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RESEARCH ARTICLE Open Access

Population genetic structure of gray wolves
(Canis lupus) in a marine archipelago suggests
island-mainland differentiation consistent with
dietary niche
Astrid V Stronen1,2*†, Erin L Navid3†, Michael S Quinn4, Paul C Paquet5,6, Heather M Bryan5,6,7

and Christopher T Darimont5,6,7*

Abstract

Background: Emerging evidence suggests that ecological heterogeneity across space can influence the genetic
structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of
British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong
ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland
that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish
between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur
between wolves from these adjacent environments.

Results: We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results
from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern
occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km
among landmasses in the region.

Conclusions: Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments)
might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for
future research where marine resources or other components of ecological heterogeneity are present.

Keywords: Canis lupus, Ecological divergence, Marine resources, Niche, Population genetic structure, Traditional
ecological knowledge, Wolf

Background
Recent evidence indicates that ecological and environ-
mental variation can result in genetic differentiation
within many taxa, including highly mobile species. Exam-
ples include sea turtles (reviewed in Bowen and Karl [1]),
fish species such as herring (Clupea harengus L., 1758;
André et al. [2]) and hake (Merluccius merluccius L., 1758;

Milano et al. [3]), and mammal species including the orca
(Orcinus orca L., 1758; Hoelzel et al. [4]), cougar (Puma
concolor L., 1771; McRae et al., [5]), lynx (Lynx canadensis
Kerr, 1792; Rueness et al., [6]), coyote (Canis latrans Say,
1823; Sacks et al. [7]), and wolves (C. lupus L., 1758;
Musiani et al. [8]; Pilot et al. [9]; Weckworth et al. [10–
12]). For example, Muñoz-Fuentes et al. [13] showed
strong genetic divergence over distances less than 500 km
between wolves of coastal and interior regions of British
Columbia (BC), Canada. Ecological and environmental di-
mensions such as climate and prey availability between
areas, not distance, best explained population structure.
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These patterns arise because individuals may be more
likely to survive and reproduce within their natal habitats
(Davis and Stamps [14], Nosil et al. [15], Edelaar et al.
[16]), which, in turn, can influence population genetic
structure. A prediction from this body of work is that
genetic divergence might be detected even over short
geographical distances, and for highly mobile animals,
should there be a sharp gradient in environmental
conditions.
Such sharp ecological transitions occur between main-

land and adjacent island environments within coastal
BC. Although distances between mainland and neigh-
bouring islands are small (<1500 m), the environments
have striking geological and ecological differences. The
mainland is topographically rugged, contains less shore-
line for a given area and is relatively species-rich. In con-
trast, the neighbouring islands are less mountainous,
have more complex shorelines, and host fewer species;
notably absent are grizzly bears, (Ursus acrtos horribilis
Ord, 1815), which compete with wolves for marine re-
sources (Darimont and Paquet [17]; Paquet et al. [18]).
Owing to these different environments, analyses of fae-
ces and stable isotope data have identified distinctly dif-
ferent realized niches. Wolves from island populations
rely on marine resources for up to 85% of their diet,
whereas mainland conspecifics rarely include more than
30% (Darimont et al. [19,20]). Additionally, the coastal
mainland supports moose (Alces alces L., 1758) and
mountain goats (Oreamnus americanus Blainville,
1816) that are absent or rare on coastal islands. Con-
sequently, these major prey items are commonly de-
tected in wolf diet in mainland areas and only very
rarely on islands (Darimont et al. [21]). Moreover,
likely reflecting these distinct habitat and dietary
niches, parasite prevalence also differs between areas;
there is higher faecal prevalence of Giardia sp. infec-
tions on islands and a lower prevalence of Diphyllo-
bothrium sp. relative to mainland sites (Bryan et al.
[22]).
Our objective was to examine genetic data from

wolves of coastal BC over a limited geographic area
(~2000 km2, with a generally east–west mainland-
island axis of <30 km) to test the hypothesis that eco-
logical heterogeneity can drive population genetic
structure of a highly mobile animal within a small area.
We note that this prediction was also informed by
holders of traditional ecological knowledge (TEK) in
the Heiltsuk First Nation area, who distinguish between
mainland “timber wolf” and island “coastal wolf” forms.
Given these scholarly- and TEK-informed hypotheses
and the sharp environmental gradients on the BC coast,
we expected mainland-island genetic differentiation
that mirrors ecological differences among neighbouring
social groups.

