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a b s t r a c t

This paper analyzes the effects of methanol and water vapor on the performance of a high

temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures,

ranging from 140 �C to 180 �C. For the study, a H3PO4 e doped polybenzimidazole (PBI) e

based membrane electrode assembly (MEA) of 45 cm2 active surface area from BASF was

employed. The study showed overall negligible effects of methanol-water vapor mixture

slips on performance, even at relatively low simulated steam methanol reforming con-

version of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed.

Temperature on the other hand has significant impact on the performance of an HT-

PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are

not considered in these tests. The analysis is based on polarization curves and impedance

spectra registered for all the test points. After the performance tests, endurance test was

performed for 100 h at 90%methanol conversion and an overall degradation rate of �55 mV/

h was recorded.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.

Introduction

Some of the main advantages of fuel cells compared to

traditional energy conversion devices are their superior effi-

ciency, fuel flexibility and possibility for renewable power

generation. These advantages together with their modular

nature are making them increasingly attractive as power

sources of the future.

According to the fuel cell industry review by Fuel Cell

Today, fuel cells are now commercial and profitable for

various applications, with overall fuel cell system shipments

(excluding toys and education kits) in 2012 of 45,700, growing

by 86% compared to 2011 [1]. The report forecasts even more

success for fuel cells in the near future.

Proton exchange membrane (PEM) fuel cells are the most

developed and most commercialized among fuel cell types to

date [2]. They have the advantage of working at a relatively

low temperature and hence with faster startup and easier

manageability they are attractive for several applications,

such as automotive, microCHP, uninterrupted power supply

(UPS) and auxiliary power units (APUs).

Some of themain drawbacks of fuel cells that are hindering

their widespread commercialization are cost, durability and

infrastructure. Hydrogen infrastructure can be costly as the

initial investment costs are high, even though, production

* Corresponding author. Tel.: þ45 2137 1172.
E-mail address: ssa@et.aau.dk (S. Simon Araya).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/he

i n t e rn a t i o n a l j o u rn a l o f h y d r o g e n en e r g y x x x ( 2 0 1 4 ) 1e8

Please cite this article in press as: Simon Araya S, et al., Performance and endurance of a high temperature PEM fuel cell
operated on methanol reformate, International Journal of Hydrogen Energy (2014), http://dx.doi.org/10.1016/
j.ijhydene.2014.09.007

http://dx.doi.org/10.1016/j.ijhydene.2014.09.007
0360-3199/Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

mailto:ssa@et.aau.dk
www.sciencedirect.com/science/journal/03603199
www.elsevier.com/locate/he
http://dx.doi.org/10.1016/j.ijhydene.2014.09.007
http://dx.doi.org/10.1016/j.ijhydene.2014.09.007
http://dx.doi.org/10.1016/j.ijhydene.2014.09.007


costs could be as low as $2e3/Kg [3]. Moreover, the hydrogen

demand for the adoption of the proposed hydrogen economy

[4]may not be entirelymet by renewablemeans as natural gas

is currently the main source of hydrogen and is not expected

to be abandoned in the near future as the demand grows.

Therefore, liquid hydrogen carriers that are easier to

handle and can be produced by renewable means are needed.

Methanol is such a hydrogen carrier that can be used in fuel

cells. It can be obtained from various renewable biomass

sources [5] and has the lowest reforming temperature, around

250 �Ce300 �C compared to other hydrocarbons, whose

reforming temperature can be up to 600 �Ce800 �C [6]. These

advantage and its presence in liquid form in ambient tem-

perature for easy transportationmake it very attractive for use

in fuel cells.

Methanol can be used directly in fuel cells, as in the case of

direct methanol fuel cells (DMFC). However, the efficiency is

significantly lower than both low or high temperature PEMFCs,

and they suffer frommethanol cross-over [7,8]. For this reason

their application is limited to portable applications [7,9].

Another way of using methanol is by means of steam-

methanol reforming, where it is used to produce hydrogen

rich mixture of gases that can be utilized in high temperature

PEM fuel cells. This is done by coupling the fuel cell with a

reformer system. The coupling can be done externally, where

the reforming takes place in a standalone system or inter-

nally, where the reformer is part of the fuel cell [10,11,8].

