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Communication Strategies for Two Models of
Discrete Energy Harvesting

Kasper F. Trillingsgaard and Petar Popovski
Department of Electronic Systems, Aalborg University, Aalborg, Denmark

Abstract—Energy harvesting is becoming a viable option for
powering small wireless devices. Energy for data transmission is
supplied by the nature, such that when a transmission is about
to take place in an arbitrary instant, the amount of available
energy is a random quantity. The arrived energy is stored in
a battery and transmissions are interrupted if the battery runs
out of energy. We address communication in slot-based energy
harvesting systems, where the transmitter communicates with
ON-OFF signaling: in each slot it can either choose to transmit
(ON) or stay silent (OFF). Two different models of harvesting
and communication are addressed. In the first model an energy
quantum can arrive, with a certain probability, in each slot.
The second model is based on a frame of size F : energy arrives
periodically over F slots, in batches containing a random number
of energy quanta. We devise achievable strategies and compare
the slot- with the frame-based model in the case of an errorless
transmission channel. Additionally, for the slot-based model and
channel with errors, we provide a new proof of the capacity
achieved by the save-and-transmit scheme.

I. INTRODUCTION

Energy harvesting is an emerging field that enables wireless

devices to harvest energy from the nature. This concept is

particularly important for small low-complexity devices with

a long expected lifetime, e.g. wireless sensor nodes. Energy

sources include vibrations, blood sugar, solar cells and ther-

moelectricity [1]. Unlike traditional battery-powered devices,

future energy levels have a random behavior within time

intervals in the order of symbol durations. Arriving energy

is stored in a battery for later usage if not used immediately,

and transmissions are interrupted if the device runs out of

energy. Due to the random behavior of future energy levels, it

is difficult to utilize the energy in the most efficient way and

there is a trade-off between high transmission rates and a low

probability of running out of energy [2].

Wireless systems with energy harvesting have received

much research interest in recent years. Many works consider

the problem of finding a transmission scheme that is optimal

in terms of the achieved throughput. The works [2], [3], [4],

[5] consider the problem of communication on a channel that

enables a higher instantaneous throughput with higher energy

usage in accordance to a monotonic and strictly concave rate

function. An example of a channel having such rate function

is the AWGN channel. A first attempt to analyze energy

harvesting systems from an information-theoretic perspective

is done in [6]. A transmission scheme called save-and-transmit
is introduced and it is proved to be capacity-achieving on the

Fig. 1. The slot-based model.

AWGN channel. Recently, [7] considered the binary energy

harvesting problem with a unit-size battery.

In this paper, we consider slot-based point-to-point com-

munication for wireless systems with energy harvesting and

ON-OFF signaling, in which energy is only used when an ON

symbol is sent. First, a slot-based energy harvesting model is

considered. A naı̈ve achievable scheme and an upper bound are

introduced, and the capacity with an infinite-capacity battery

is found for arbitrary binary-input memoryless channels. We

show that the save-and-transmit scheme introduced in [6] is

applicable for systems with ON-OFF signaling and can be

proved using the Martingale theory. Next, a frame-based model

is presented: the harvested energy becomes usable only at

the beginning of each frame that consists of F slots, which

is modeled through a random number of energy quanta that

arrives at the frame start. We consider two cases: when energy

quanta may be saved from frame to frame and when energy

is discarded in the end of a frame. The latter model captures

the effect of battery leakage or the separation between the

operations of harvesting and communication. Achievable in-

formation rates are found based on the framework of Channel

Side Information at the Transmitter (CSIT) [8].

The paper is structured as follows. Section II describes

the investigated communication models of a wireless system

with energy harvesting. The slot-based and the frame-based

model are introduced. Section III addresses the slot-based

model. In Section IV, transmission schemes for the frame-

based model are considered. Finally, numerical results are

presented Section V followed by conclusions in Section VI.