Methods
Study area
The central coast of BC is a remote network of islands
and naturally fragmented mainland landmasses with lim-
ited (but increasing) industrial anthropogenic disturbance.
The area is characterized by a wet and temperate cli-
mate, and annual precipitation typically exceeds 350 cm
(Darimont and Paquet [17]). A core area (~2000 km2)
centered on Bella Bella (52°10’ N, 128° 09’ W) served as
the location for this study (Additional file 1). This land-
scape is surrounded by ocean, which separates a main-
land landmass (823 km2) and five main islands ranging
in size from 150–250 km2. Distances from island to
mainland range from 250 m to 1450 m. Observational
and genetic data (Darimont et al. [19]; Navid [23]) sug-
gest that wolf packs, defined by the multi-year associ-
ation of genetically and morphologically distinct
individuals, have either island or mainland home ranges.
However, one group (Yeo-Coldwell [YC]) primarily uses
island habitat but also a portion of the adjacent mainland.
Other units are either mainland groups (Upper Roscoe
[UR], Lower Roscoe [LR] or island groups (Cunningham-
Chatfield [CC], Denny-Campbell [DC]). Moreover, wolves
are commonly observed swimming among landmasses,
and home ranges of social groups often include multiple
islands or mainland landmasses (e.g. peninsulas; Paquet
et al. [18]; Darimont [24]; McAllister and Darimont [25]).

Sampling
One thousand and seventy-four (1074) wolf faecal samples
were collected between winter 2003 and winter 2004. We
collected the following number of samples per season:
spring: n = 416 summer: n = 297 fall: n = 292 winter: n =
69. Sampling areas included wildlife trails, logging roads,
and electrical power rights-of-way. We preserved each
sample in a 50-ml Falcon tube with 95% ethanol. We se-
lected samples for genetic analysis based on characteristics
of the samples and collection sites that best predicted
amplification success (minimal physical decay, high mois-
ture content, canopy cover; Navid [23]). We extracted
DNA from faecal samples with Qiagen QIAamp® DNA
Stool Mini Kits and the ‘Protocol for isolation of DNA
from larger amounts of stool’ (QIAamp® DNA Stool Mini
Kit handbook, www.qiagen.com/literature/). We per-
formed DNA extractions in a room physically separated
from amplified PCR products and used exclusively for this
study to reduce the risk of contamination. Final purified
extracts were refrigerated at +4°C until use.

Microsatellite amplification
We amplified a panel of 14 microsatellite markers (13
autosomal and one Y chromosome marker). These were
FH2001, FH2010, FH2017, FH2054, FH2088, FH2096,
FH2422 (Breen et al. [26]), FH3313, FH3725 (Guyon et al.
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[27]), PEZ06, PEZ08, PEZ15, PEZ19 (Halverson J. in Neff
et al. [28]), and the Y-chromosome marker MS41B (Sund-
quist et al. [29]). We genotyped n = 477 faecal samples.
Polymerase chain reaction (PCR) conditions optimized for
the markers, based on the Qiagen multiplexing kit, were:
initial denaturation at 95°C for 15 minutes, then 35 cycles
of denaturation at 94°C for 30 sec, annealing at 58°C for
90 sec, extension at 72°C for 60 sec, with final extension
at 60°C for 30 min. Organisation of markers into multi-
plexes is shown in Additional file 2. Amplified PCR prod-
uct was loaded into a 6.5% denaturing polyacrylamide gel,
and run on a LICOR4300s DNA analyzer. Genotyping
was done with a LICOR’s SAGA GT version 3.3 microsat-
ellite analysis software.
We accepted for further analyses samples that ampli-