HT-PEMFCs are typically operated at around 160 �C and

they employ a polybenzimadazole (PBI)-based membrane,

which is proton conductive under anhydrous conditions, if

doped in phosphoric acid. Moreover, PBI is known for its me-

chanical strength and has high glass transition temperature of

425e436 �C [12]. These characteristics of an HT-PEMFC allow

the use of reformate gas mixtures of various alcohols and

hydrocarbons without the need of pre-purification. This is

mainly due to the lower requirements for the purity grade of

the hydrogen needed for HT-PEMFC, owing to the increased

tolerance to poisoning from impurities. Up to 2e3% CO can be

tolerated without any significant loss in fuel cell performance

in HT-PEMFCs, while their low temperature counterparts

show significant performance loss at CO concentration of few

parts per million [13].

Methanol steam reforming produces impurities like CO2,

CO and unconverted methanol-water vapor mixture. Howev-

er, the study of the poisoning effects of reformate mixtures is

usually limited to CO2 and CO, perhaps due the fact that they

are common to most reforming processes, especially the

reforming of alcohols and hydrocarbons. The effects of CO are

usually associated to preferential surface adsorption of its

molecules on the catalyst, thereby reducing the electro-active

area [14]. The effects of CO2 on the other hand are limited to

dilution of the anode feed, with the possibility of chemical or

electrochemical reduction into CO [15]. There are also several

mitigation techniques suggested for CO and CO2 poisoning,

which include increasing the operating temperature and

performing partial oxidation of CO by oxygen bleeding on the

anode [12,16]. However, the effects of wetmethanol reformate

are not well documented and thus the phenomena is not

clearly understood. Consequently, there are not many sug-

gestions on how to mitigate the effects.

This study investigates the effects of methanol and water

vapor mixture. It is done at different operating temperatures

and different concentrations of vapor mixture in anode feed,

to understand the degrading phenomena and how they

change with other parameters. Methanol is known to cause

degradation via cross-over in DMFCs and it is also reported

that it undergoes complex reactions on Pt surface [17,18].

In our previous works, preliminary performance and

durability studies of an HT-PEMFC at relatively high

methanol-water vapor mixture have been presented [19,20].

High methanol concentrations were tested in order to accel-

erate tests and they revealed that the vapor mixture has

degrading effects if present at concentrations of above 3%. The

current study focuses on methanol contents between 0 and

3%, which is what can be expected from methanol steam re-

formers of different efficiencies and different operating tem-

peratures [8,21].

Experimental

The experimental setup used in this study is a Greenlight

Innovation test stand, whose schematic is shown in Fig. 1. A

single fuel cell assembly is tested, where a Celtec P2100 MEA

from BASF is sandwiched between two serpentine flow

channels. The MEA's nominal catalyst area is 45 cm2. It is

H3PO4/PBI-based and is produced and doped by means of a

solegel transition process [22].

The experimental setup incorporates a methanol vapor-

izer, which is used to supply a controlled amount of methanol

to the anode feed. It also has the capabilities for humidifying

and preheating the anode feed gases.

Test procedures

Themain objective of the study is to characterize the effects of

methanol slip in a PBI-based HT-PEMFC.

First, break-in conditioning of the fuel cell was performed

according the BASF's recommendations before the start of

characterization tests. The conditioning was performed for

100 h at 160 �C, at current density of 0.2 A/cm2, and stoichio-

metric ratios of 1.2 and 4, on the anode and the cathode

respectively. Then,Methanol reforming conversions from 90%

Fig. 1 e Schematic of the experimental setup.
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to 100% were tested, starting from pure and dry hydrogen

towards higher concentration of unconverted methanol in

reformate mixture. Tests with dry hydrogen were carried out

as reference for the tests in the presence of vapor mixture in

the anode feed. Preheating of anode gases is also tested to see

whether this affects the performance of a fuel cell.

Finally, after the performance characterization tests, an

endurance test was conducted for 100 h at 160 �C. This was

done to see if the effects exacerbate when the fuel cell is

exposed to the methanol slip for prolonged period of time. A

methanol conversion of 90%, which corresponds to 3% of

methanol slip in anode feed gas,was chosen for the endurance

test.