II. COMMUNICATION MODELS

We present the two models separately, but as elaborated in

Section V, the slot-based model can be used to emulate the

frame-based model under suitable assumptions.
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A. Slot-based model

The slot-based model for wireless systems with energy

harvesting is illustrated in Fig. 1, and has already been used in

[7]. Time is divided into slots of equal duration, enumerated

k ∈ N, where N denotes the natural numbers. Energies are

discretized in quanta, where one quantum corresponds to the

energy consumed by transmitting a single ON symbol. In each

slot, one energy quantum is either harvested with probability

a or not with probability 1−a. Thus the arrived energy in slot

k, Qk, is independently distributed as

Qk ∼ Bern(a), (1)

where ∼ denotes “distributed as”. In the k−th slot, the

transmitter can either choose to transmit (ON), setting Xk = 1
and consume one energy quantum, or stay silent (OFF), setting

Xk = 0 and consume no energy.

Energy is buffered in a battery, such that Sk energy quanta

are stored in the beginning of slot k. Sk is termed the energy

level, or the state, in slot k. As the transmitter can not transmit

if no energy is available, the following energy constraints have

to be satisfied for all k ∈ N

Xk ≤ Sk. (2)

A recursive formula for the energy level Sk can be written as

Sk = min(Smax, Sk−1 −Xk−1 +Qk) (3)

where Smax ∈ N denotes the positive battery capacity and

S1 = 0. Note that if energy arrives when Sk = Smax, then the

energy quantum is discarded.

B. Frame-based model

The slot-based model models systems in which energy is

available immediately upon arrival. However, we can think

of a system in which harvesting and communication do not

take place simultaneously. The system enters in a harvesting

mode and collects a random number energy quanta, which

is supplied to be used for communication in the coming F
slots. In the best case, the transmitter will use only as many

as it needs of the quanta, and the other will remain in the

energy buffer. However, if the harvesting periods are separated

in time, then the other extreme occurs - due to energy leakage,

the energy buffer is empty when the new harvesting period

starts. This latter model, in which all buffered energy must be

used/wasted in a frame of size F has been introduced in [9].

Energy arriving in the slots (i−1)F +1, . . . , iF , for i ∈ N,

is first harvested to the battery in slot iF+1. An interpretation

of this is that there is one energy harvesting round after every

F slots, where energy is harvested from energy sources and

buffered in the battery.

A frame i is then defined by the slots iF +1, . . . , (i+1)F .

The number of energy quanta harvested in the beginning of

frame i, Q̃i, is then given as

Q̃i =

F∑
j=1

Q(i−1)F+j , (4)

Fig. 2. Frame-based model: The time is divided into enumerated frames.

Each frame is divided into F slots. In the beginning of each frame ˜Qn energy
quanta arrives and can only be used within the next frame. The black boxes

designates ON symbols in each frame. For this example F = 4, and ˜Qi ≥ 1,
˜Qi+1 ≥ 3 and ˜Qi+2 ≥ 1. The periods between the frames, marked by grey
boxes, depicts energy harvesting rounds.

and hence Q̃i is Binomial distributed with parameters F and

a. The energy level, or frame state, in the beginning of frame

i is then denoted by S̃i. In frame i, the transmitter sends a

binary vector Xi = {X(i−1)F+1, . . . , XiF } ∈ {0, 1}F , which

defines the actions taken by the transmitter in frame i. Denote

the weight of xi by |xi| =
∑F

j=1 xi,j , where xi,j is the j-th

entry of xi. The transmitter then has to satisfy the following

constraint

|xi| ≤ S̃i. (5)

As for the slot-based model, the energy level in the beginning

of frame k is recursively given by

S̃i = min(S̃max, S̃i−1 − |Xi−1|+ Q̃i), (6)

where k ∈ N and |x| denotes the weight of the vector x.

The frame-based model is depicted in Fig. 2. Note that a

simple way to model leakage in the battery is use the energy

level update S̃i = Q̃i.

In the main body of the paper we will always assume that

the ON-OFF communication channel is error-free, such that

the channel output Yi is equal to the channel input Xi = Yi.

For the proof presented in the Appendix, we will introduce a

channel model with errors.

III. ACHIEVABLE SCHEMES FOR THE SLOT-BASED MODEL

In this section, communication schemes for the slot-based

model are addressed. A naı̈ve scheme and an upper bound are

introduced for comparison, and a save-and-transmit strategy

is shown to achieve the capacity on arbitrary binary-input

channel models. The main contribution, compared to [6], is a

different proof technique and the extension to arbitrary binary-

input channel models.

