Optimisation of 16S rDNA amplicon sequencing protocols for microbial community profiling of anaerobic digesters

Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Larsen, Poul; Karst, Søren Michael; Albertsen, Mads; Nielsen, Per Halkjær

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Optimisation of 16S rDNA amplicon sequencing protocols for microbial community profiling of anaerobic digesters

Rasmus Kirkegaard, Simon McIlRoy, Poul Larsen, Søren M. Karst, Mads Albertsen, and Per H. Nielsen
Center for Microbial Communities, Aalborg University, Denmark

Introduction

To understand the ecology network in anaerobic digesters it is necessary to produce a representative overview of the microbial community. In this study we develop a method for reliable and reproducible identification and quantification of microorganisms involved in biogas production. We test the effect of changing the parameters in a DNA extraction dependent approach to community profiling.

Methods

- **Sampling**
 - 3 biological replicates
 - Min. 3 technical replicates

- **Extraction**
 - 3 sample prep replicates
 - 3 sequencing replicates

- **Sample prep**
 - Total RNA extraction
 - cDNA synthesis
 - TruSeq DNA sample prep

- **Sequencing**
 - 384 well PCR of 16S rDNA
 - TruSeq adapters

- **Bioinformatic**
 - illumina TruSeq shotgun sequencing

Primers

- V1-3: 27F + 534R (506 bp)
- V3-4: 341F + 806R (465 bp)
- V4-6: 519F + 786R (522 bp)

Replication

- Min. 3 technical replicates
- 16S rDNA gene

Validation

- PCR independent assessment using illumina TruSeq shotgun sequencing

Results

- **Effect of bead beating on DNA yield**
 - All DNA extractions were done with 50 µL of AD sludge as input using the FastDNA® SPIN kit for Soil. The standard bead beating is 40 s.

- **Effect of bead beating on DNA integrity**
 - At high bead beating durations the DNA is fragmented.

Conclusions

- PCR independent validation is needed when conducting amplicon based studies!
- Four times the standard bead beating is recommended (160 s) in order to capture the microorganisms with relatively tough cell walls.
- The Sundberg et al. (2013) primer set seems promising for capturing the overall community composition of both bacteria and archaea.
- Every step of the protocol introduces variance, particularly the DNA extraction. However, the workflow gives good reproducibility.

Conclusion

- FastDNA® SPIN kit for Soil is not recommended for the standard bead beating is 40 s.
- All extractions were done with 50 µL of AD sludge as input using the FastDNA® SPIN kit for Soil. The standard bead beating is 40 s.

References

- Sundberg et al. (2013)
- Klindworth et al. (2013)
- McIlRoy et al. (2013)
- Rosselló-Mora and Amann (1996)
- Arumugam et al. (2011)
- McMinn et al. (2010)

Fluorescence in situ hybridisation with archaea specific probes

- Methanocorpusculum
- Methanosarcina
- Methanolinea

Class level overview of the bacterial population

- Chlorobium
- Bacteroida
- Bacteroidetes
- Actinobacteria
- Alphaproteobacteria
- Betaproteobacteria
- Gammaproteobacteria
- Deltaproteobacteria
- Epsilonproteobacteria
- Aerococci

Class level overview of the archaean population

- Methanocorpusculum
- Methanosarcina
- Methanolinea

Amplicon sequencing protocols for microbial community profiling of anaerobic digesters

- **Capture**
 - TruSeq adapters
 - PCR independent validation

- **Characterisation**
 - Bioinformatic analysis
 - Illumina TruSeq shotgun sequencing

- **Reproducibility**
 - Four times the standard bead beating is recommended (160 s) in order to capture the microorganisms with relatively tough cell walls.

Bioinformatic

- illumina TruSeq shotgun sequencing

PCR independent assessment using illumina TruSeq shotgun sequencing