Test conditions

The following reaction was considered for the steam meth-

anol reforming process;

CH3OHþH2O/3H2 þ CO2 þ ðCH3OHþH2OÞunreacted (1)

where a steam to carbon (S/C) ratio of 1.5 is considered for the

steam methanol reforming prior to feeding to the anode. This

is an overall reaction excluding methanol decomposition and

reverse water gas shift reaction, both of which give rise to CO

formation. The methanol and water contents of the different

conversion rates were calculated based on this overall reac-

tion. To isolate the effects of methanol-water vapor mixture

on the performance of the HT-PEMFC at varying temperatures,

CO and CO2 are not considered in the simulation of the

reformate mixture in the current work.

The methanol concentrations and water vapor content of

the anode feed are given in tab.1. These test points are

repeated for temperatures between 140 �C and 180 �C at a

temperature step of 10 �C.
Methanolwasprovidedbymeansofan integratedmethanol

vaporizer in the test stand, and water vapor was provided as

humidification by controlling thedewpoint of the anode gases.

The dew point temperature of gaseous reactants is calculated

using Magnus formula for every relative humidity corre-

sponding to each reformer conversion ratio as follows [23];

RH ¼ e
es
100 (2)

esðTdÞ ¼ eðTÞ (3)

es ¼ C1exp

�
A1T

B1 þ T

�
(4)

where RH is the relative humidity, T is the anode feed tem-

perature, Td is the dew point temperature, e is the vapor

pressure and es is the saturation vapor pressure. The co-

efficients' values are; A1 ¼ 17.625, B1 ¼ 243.04 �C, and

C1 ¼ 610.94 Pa. Substituting Eq. (4) in Eq. (3) and combining

with Eq. (2) gives the conversion from RH to Td for a given

temperature of gases, T.

Td ¼
B1

�
ln RH

100 þ
�

A1T
B1þT

��

A1 � ln RH
100 �

�
A1T
B1þT

� (5)

Data analysis

To characterize the fuel cell comprehensively, polarization

curves and EIS measurements were analyzed in complemen-

tarity to each other for every test point. The polarization

curves were taken between 0 and 60 A at a current ramp rate

of 1 A/sec in ascending current direction.

EIS was performed between 10 kHz and 0.1 Hz in a galva-

nostatic mode, in which AC current was applied and voltage

responsewas registered. The interpretation of EIS data usually

requires a model, whether physical or empirical, to be fitted to

the measurements. In the current work an equivalent circuit

(EC) model was used to translate the trends of impedance

spectra and extract physical meaning from the data. The

model used is shown in Fig. 2.

Results and discussion

Performance characterization

The performance of a H3PO4/PBI-based HT-PEMFC is mapped

against operating temperature and methanol content of the

anode feed. Temperature was varied, not only to test the ef-

fects of temperature on the fuel cell performance, but also to

investigate whether the effects of methanol slip vary with

temperature. Temperature is known to enhance the kinetics

of the reactions that take place in a fuel cell [24,13,8]. Fig. 3

shows the effects of varying the operating temperature and

preheating the anode gases. It can be seen that the perfor-

mance of the fuel cell increases with increase in temperature.

This is intuitive and in agreement with literature, as the re-

action kinetics improve with increase in temperature, giving

rise to better performances [25,13].

The effects of preheating the anode feed gas on the fuel cell

performance is also tested. As shown in Fig. 3 the effects are

negligible. Given the fact that CO is the main impurity whose

effects are highly dependent on temperature [13], it is ex-

pected that preheating of the anode feed gas would have ef-

fects in the presence of CO. However, in the current study no

CO is present in the anode feed, and therefore, the perfor-

mance remains unaltered when anode gases are preheated. It

could also be that even in the case where the anode feed gas is

not preheated, the gases heat up immediately as they come

into contact with the hot end plates.