A. Naı̈ve achievable scheme

A naı̈ve achievable scheme for the slot-based model can be

derived using the Shannon strategies (0, 0) and (0, 1) as in [7].

The first and the second entry of the Shannon strategies denote

the channel inputs, X , when the energy level is S = 0 and

S ≥ 1, respectively. The Shannon strategies (0, 0), (0, 1) are

denoted by U = 0, 1 and U is i.i.d. with probability PU (1) =
q. This communication strategy forms a Markov chain with

Smax + 1 states, i.e. one for each energy level. The energy
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level is hence ergodic and the stationary state probability π0 =
Pr[S = 0] is given by

π0(q) =

(
1 +

1

1− q

Smax∑
s=1

(
a(1− q)

q(1− a)

)s
)−1

, (7)

and the achievable rate is then given by

RNIID,Smax
= max

q∈[0,1]
Hb((1− π0(q))q)− qHb(π0(q)), (8)

where the expression to be maximized is the information rate

achievable by the Z-channel with crossover probability π0(q)
and Hb(·) denotes the binary entropy function [10]. In the

special case where Smax = 1, the upper bound corresponds to

the upper bound in [7].

B. Upper bound

Suppose the receiver knows the state of the transmitter and

the transmitter chooses the Shannon strategy U = 1 with

probability Pr[U = 1|S = s] = qs for s ∈ {0, . . . , Smax}. As

for the naı̈ve achievable scheme, this strategy forms a Markov

chain for which the stationary probabilities πs can be com-

puted. Since the state information is perfectly known at both

transmitter and receiver, the capacity of the communication

scheme with receiver state information is given by

Cupper,Smax
= max
∀s:qs∈[0,1]

Smax∑
s=1

πsHb(qs). (9)

C. Battery with infinite capacity

In the case where the battery has infinite capacity, i.e.

Smax →∞, [7] found that the capacity of the slot-based model

is given by

CSmax→∞ =

{
Hb(a), a ≤ 1

2
1, a > 1

2

(10)

This is shown using the save-and-transmit strategy presented

in [6]. In Appendix A, we derive the capacity in (10) using a

different proof based on Martingale theory, which simplifies

the analysis compared to [6]. Moreover, the result is extended

to arbitrary binary-input channel models.

IV. ACHIEVABLE SCHEMES FOR THE FRAME-BASED

MODEL

This section introduces achievable schemes for the frame-

based model. We first consider the simplified case in which

energy that is not used in a frame is discarded at the end of the

frame. Next, we elaborate on the case in which unused energy

quanta in one frame can be used in the following frame.

A. Without memory

When the remaining energy quanta in one frame are dis-

carded before the next frame, the communication model acts

as a memoryless channel. In particular, the state of the channel

is i.i.d. as S̃ = Q̃ ∼ Binomial(F, a), and hence at most

F energy quanta can be stored in the battery. The resulting

communication channel can be seen as a channel with channel

input constraints. The capacity of such a channel can be

found using the framework of Channel Side Information at the

Transmitter (CSIT), where the frame state S̃ is the state of the

channel PY|X,˜S , which is defined shortly. Shannon showed

that the capacity of such a channel can be achieved by an

equivalent channel T − X − Y, where T ∈ T denotes a

random Shannon strategy which is i.i.d. according to PT [8].

A Shannon strategy t ∈ T is mapping from a frame state

s̃ ∈ S̃ = {0, . . . , F} to a channel input x ∈ {0, 1}F such that

t(s̃) = x ∈ {0, 1}F .

However, given the frame state s̃, the energy constraints

imply that only a subset of the possible channel inputs can

be send. Now, define the alphabet X s̃ for each s̃ ∈ S̃ as the

set of all subsets of {0, 1}F with weight less than or equal

to s̃. The channel input then have to satisfy X ∈ X ˜S . Note

that the model, with the additional constraint that all energy

quanta have to be used, have been considered in [9]. We then

define the channel PY|X,˜S(y|x, s̃) as following

PY|X,˜S(y|x, s̃) =
{

PY|X,˜S(y|g(s̃), s̃), x �∈ X s̃

�{y=x}, x ∈ X s̃ , (11)

where g(s̃) chooses an arbitrary letter in the alphabet X s̃ for

each s̃ ∈ S̃ . Note that the channel PY|X,˜S only takes the

values 0 and 1 since we consider errorless channels. Due to this

definition, the channel input constraints are satisfied for any

Shannon strategies, i.e. picking a Shannon strategy t ∈ T such

that t(s̃) �∈ X s̃ for some s̃ ∈ S̃ is equivalent to picking another

Shannon strategy t′ ∈ T with t′(s̃) ∈ X s̃. The capacity of the

communication model is hence given by

Cframe,no-mem = max
PT

I(T ;X). (12)