fied at least 9/14 loci, and used the Excel Microsatellite
Toolkit (Park [30]) to test for the presence of matching
profiles. We consolidated matches (i.e., profiles with ≥
75% matching alleles to account for uncertainty in geno-
typing) into one profile and retained the profile with the
highest amplification rate. Matches were tested across all
samples, but only observed within wolf groups and 33
profiles were removed.
N = 116 individual profiles were identified. Only 28

wolves (24%) were identified as males, and we observed
six alleles for marker MS41B (209, 211, 213, 217, 219,
221). We used MICRO-CHECKER 2.2.3 (van Oosterhout
et al. [31]) to assess possibilities of null alleles, large allele
dropout, and scoring errors due to stutter peaks. We re-
peated genotyping of 50 samples collected during the fall
season (deemed to represent 50 different individuals from
all four groups [CC, DC, LR, YC] based on the abovemen-
tioned criteria) to evaluate data quality and estimate geno-
typing error. Here we estimated per-locus error rates
based on the percentage of loci that did not show the
same result twice (Additional file 3). Loci for which we ob-
tained the same results twice were accepted as duplicated
loci. From these results we obtained duplicate genotypes
comprising five or more loci for 18 individuals (i.e. every
locus in each of these 18 genotypes provided consistent
results when re-tested). Based on amplification and error
rates (Additional file 3) we removed MS41B, PEZ08,
FH2017, and FH3313 from further analyses.

Statistical analyses
We calculated allelic diversity and observed and ex-
pected heterozygosity (with correction for sample size
bias; Nei [32]) per locus in GENEPOP 3.4 (Raymond
and Rousset [33]) and Genetix 4.05.2 (Belkhir et al.
[34]), and FIS according to Weir and Cockerham [35],
for mainland and island wolves. We tested for depar-
tures from Hardy-Weinberg equilibrium per locus in
GENEPOP 3.4 with the Markov chain method (Guo
and Thompson [36]). The results were adjusted to

account for multiple comparisons with the false discov-
ery rate (FDR, Verhoeven et al. [37]). Subsequently, we
performed centered and scaled principal component ana-
lyses (PCA) with the adegenet-package (Jombart [38]) in R
2.14.2 (R development Core Team [39]). The PCA ap-
proach does not assume genetic equilibrium conditions
and is well-suited for identifying spatial patterns such as
genetic clines (i.e., gradients rather than separate clusters
or complete admixture) that can be difficult to detect
(Jombart et al. [40]). We repeated the PCA with the 18 in-
dividuals for which we had duplicated genotypes (and thus
higher confidence), and all wolves identified as males to
confirm the presence of the observed cline. On average,
male wolves may disperse longer distances than females
and are more likely to join new packs. As our data set
comprised relatively few confirmed males, we tested these
results separately to check if the island-mainland gradient
remained consistent. A high proportion of females in our
sample might otherwise have contributed to the observed
gradient if females disperse less frequently and/or shorter
distances than males. We then performed a spatial PCA
(henceforth sPCA; Jombart et al. [40]), which also takes
spatial sampling information into account. As multiple
samples were at times collected from the same location,
we added 100 m of jitter (small amount of noise) to the
UTM coordinates. We performed a spatial autocorrelation
in GenAlEx (Peakall and Smouse [41] and references
therein) to examine the possible existence of isolation-by-
distance in our data set. We used distance classes of 5 km
to obtain fine-scale results for our study area. Finally, we
performed a partial Mantel-test in R with the Vegan pack-
age (Oksanen et al. [42]) to examine the relationship be-
tween genetic distance and island-mainland habitat type
while controlling for geographic distance. This allowed us
to test whether there was an effect of habitat type on fine-
scale genetic structure after accounting for the effect of
geographic distance. Geographic distance and habitat may
be co-linear and their effects could be difficult to separate.
Consequently, we also examined the relationship between
geographic distance and habitat type. For these tests we
incorporated co-dominant genotypic and Euclidean geo-
graphic distance matrices exported from GenAlEx and a
third matrix with island-mainland habitat designations.
We used Pearson’s correlation coefficient with n = 999
permutations.