With increase in temperature the impedance spectra in

Fig. 4 shrink as a sign of decreasing impedance and therefore,

increasing performance. This shrinking happens throughout

the measured frequency range. This means that there is

enhancement in all the fuel cell activities, electrode kinetics

(the high frequency region), membrane conductivity (the real-

Fig. 2 e The equivalent circuit model used to fit the

measured impedance spectra.
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axis intercept of the spectra) and mass transport (the low

frequency region).

The increase in membrane conductivity with temperature

is not linear, and there seems to be an optimal conductivity at

around 160 �C. Above this temperature proton conductivity

decreases for operation in dry hydrogen and remains unal-

tered or slightly decreases in the presence of vapor mixture of

water andmethanol. This is seen from the position of the real-

axis intercept of the impedance spectra in Fig. 4 and the ohmic

resistances in Fig. 5(a).

Fig. 5 shows both the effects of methanol slip and tem-

perature. As already seen from the impedance spectra in

Fig. 4, temperature enhances the performance at most ranges

of frequency and for all concentrations of methanol. The only

exceptions are the ohmic resistances above 160 �C and high

frequency resistances above 170 �C for operation at 90% con-

version, which increase with temperature. These suggest that

temperature improves the electrode reaction kinetics and

mass transport in the GDL. Xiao et al. [26] found that the

conductivity of a typical phosphoric acid-doped PBI mem-

branemade by the solegel process with approximately 32mol

of PA per PBI repeat unit increases with increasing tempera-

ture up to 200 �C. This is not entirely confirmed in the current

work as the decrease in ohmic resistance, which is indicative

of the increase in membrane conductivity, is clear only until

160 �C. Afterwards it either slightly increases or remains un-

altered. It is not clear if this slight increase in ohmic resistance

above 160 �C is related to phosphoric acid leaching, but it is

known that the free nature of the phosphoric acid makes it

volatile at higher operating temperatures, especially above

200 �C [26]. This can cause the fuel cell performance to

decrease, due to the evaporation of phosphoric acid, which

can lower the membrane conductivity.

To investigate the effects ofmethanol slip the performance

mapping has been done by varying the concentration between

100% reformer conversion ratio and 90% conversion. These

test points were chosen due to the trade-off in a methanol

reformer between methanol conversion rate and CO forma-

tion, i.e., as reformer temperature increases, methanol con-

version rate increases, and at the same time the rate of reverse

water gas shit reaction increases producingmore CO [27]. Kim

[21] achieved a methanol conversion higher than 90% at

temperature higher than 250 �C and at feed rate of methanol

of 2 ml/h. At higher temperatures the conversion rate can go

close to 100% [28]. Therefore, a methanol conversion range

between 90% and 100% was chosen in order to investigate the

effects of high concentrations of methanol slip, since the

trade-off suggests that higher methanol slip corresponds to

lower CO concentration, which is a known poison to PEM fuel

cells.

Fig. 4 e Impedance spectra showing the effects of

temperature for different anode compostions a) dry and

pure hydrogen b) wet hydrogen with water alone c) wet

hydrogen with water and methanol with the assumption

of 90% conversion of methanol.

Fig. 3 e IeV curves showing the effect of varying the

operating temperature and preheating the anode feed gas

on the fuel cell performance.
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The results reveal that the effects of methanol on the

overall performance of the fuel cell are negligible at all the

tested concentrations. This can be noticed in the polarization

curves in Fig. 6, where the different methanol concentrations

are shown at 160 �C. The effects remain unaltered for the

entire range of methanol conversion rates tested. A slight

decrease in performance is seen when water vapor is added

with respect to dry hydrogen operation. This decrease in

performance corresponds to the decrease in hydrogen flow

rate with decrease in conversion rate given in Table 1, espe-

cially from test point 1 to 2. Other studies state that the proton

conductivity of PBI increases with increase in relative hu-

midity, which suggests that if water vapor was added without

decreasing the hydrogen flow rate, the performance would

increase due to enhanced proton conductivity [29,12,30].

However, it is also stated that water produced from the elec-

trochemical reaction at the cathode is capable of hydrating

the polymeric material and promoting the cell performance,

without the need for humidification [30].