This is similar to the technique used by [11] in which the

capacity of a time-varying amplitude constrained AWGN

channel was considered. As consequence of (11), it is only

necessary to search for strategies t ∈ T satisfying t(s̃) ∈ X s̃

for s̃ ∈ S̃ . The cardinality of this set of Shannon strategies is

given by

|T | =
F∏

s̃=0

s̃∑
j=0

(
F

j

)
. (13)

As the cardinality of T grows very fast with F , we have only

succeeded in computing capacities using (12) for F ≤ 4.

B. With memory

In the case where energy quanta are saved from one frame

to next according to (6), the frame state depends on both

previous channel inputs and the random energy arrivals. This

renders the problem of computing the capacity challenging.

The main problem is to find the pmf of the Shannon strategies

PT such that I(T ;X) is maximized. Recall that the stationary

pmf of frame state P
˜S can be computed from the Shannon

strategies PT , and conversely, the optimal pmf PT depends

on the stationary pmf of the frame state P
˜S . Due to this

dependency, it necessary to optimize jointly over P
˜S and PT

to obtain the capacity. We propose a suboptimal heuristic
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approach for the optimization of the achievable information

rate I(T ;X) in which we alternate between optimization over

PT and computation of PS .

In order to allow any S̃max and to keep the complexity

reasonable low for S̃max > F , the Shannon strategies t ∈ T
are extended as

t(s̃) = t(F ) for s̃ > F. (14)

1) Computation of P
˜S given PT : With PT given, the pmf

of the energy quanta remaining after frame k − 1, Ek−1, is

computed as

PEk−1
(e) =

Smax∑
s=0

∑
t∈T

PSk−1
(s)PT (t)�{s−w(t(s))=e}, (15)

for e ∈ {0, . . . , Smax}. The pmf of the frame state in slot k,

Sk, is given by

P
˜Sk
(s̃) =

min(F,s̃)∑
i=0

P
˜Q(i)PEk−1

(s̃− i) (16)

where s̃ ∈ {0, . . . , S̃max − 1} and P
˜Sk
(S̃max) is given by

1 −∑
˜Smax

s̃=0 P˜Sk
(s̃) . The stationary pmf of the energy level,

denoted P
˜S , can then be found by solving the system of linear

equations

P
˜Sk
(s̃) = P

˜Sk−1
(s̃), (17)

for s̃ ∈ {0, . . . , S̃max}.
2) Optimization of I(T ;X) given P

˜S: With P
˜S given, the

highest achievable information rate can be found as in (12).

However, optimization in this way does not take into account

that T affects P
˜S , i.e. optimal Shannon strategies according

(12) may use a high amount of the energy available, and

hence decrease the amount of energy saved for the next frame.

To accommodate for that, we use a regularized optimization

approach in which Shannon strategies are penalized according

to their average weight, i.e. Shannon strategies with higher

weights are penalized more. This optimization problem can

be stated as

Rframe(P˜S) = β
∑
t∈T

P ∗T (t)w(t)

+ max
PT

I(T ;X)− β
∑
t∈T

PT (t)w(t), (18)

where β > 0, P ∗T is the pmf maximizing (18) and the average

weight of a Shannon strategy t ∈ T is defined by w(t) =∑
s̃∈ ˜S P˜S(s̃)w(t(s̃)).
By alternating between computation of P ∗T in (18) and

computing P
˜S , we arrive at a stationary point in which P ∗T

and PS are consistent with (15)-(18).

V. NUMERICAL RESULTS

We have assessed the performance of both communication

models in terms of achievable rates for the proposed schemes.

