforcement tends to zero. In this case
however, the number of cracks becomes large and thus, so does the contribution to the total work
from the cracking of the concrete. In the extreme case of a very small {riction stress, only one
crack develops, and thus, yielding of the reinforcement is mainly responsible for maintaining the
rotational capacity. These effects are described in the next subsection.

In the heavily reinforced regime, the rotational capacity is controlled by the compression failure
of the concrete. A large part of the rotational capacity might come from plastic deformations of
the reinforcement steel, but the deformation capacity of the concrete is the limiting parameter.
If the concrete has a small deformation capacity the contribution from the plastic deformation of
the reinforcement as well as the contribution from the concrete itself becomes small. The rota-
tional capacity of heavily reinforcement beams is studied in the second subsection using a fracture
mechanical approach for the compression failure of the concrete.

Lightly Reinforced Beams

In this case a semi-fracture mechanical approach is used. The location of cracks and the number of
cracks are determined by a classical approach, i.e. the concrete cracks when the tensile strength is
reached, and the response (the ' —u curve) is calculated assuming a constant shear friction stress
over the debonded area. Once the response is determined, the rotational capacity is determined
as described by Equation (2). A semi-fracture mechanical approach is introduced by adding the
energy dissipated in the tensile cracks to the total work determined as the integral of the simu-
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lated response (classical contribution). The energy dissipated in the tensile cracks is estimated as
nA.Gr where n is the number of cracks. Thus, the model assumes the cracks to be fully opened and
the cracks to extend approximately over the whole beam area A.. Details are given in Appendix C.

Using a model like this, the rotational capacity is strongly dependent on the strain hardening of
the reinforcement. If the strain hardening is small, yielding takes place only over a small length
of the re-bars around each crack, and the only way of extending the yield length of the re-bars, is
to increase the strain hardening of the steel, i.e. the ratio f,/f, where f, is the ultimate failure
stress of the reinforcement. This effect is shown in Figure 3 in Appendix C.

Another important main result is that the model does not show a so strong dependency on the shear
friction stress 75 as one would expect, Figure 4 in Appendix C. This is due to the semi-fracture
mechanical approach where the increasing values of 7; reduce the contribution from yielding of
the reinforcement, but at the same time increase the contribution from the energy dissipation in
the tensile cracks.

Figure 4 shows the size effects for two different values of the shear friction stress 7;. If the shear
friction stress has a small or moderate value (left part of Figure 4) then the number of cracks is
moderate too, and the influence from the tensile failure on the rotational capacity is small. In
this case, the rotational capacity is dominated by the classical contributions from yielding and
frictional debonding which does not show size effects, and thus, the size effect is small. However,
if the shear friction stress becomes large (right part of Figure 4), the number of cracks increases,
and so does the contribution to the rotational capacity from dissipation of energy in the tensile
cracks. Thus, since this contribution is size dependent, the total rotational capacity becomes
size dependent. As it appears from the results, the shear friction stress has to be very large in
order to enforce a size effect of importance, and even in that case, the size effects are still moderate.

Figure 6 in Appendix C shows the rotational capacity for the two different ribbed reinforcement
types used in the experimental investigation, a high deformation capacity type, and a low defor-
mation capacity type. In this case the shear friction stress is taken as 7y = 5 M Pa. As expected,
size effects are small for both types of reinforcement, and the deformation capacity of the rein-
forcement has a large influence on the rotational capacity of all beams.

Heavily Reinforced Beams

For this case a fracture mechanical description of the compression failure is used. The main
argument for this is that experimental results show that the post-peak behaviour including the
post-peak energy dissipation is relatively independent of the length of a compression specimen,
see Figure 2 in Appendix D.

Naturally, this leads to an assumption of localized compression failure, thus, compression failure
is assumed to take place over a certain length of the compression zone. This length is denoted the
characteristic length [.;. The characteristic length is assumed to be proportional to the depth of
the compression zone corresponding to a compression-shear failure mode with the development of
slip-planes at a certain angle to horizontal. In this case the characteristic length becomes propor-
tional to the depth k. of the compression zone Iz = fh.. Assuming an inclination angle of the
slip-planes similar to the cone-failure of a cylinder in compression, justifies the expectation of §
having a value around 4.
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Figure 4. Size effects on the rotational capacity in the lightly reinforced regime for different values
of the shear friction stress 7. Left: Shear friction stress 7; = 5 M Pa. Right: Shear Iriction stress
7y =20 M Pa.

The model assumes a simple linear softening relation, so the model has two main parameters: the
inclination parameter §, and the critical deformation w, of the concrete in the compression failure
zone.

The model is roughly calibrated by simulating failure responses of beams, calculating the rota-
tional capacity according to Equation (2) and comparing with the experimental results for normal
strength concrete. It turns out that in order to have reasonable agreement with the experimental
results, the values of the key parameters of the model have to be chosen as w, = 4 mm, § = 8.
These values are somewhat higher than expected, but the rather high values might be interpreted
as a consequence of the loading arrangement for the tests where the loading plate used for distri-
bution of the concentrated load might act as confinement.

In Appendix D a simple model for tension failure of the reinforcement was included in order to
check if the model showed a reasonable switch between concrete compression failure and reinforce-
ment tension failure. Results for pure compression failure are shown in Figure 5.

As it appears, the model shows a clear size effect on the rotational capacity, the rotational ca-
pacity becoming significantly smaller with increasing beam size. Further, for all beam sizes, the
rotational capacity predicted by the model decreases with the reinforcement ratio. The influence
from both the size and the reinforcement ratio is rather large. Thus, for high values of the rein-
forcement ratio, the rotational capacity is small for all beam sizes, and for the large beams, the
rotational capacity is small also for moderate values of the reinforcement ratio.

The results for the high strength concrete are obtained by using the same values of w. and /3 as for
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Figure 5. Rotational capacity in the heavily reinforced regime. Top: Normal strength concrete.
Bottom: High strength concrete.
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Figure 6. Combining models for lightly reinforced and heavily reinforced beams.

the normal strength concrete; only the compression strength and the failure strain (peak strain)
have been increased. For higher strength concrete, there is no guarantee, that the key parameters
we, B will be the same. In fact, experimental results (see Appendix D) indicate that a smaller
value of w, has to be used. However, keeping the key parameters the same, the results show a
clear increase of the rotational capacity with strength.

The rotational capacity described by the model also depends weakly on the yield strength of the
reinforcement just like the results of the model for the lightly reinforced regime described in the
preceding subsection depends weakly on the tensile strength of the concrete. However, considering
the two models defined above, the model for the lightly reinforced regime is describing rotational
capacity mainly controlled by reinforcement tension failure, and the model for the heavily rein-
{forced regime is describing rotational capacity mainly controlled by concrete compression failure.
Now, Taking the smallest value of the rotational capacity predicted by the two models defines
a model valid for all reinforcement ratios, the intersection point defining the transition from the
failure mode where the rotational capacity is controlled mainly by reinforcement tensile properties
to the failure mode where the rotanional capacity is controlled mainly by concrete compression
properties, see Figure 6.