Results
The average number of alleles per locus was 5.8 for
mainland wolves and 6.8 for island wolves (Table 1). For
mainland wolves, expected heterozygosity was 0.632
and five loci showed departures from Hardy-Weinberg
equilibrium with observed levels of heterozygosity lower
than expected. FIS results were positive for all loci with
a mean value of 0.264. For island wolves, expected
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heterozygosity was 0.690 and seven loci showed depar-
tures from Hardy-Weinberg equilibrium (four of these
were consistent between mainland and island wolves).
FIS results for island wolves were positive for all except
two loci, with a mean value of 0.211. We identified
possible null alleles and stutter peaks for the overall
sample, but dropout of large alleles was not detected
(Additional file 3).
PCA results indicated the presence of a genetic cline

between island and mainland wolves (Figure 1a, c). Al-
though overlap was extensive, the results suggested an
east–west gradient in profiles across < 30 km. Examin-
ation of genetic profiles based on the known wolf groups
in the area (UR was not represented in the second ana-
lysis) suggested limited overlap between LR (Mainland)
and YC (Island) wolves (Figure 1b, d). The CC and DC
island groups occupy an intermediate position, along
with the UR group from the mainland. Colour plots
(Additional file 4) show the individual genetic profiles
throughout the study area, and display a similar east–
west gradient from the mainland to the islands. The
PCA results for individuals identified as males (n = 28)
were consistent with island-mainland differentiation
(Additional file 5). For the sPCA, one global structure
(and no local structure) was apparent (Additional file 6).
When mapped across the geographic space, the global
structure revealed an east–west gradient where YC and
LR were the most differentiated groups (Figure 2). The
partial Mantel test gave a correlation coefficient of 0.011
(p-value 0.351) between genetic distance and habitat
matrices. The test between geographic distance and
habitat matrices produced a correlation coefficient of
0.568 (p-value 0.001). Spatial autocorrelation results
were positive for the first 17 km, negative from approxi-
mately 17–45 km, and subsequently positive (though

this may be considered as zero autocorrelation at the
larger distance classes with wide confidence intervals;
Additional file 7).

Discussion
Genetic variation
Allelic diversity and expected heterozygosity for island
wolves (6.8, 0.690) and mainland wolves (5.8, 0.63) were
relatively high and comparable to values reported for is-
land populations of wolves on the Pacific Coast in south-
east Alaska (5, 0.52; Weckworth et al. [10]) and coastal
island populations in Arctic Canada (4.2, 0.61; Carmichael
et al. [43]). Allelic diversity and expected heterozygosity
were somewhat lower for wolves on the mainland portion
of our study area, although this might, at least in part, re-
flect chance effects of our relatively small sample sizes.
Comparison with FIS values from southeast Alaska islands
(0.05) and coastal islands in Arctic Canada (0.181) suggest
a higher degree of mating among relatives in mainland
(0.264) and island (0.211) wolves from coastal BC. How-
ever, Carmichael et al. [43] also observed high FIS values
on Victoria Island (0.427, n = 52) and on islands in the
High Arctic (0.629, n = 11). Based on the findings from
Alaska wolves, continental wolves appear to have higher
genetic diversity. We would also expect a similar situation
for our study area, as mainland wolves have a wider sur-
rounding area from which to receive immigrants. How-
ever, there are known wolf groups on neighbouring
islands not included in this study and we cannot exclude
the possibility that immigration from these areas may have
augmented the diversity in our sample of island wolves.