We first note that, although the slot-based and the frame-

based models are fundamentally different, the frame-based
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Fig. 3. Information rates achieved by the naı̈ve scheme and the emulated
frame-based scheme. The upper bounds are plotted for comparison.

model can be emulated in the slot-based model. That is, the

frame-based model represents a communication scheme for

the slot-based model in which the transmitter decides which

symbols to send in the coming F slots every F slot. One

problem is that in the slot-based model, the battery may

overflow if Smax = S̃max. This is avoided by setting the frame

state S̃max = Smax − 	F/2
, i.e. the energy level update is

given by

S̃k = min
(
Smax − 	F/2
, S̃k−1 − |Xk−1|+ Q̃k

)
(19)

with Smax−	F/2
 ≥ F . An example in which this is necessary

is the following; let S̃max = 6, F = 4 and S̃k = 6. Suppose

that the transmitter sends xk = 0011 and the sequence of

harvested energy during the duration of the frame is 1100. In

this case, the battery in the slot-based model overflows such

that S̃k+1 = 4, whereas the same scenario in the frame-based

model would yield S̃k+1 = 6.

For the slot-based model, the achievable rate of the naı̈ve

achievable scheme and the emulated frame-based scheme are

plotted in Fig. 3 along with the upper bound in (9). The in-

formation rates achieved by the emulated frame-based scheme

are found using (19) and by optimizing over the frame length

F ∈ {1, . . . , 4} and the parameter β > 0 in (18) for each

Smax. The main observation is that the emulated frame-based

achievable scheme achieves slightly higher information rates

than the naı̈ve scheme at certain energy arrival probabilities

when Smax ≥ 6.

Achievable information rates for the frame-based model

are depicted in Fig. 4. It is seen that saving energy quanta

from frame to frame significantly increases the achievable

information rates.

We note that the optimization problems in (12) and (18)

are efficiently solved using the Blahut-Arimoto algorithm for

F ≤ 4.

VI. CONCLUSIONS

In this paper we have considered transmission schemes

for wireless systems with energy harvesting and ON-OFF

signaling. For the slot-based scheme, we have introduced a
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naı̈ve achievable scheme and an upper bound, and we have

shown that the capacity of the model with an infinite-capacity

battery transmitting on an arbitrary discrete binary-input mem-

oryless channel is achieved by the save-and-transmit scheme

using results from Martingale theory. A frame-based model

in which energy is only harvested every F slots is presented

for systems where energy is only harvested periodically. We

have considered the case where the energy quanta are lost in

the end of each frame, i.e. before the next energy harvesting

round and when energy quanta not used in one frame can be

used in the following frame. Achievable schemes are devised

using Shannon strategies. It is further shown that the frame-

based model can be emulated in the slot-based model, and

numerical results shows that the emulated frame-based scheme

achieves higher information rates than the naı̈ve for certain

energy arrival probabilities.

REFERENCES

[1] J. A. Paradiso. and T. Starner, “Energy scavenging for mobile and
wireless electronics,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 18
– 27, January-March 2005.

[2] B. Devillers and D. Gunduz, “Energy harvesting communication system
with battery constraint and leakage,” in IEEE Globecom, Houston, USA,
December 2011, pp. 383 –388.

[3] J. Yang and S. Ulukus, “Transmission completion time minimization
in an energy harvesting system,” in 2010 44th Annual Conference on
Information Sciences and Systems (CISS), Princeton, USA, March 2010,
pp. 1 –6.

[4] K. Tutuncuoglu and A. Yener, “Short-term throughput maximization
for battery limited energy harvesting nodes,” in IEEE International
Conference on Communications, Xi’an, China, June 2011, pp. 1 –5.

[5] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy
management policies for energy harvesting sensor nodes,” IEEE Trans-
actions on Wireless Communications, vol. 9, no. 4, pp. 1326 –1336,
April 2010.

[6] O. Ozel and S. Ulukus, “Achieving awgn capacity under stochastic
energy harvesting,” IEEE Transactions on Information Theory, vol. 58,
no. 10, Oct. 2012.

[7] K. Tutuncuoglu, O. Ozel, A. Yener, and S. Ulukus, “Binary energy
harvesting channel with finite energy storage,” in IEEE International
Symposium on Information Theory, Jul. 2013.