The generally little or no effects of methanol-water vapor

mixture are also confirmed from the impedance spectra in

Fig. 7. They show similar spectra for all measurements in the

presence of methanol, from 98% to 90%methanol conversion,

and similar spectra for the ones without methanol slip. These

impedance spectra were recorded at 160 �C. The real-axis in-

tercepts of the spectra, which denote the ohmic resistance of

the fuel cell, move to the left in the case of 100% conversion. In

this case the anode feed is composed of hydrogen and water

vapor, and the shift towards left of the intercept may be

attributed to the humidification of the membrane.

A closer look into the spectra by means of equivalent cir-

cuit fitting reveals more details and small changes due to

methanol slip. The first observable change happens when

water alone is added to the anode feed gas, as a simulation of

100% conversion ratio of a reformer running at S/C of 1.5. This

corresponds to the addition of 14.29% by volume of water

vapor and the decrease of hydrogen concentration by the

same percentage by volume in the anode feed. There is an

increase in ohmic resistance from dry hydrogen to 100%

conversion at 140 �C and 150 �C, which can be attributed to

decrease in hydrogen flow rate. Above 160 �C the ohmic re-

sistances increase slightly for reformate operating conditions,

but it does so more significantly for dry hydrogen operation.

This could be due to the drying of themembrane in the case of

dry hydrogen operation. In reformate operation on the other

hand the presence of water vapor in the mixture keeps the

membrane hydrated. The lowest ohmic resistances are ach-

ieved for 100% conversion at 160 �C, i.e., humidified hydrogen

feed. Here the negative effect of reduced hydrogen concen-

tration is overwhelmed by the positive effect of membrane

humidification. At temperatures above 170 �C, the presence of

Fig. 5 e Fitted resistances for varying temperatures and

anode compositions a) ohmic resistances b) high frequency

resistances c) intermediate-low frequency resistances.

Fig. 6 e IeV curves showing the effects of methanol slip at

different simulated reforming conversion rates at 160 �C.
The percentage values represent the conversion of

methanol considered.
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methanol-water vapor mixture seems to prevent the mem-

brane from drying out. However, the slightly higher re-

sistances in the presence of methanol compared to water

alone suggest that methanol vapor has slight negative effect

on the ohmic resistances, and therefore, the membrane

conductivity.

The high frequency resistances increase with increase in

methanol slip, Fig. 5(b). This could be due to dehydrogenation

process that methanol undergoes on platinum surface that

can also lead to CO formation and therefore, can affect the

electrode kinetics negatively [18]. In Fig. 5(b) it can be noticed

that there is a significant increase in the resistances between

dry H2 and 100% conversion and then the increase slows with

the addition ofmethanol. It can be said that the vapormixture

of methanol and water has generally negative effect on this

frequency range. However, further isolation of the effects of

methanol is required to have amore conclusive remarks on its

effects. This frequency range is representative of the anodic

processes, and therefore, the negative effect could be due to

the dilution of the anode feed with the addition of the vapor

mixture and the decrease of hydrogen flow rate. The complex

reactions methanol is said to undergo on Pt surface could also

play a role in these losses [18,31].

Low frequency resistances have decreasing trend both

with increase in temperature and methanol slip. The re-

sistances at this frequency range are the highest at 98% con-

version ratio. Contrary to the general trend, this conversion

ratio also shows higher resistance compared to 100% con-

version ratio. This could suggest that methanol has a slightly

negative effect on the phenomena represented in this fre-

quency range, the cathodic activities and the diffusion limi-

tations. However, these negative effects are masked for the

rest of the conversions by the positive effects of humidifica-

tion as both methanol and water contents in the anode feed

increase.

Overall, the effect of methanol-water vapor mixture on

performance is negligible for the measured concentrations.

This is mainly because the dilution and degrading effects seen

at high frequency range for anodic activities are balanced out

by the enhanced mass transport due to the vapor mixture.

Furthermore, the generally parallel resistance lines in Fig. 5

with few exceptions at high temperature show that the effects

of methanol do not depend on the operating temperature. An

exception is seen in Fig. 5(b) at 90% conversion ratio, in both

ends of the temperature range. This shows that at such low

reformer conversion rates, it is best to operate the fuel cell at

the typical operating temperatures of 160 �C and 170 �C. This
also suggests that at low fuel cell operating temperature, low

reformer conversion can have negative effects on the anode

kinetics.