Non-invasive sampling and genotyping
Allelic dropout in non-invasive sampling (Santini et al.
[44]) could, at least in part, explain the lower values for

Table 1 Genetic diversity measures for wolves (Canis lupus) from the central coast of British Columbia, Canada

Locus #AllelesMA/IS Ho MA He MA P-value + S.E. MA FIS MA Ho IS He IS P-value + S.E. IS FIS IS

FH2054 6/8 0.465 0.595 0.016 + (0.0035) 0.220 0.456 0.720 0.000 + (0.0000) 0.368

FH2001 6/10 0.432 0.715 0.000 + (0.0000) 0.399 0.789 0.811 0.022 + (0.0069) 0.028

FH2096 4/3 0.318 0.334 0.171 + (0.0081) 0.047 0.592 0.502 0.276 + (0.0054) −0.180

FH2010 3/6 0.211 0.319 0.023 + (0.0018) 0.342 0.355 0.538 0.000 + (0.0004) 0.342

FH2088 5/5 0.614 0.694 0.106 + (0.0050) 0.116 0.761 0.726 0.071 + (0.0054) −0.049

FH2422 8/7 0.561 0.828 0.000 + (0.0000) 0.325 0.574 0.734 0.000 + (0.0001) 0.220

PEZ06 9/9 0.421 0.811 0.000 + (0.0000) 0.484 0.409 0.831 0.000 + (0.0000) 0.510

PEZ19 3/3 0.371 0.550 0.028 + (0.0021) 0.328 0.362 0.585 0.003 + (0.0005) 0.384

PEZ 15 8/12 0.605 0.796 0.000 + (0.0000) 0.243 0.452 0.755 0.000 + (0.0000) 0.403

FH3725 6/5 0.636 0.683 0.000 + (0.0001) 0.068 0.647 0.702 0.000 + (0.0002) 0.079

MEAN 5.8/6.8 0.463 0.632 0.264 0.539 0.690 0.211

Genetic variation across 10 microsatellite loci for individuals from mainland (MA, n = 44) and island (IS, n = 72) areas.
He values are calculated with correction for uneven samples sizes (Nei [32]).
*Bold font indicates significant p-values.
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observed heterozygosity, the high number of loci not in
Hardy-Weinberg equilibrium, and the positive FIS values.
Our results could also have been influenced by the pres-
ence of null alleles. When most of the loci indicate null
alleles, however, the MICRO-CHECKER program warns
there may not be random mating in the population (pan-
mixia). The PCA and sPCA findings of island-mainland
differentiation suggest absence of panmixia in our study
area. We therefore believe that island-mainland struc-
ture contributed to the frequent reports of null alleles.
The study area is difficult to access, and many samples
may have been several weeks old and thus affected by
exposure to the humid climate (Santini et al. [44]; Navid
[23]). Our results are based on analyses of faecal mater-
ial, where duplicated genotypes were obtained for 15%
(18 of 116) individuals. Error rates were high, but we do
not expect any consistent bias between areas. Results
from the duplicated genotypes accord with the larger
dataset, although further sampling and multiple-tube
analyses (e.g. Santini et al. [44]) would be necessary for
accurate identification of individual wolves and to con-
firm dispersal events in our study area.