[8] C. E. Shannon, “Channels with side information at the transmitter,” IBM
Journal of Reasearch and Development, vol. 2, no. 4, Oct. 1958.

[9] P. Popovski, Z. Utkovski, and K. F. Trillingsgaard, “Communication
schemes with constrained reordering of resources,” IEEE Transactions
on Communications, vol. 61, no. 5, pp. 2048–2059, 2013.

[10] L. Tallini, S. Al-Bassam, and B. Bose, “On the capacity and codes
for the z-channel,” in IEEE International Symposium on Information
Theory, 2002, p. 422.

[11] O. Ozel and S. Ulukus, “Awgn channel under time-varying amplitude
constraints with causal information at the transmitter,” in Asilomar
Conference on Signals, Systems and Computers, Nov. 2011, pp. 373–
377.

[12] G. Kramer, “Topics in multi-user information theory,” Now Publishers,
vol. 4, no. 4-5, pp. 265–444, 2008.

[13] R. G. Gallager, Discrete Stochastic Processes. Springer, 1995.

APPENDIX A

SAVE-AND-TRANSMIT STRATEGY

Ozel et al. [6] established that the save-and-transmit strategy

achieves the capacity of a slot-based communication system

with infinite battery over the AWGN channel. In [7], it was

further noted the the capacity of slot-based energy harvesting

systems with ON-OFF signaling is achieved by a similar a

strategy. In this appendix, this result is extended to arbitrary

binary-input channel models and our proof is based on Martin-

gale theory which simplifies the analysis compared to [6]. In

the following, we consider the n slots, and Xn and Y n denote

the sequences {X1, . . . , Xn} and {Y1, . . . , Yn}, respectively.

As the energy is buffered in a battery with infinite capacity

the following energy constraints have to be satisfied for any

slot k ∈ {1, . . . , n}
k∑

i=1

Xi ≤
k∑

i=1

Qi. (20)

These constraints are necessary to ensure that Xi can not be

1 if no energy is available in the buffer.

The channel X−Y is an arbitrary binary-input memoryless

channel. The channel is defined by the function h(p) as

following:

h(p) = I(X;Y ), (21)

where X ∼ Bern(p). The function h(p) is concave and attains

a maximum in the interval [0, a], which is denoted by aopt.

It is noted that aopt = a for symmetric binary-input channels

with a ≤ 1
2 . The capacity of the slot-based communication

system with ON-OFF signaling for infinite battery is then

upper bounded by h(aopt).

Within n slots, the save-and-transmit scheme has two

phases. In the first phase, no energy is used, and hence

energy is accumulated in the battery for g(n) slots, where

g(n) denotes a monotonic increasing function such that

limn→∞ g(n)/n = 0. In the second phase, on average, aopt

energy quanta are used per slot.

The following proposition proves that the upper bound

h(aopt) can be achieved using the save-and-transmit scheme.

Proposition 1. The capacity of the channel defined by the
slot-based model with an infinite-capacity battery is given by
h(aopt) for arbitrary binary-input memoryless channels.
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Proof. The proposition is proved by defining a transmission

scheme achieving the upper bound h(aopt). We consider n
slots. Let Xk be defined as:

Xk ∼ Bern(aopt) for g(n) < k ≤ n (22)

Xk = 0 for 1 ≤ k ≤ g(n). (23)

It is noted that Xk are i.i.d. for g(n) < k ≤ n. This scheme is

feasible if the energy constraints (20) are satisfied. We show

that these energy constraints are satisfied almost surely for a

certain choice of g(n) when n tends to infinity.

Let Q1,g(n) denote the sequence of energy arrivals from

time 1 to g(n). The sequence Q1,g(n) becomes ε-letter typical

with high probability as g(n) tends to infinity [12]:

1− δε(g(n)) ≤ Pr[Q1,g(n) ∈ T g(n)
ε (PQ)] ≤ 1, (24)

where δε(k) = 2|Q|e−kε2μ and T
g(n)
ε (PQ) is the set of ε-letter

typical sequences of length g(n) with each letter distributed

according to the pmf PQ(·). Thus according to [12, Theorem

1.1] the number of occurrences of the letter 1 is bounded as:

g(n)a(1− ε) ≤
g(n)∑
i=1

qi ≤ g(n)a(1 + ε), (25)

where qi is the i-th entry of the ε-letter typical sequence

q1,g(n).