Endurance test

After the performance characterization tests, an endurance

test was conducted in the presence of methanol in the anode

feed. The fuel cell was operated at constant current density of

0.33 A/cm2 at constant temperature of 160 �C and hydrogen

and air stoichiometry of 1.2 and 4, respectively. A simulated

reformate of 90% conversion, was used for the anode feed

composition.

The voltage profile in Fig. 8 shows how the cell potential

changes during the 100 h of endurance test. For the chosen

operating conditions the overall degradation rate is �55 mV/h.

This is ten times the reported degradation rate of a Celtec

MEA, at constant current density of 0.2 A/cm2 at 160 �C and

using dry gases over 18,000 h of operation [22]. On the other

hand Hu et al. [32] found a higher degradation rate of�150 mV/

h over 400 h of operation following 100 h of conditioning at

constant load of 0.64 A/cm2 at 150 �C for their home-made unit

Table 1 e Operating parameters for tests between 140 �C and 180 �C at a temperature step of 10 �C.

Exp. id Conversion H2 H2 CH3OH H2O

[%] [NLPM] [% Volume] [% Volume] [% Volume]

1 H2 (20 �C) 0.124 100 0 0

2 H2(140 �C) 0.124 100 0 0

3 100 0.106 85.71 0 14.29

4 98 0.105 84.48 0.57 14.94

5 96 0.103 83.24 1.16 15.61

6 94 0.102 81.98 1.74 16.28

7 92 0.100 80.70 2.34 17.65

8 90 0.098 79.41 2.94 19.96

Fig. 7 e Impedance spectra showing the effects of

methanol slip at different simulated reforming conversion

rates at 160 �C. The percentage values represent the

conversion of methanol considered.
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cell assembly. Other degradation rates at similar conditions as

the current work but pure hydrogen operation include, Mod-

estov et al. [33] and Galbiati et al. [34] at 0.2 A/cm2 at 160 �C,
with degradation rates of �25 mV/h and �10 mV/h, respec-

tively. The difference in degradation rates may be attributed,

other than the different operating conditions, also to the

different MEA manufacturing and doping processes. Some

test bench specific factors, such as the techniques used to

assemble the fuel cell and the balance of plant of the fuel cell

system may also affect the operation of the fuel cell, and

therefore, the degradation rate. In general, it can be said that

the degradation rates in this work are above the average of

pure hydrogen operations in literature, implying that part of

the degradation may be caused by the presence of the refor-

mate vapor.

However, negligible effect on performance and not signif-

icant degradation on endurance tests mean simpler fuel cell

and reformer design, and overall simpler system integration.

There is increasing interest in using renewable methanol as a

viable hydrogen carrier as it offers higher energy density, and

is more economical compared to pure hydrogen. This has led

some to consider internal reforming of methanol in fuel cells

or coupling methanol reformers and fuel cells in compact

systems [11,8]. The results of the current work suggest that

such a reformer can be run at conversion rates as low as 90%,

with negligible effects on the performance of the fuel cell and

no significant degradation up to 100 h. This means it can be

run at temperatures comparable to that of the fuel cell and

produce lower CO concentrations.

Conclusions

The effects of methanol-water vapor mixture at different

concentrations and varying operating temperatures on the

performance of PBI-basedHT-PEMFCwere studied. Endurance

test was also performed for 100 h at 90% conversion.

The overall effects of methanol-water vapor mixture on the

performance are negligible at all the measured vapor concen-

trations. However, from the impedance measurements it is

found that the vapor mixture has negative effects on the high

frequency region and positive effects on the low frequency re-

gion. Therefore, the membrane conductivity and the electrode

activities are slightly degraded, whereas the mass transport

losses are slightly reduced. This results in an overall balancing

of positive and negative effects on the fuel cell performance.

An overall degradation of �55 mV/h over a 100 h of endur-

ance tests at 90% conversion was registered. This is above the

average degradation rate for pure hydrogen operations in

literature, implying that part of the degradation may be

caused by the presence of the reformate vapor.
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