Evolutionary ecology and genetic differentiation between
mainland and island wolves
The partial Mantel test showed no significant relationship
between genetic distance and island-mainland habitat type
when accounting for geographic distance. However, there
was a significant correlation between geographic distance
and island-mainland habitat type, suggesting that the two
matrices are collinear and their effects cannot be differen-
tiated. The spatial autocorrelation indicated negative auto-
correlation from approximately 17–45 km. These results
appear to contrast with those of Muñoz-Fuentes et al. [13]
who reported that geographic distance was unlikely to ex-
plain the spatial structure of wolf mtDNA haplotypes in a
broader study of coastal and central BC. Wolves are highly
capable dispersers able to travel > 70 km/day (Mech and
Boitani [45]), and it seems unlikely that geographic dis-
tance alone can explain the island-mainland structure sug-
gested by the sPCA. In such a situation, we would expect
the spatial autocorrelation results to show consistent (and
increasing) negative kinship-values with geographic dis-
tance. In contrast, the 45–50 distance class that represents
wolves in the northern- and southernmost parts of our
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Figure 1 Principal component analyses of wolves (Canis lupus) from the central coast of British Columbia, Canada showing geographic
distribution of individuals. a) Individual (n = 116) profiles based on ≥ 10 microsatellite loci labelled according to mainland (MA) and island (IS)
sample locations. b) Individual profiles (n = 116) based on ≥ 10 microsatellite loci labeled according to membership in five wolf family groups:
Upper Roscoe (UR) and Lower Roscoe (LR) on the mainland, and Yeo-Coldwell (YC), Cunningham-Chatfield (CC), and Denny-Campbell (DC)
islands. Note that the label for DC (green colour) is overlapped by UR (red colour). c) A subsample of individual profiles (n = 18) with duplicated
genotypes based on≥ 5 loci labelled according to mainland and island sample locations. d) Individual profiles (n = 18) with duplicated genotypes
based on ≥ 5 loci labelled according to membership in four wolf family groups LR, YC, CC, and DC (none from UR).
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Figure 2 (See legend on next page.)

Stronen et al. BMC Ecology 2014, 14:11 Page 6 of 9
http://www.biomedcentral.com/1472-6785/14/11



study, which are farthest apart in geographic distance,
showed positive values (or, more likely, no autocorrel-
ation). Multiple interacting factors, including distance,
water, terrain ruggedness etc., may affect genetic structure
in our study area. Although it is essential to evaluate the
possible influence of physiography on the differences ob-
served between island and mainland wolves, the observed
correlation between geographic distance and habitat type
combined with the physical complexity of the landscape
make it problematic and potentially misleading to use lin-
ear distances for estimating wolf movement.
Water barriers between the mainland and islands

might restrict dispersal and gene flow. For example, cap-
tive wolves released on Coronation Island in Alaska did
not swim 900 m to nearby habitat with abundant food
(Klein [46]). In our study, we reject this hypothesis be-
cause we commonly observe wolves swimming among
landmasses and distances among islands (including the
multiple landmasses used by some groups) are often lar-
ger than the distances between islands and the mainland
(Darimont et al., unpublished data). Immigrants from
outside the study area could also influence the observed
east–west gradient in genetic profiles. The differentiation
seen in YC profiles, for example, may be explained by
gene flow from unsampled wolves on the outer islands
father west. Similarly, profiles from the UR group, which
showed considerable overlap with island wolves, might
result from immigration by one or more island wolves
with high reproductive success. Furthermore, the pres-
ence of intermediate profiles in the north and south of
our study area implies an island-mainland gradient. A
strict island-mainland dichotomy may thus be simplistic
and should be evaluated on a broader geographic scale.
Without genetic data from a larger spatial extent, how-
ever, we cannot evaluate these hypotheses.
Family group structure might also have influenced our

results, especially for long-lived animals for which the
genetic influence of one successful breeder can be de-
tected for many generations. Difficulties with amplifica-
tion of MS41B likely reduced our ability to identify male
wolves. A possible higher prevalence of females in the
sample might nevertheless exacerbate genetic structuring
in species where males are more likely to disperse. How-
ever, male wolf profiles we assessed showed a similar
island-mainland gradient. Observational and tracking data
suggest that wolf group size in the study area was ≤ 10 in-
dividuals (Darimont [24]), and it appears unlikely that the

observed gradient in genetic profiles could be explained
by social structure (i.e., wolf pack membership) alone. The
identification of 116 individuals in the study area appears
reasonable for a sampling period that included 2 litters,
winter pup mortality that may exceed 50%, and the likeli-
hood that 20% of individuals would be solitary or extra-
territorial dispersers (Mech and Boitani [47]).
Despite the above-mentioned uncertainties, we offer the