Define the sequence Zk = Qg(n)+i − Xg(n)+i for k =
1, . . . , n− g(n). The mean and variance of this sequence are

given as E[Zk] = a−aopt and Var[Zk] = a+aopt, respectively.

Now, define the sequence Sk as

Sk = k(aopt − a) +

k∑
i=1

Zi = aopt − a+ Zk + Sk−1 (26)

for k = 1, . . . , n − g(n) and S0 = 0. The sequence Sk is

a Martingale since E[Sk|Sk−1, . . . , S1] = Sk−1 [13]. It is

noted that E[Sk] = 0 and the second moment is given by

E[S2
k] = k(a+aopt) for k ∈ {1, . . . , g(n)}. Now, if the energy

constraints are not satisfied, all n − g(n) slots are counted

as errors. Using the defined scheme this happen if, for any

k = g(n) + 1, . . . , n,
∑k

i=1 Zi < −
∑g(n)

i=1 Qi. We define the

following events:

• E1 is the event that Q1,g(n) is not typical i.e. Q1,g(n) �∈
T

g(n)
ε (PQ).

• E2 is the event that the energy constraints are not satisfied

i.e.
∑k

i=1 Zi ≤ −
∑g(n)

i=1 Qi for any k = 1, . . . , n−g(n).

Thus the event EC
2 and therefore also (E1 ∪ E2)

C is suffi-

cient to make the scheme feasible. An upper bound for the

probability of an infeasible transmission is therefore given by:

Pr[E2] ≤ Pr [E1] + Pr
[
E2 | EC

1

]
(27)

The probability Pr[E1] is upper bounded by δε(g(n)) from

(24), and hence the probability Pr[E1]→ 0 as n→∞.

As Sk is a Martingale, Kolmogorov’s martingale inequality

[13, Corollary 1] can be used to upper bound Pr[E2|EC
1 ] as:

Pr
[
E2 | EC

1

]
= Pr

⎡⎣ min
1≤k≤n−g(n)

k∑
i=1

Zi ≤ −
g(n)∑
i=1

Qi

|
g(n)∑
i=1

Qi ≥ g(n)a(1− ε)

⎤⎦ (28)

≤ Pr

[
min

1≤k≤n−g(n)

k∑
i=1

Zi ≤ −g(n)a(1− ε)

]
(29)

≤ Pr

[
min

1≤k≤n−g(n)
k(aopt − a) +

k∑
i=1

Zi ≤ −g(n)a(1− ε)

]
(30)

≤ Pr

[
max

1≤k≤n−g(n)
|Sk| ≥ g(n)a(1− ε)

]
(31)

≤
E[S2

n−g(n)]

(g(n)a(1− ε))2
, (32)

where the inequality in (30) follows since k(aopt − a) ≤ 0
by definition of aopt and (32) follows from Kolmogorov’s

martingale inequality. By letting n tend to infinity and by

defining the function g(n) = np for 1
2 < p < 1 yields

lim
n→∞

Pr[E2|EC
1 ] ≤ lim

n→∞

E[Z2
n−g(n)]

(g(n)a(1− ε))2
(33)

=
a+ aopt

a2(1− ε)2
lim

n→∞
n− g(n)

g(n)2
(34)

=
a+ aopt

a2(1− ε)2
lim

n→∞
n

n2p
(35)

= 0, (36)

where the last step follows from the fact that 1
2 < p < 1.

Since both Pr[E1] and Pr[E2|EC
1 ] tend to zero, the scheme is

achievable almost surely.

The information rate obtained using this scheme is found

as:

1

n
I(Xn;Y n) = (1− Pr[E1 ∪ E2])

1

n

n∑
i=g(n)+1

I(Xi;Yi)

(37)

= (1− Pr[E1 ∪ E2])
n− g(n)

n
h(aopt) (38)

n→∞→ h(aopt). (39)

Thus the upper bound is asymptotically achieved, and is there-

fore the capacity of the channel defined by the communication

model.
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