working hypothesis that the sharp ecological gradient be-
tween island and mainland locations, as revealed by the
landscape characteristics and the dietary and parasitic data
from wolves in our study area, can influence population
genetic structure. Although our study must be interpreted
with caution, and should be repeated with genetic profiles
of higher quality, the results appear consistent with an in-
creasing body of literature reporting genetic differentiation
in wolves and other highly mobile species (see Introduc-
tion) influenced by ecological and environmental factors.
Dispersal rates and gene flow might differ substantially be-
tween island and mainland sub-populations, and the extent
to which populations are demographically independent
could help define management units (Palsbøll et al. [48])
along the Pacific coast.
Associated morphological or other characteristics ob-

served over time might have allowed TEK knowledge
holders to recognize these dissimilar wolf forms. Such
intra-specific nomenclature is common among indigen-
ous knowledge holders (Turner et al. [49]). Indeed, in
adjacent southeast Alaska, the frequency of the black
colour phase among wolves killed by trappers is ~50%
on the mainland and only ~20% on the islands (Person
et al. [50]). Additional morphological differences among
wolves of coastal BC might have led to mainland-island
classification by local people.
The evolutionary influence of marine resources, which

are pronounced on islands in our study area, can be
dramatic for terrestrial wildlife. For example, polar bears
(U. maritimus Phipps, 1774) are thought to have evolved
from grizzly bears in peripheral areas where marine re-
sources were abundant (Shields et al. [51]). Moreover,
wolves of coastal BC (mainland and island populations)
were thought to have diverged from interior populations
in part because of marine resource availability in coastal
zones (Muñoz-Fuentes et al. [13]). Individuals born in
this distinct environment are likely better able to sur-
vive and reproduce within, compared to beyond, these
conditions.

(See figure on previous page.)
Figure 2 Spatial principal component analysis of wolves (Canis lupus) from the central coast of British Columbia, Canada, showing the
first global structure mapped across the study area. Individual profiles (n = 116) are based on≥ 10 microsatellite loci and originate from five
wolf family groups: Upper Roscoe (UR) and Lower Roscoe (LR) on the mainland, and Yeo-Coldwell (YC), Cunningham-Chatfield (CC), and Denny-
Campbell (DC) islands.
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Conclusions
Our results indicate the presence of a genetic cline be-
tween island and mainland wolves. Although overlap
was extensive, the results suggest an east–west gradient
in profiles across < 30 km. We hypothesize that adaptive
responses to heterogeneity in food resources can influ-
ence genetic differentiation. Accordingly, this line of
inquiry presents an exciting avenue for future research
where marine resources or other components of eco-
logical heterogeneity are present.

Additional files

Additional file 1: Map of the study area on the central coast of
British Columbia, Canada. Shown are estimated home ranges of five
wolf (Canis lupus) social groups.

Additional file 2: Multiplex combinations of 14 microsatellite
markers for genetic analyses of wolves from the central coast of
British Columbia, Canada.

Additional file 3: Calculation of amplification and error rates and
assessment of null alleles, large allele dropout, and stutter peaks
for wolf samples (n = 116) from the central coast of British
Columbia, Canada.

Additional file 4: Colour plot of wolf profiles from the central coast
of British Columbia, Canada. a) Individual profiles (n = 116) based on ≥
10 microsatellite loci. The first axis represents 6.1% of the variation, the
second axis 5.1%. b) A subsample of individual profiles (n = 18) based
on ≥ 5 duplicated loci. Genetic diversity is represented by distance and
colour; individuals further apart and/or labelled with more dissimilar
colours have more divergent genotypes. The first axis represents 18.8% of
the variation, the second axis 13.9%.

Additional file 5: Principal component analysis (PCA) of male
wolves from the central coast of British Columbia, Canada, showing
island (IS, n = 19) and mainland (MA, n = 9) individuals. The first axis
represents 11.9% of the variation, the second axis 9.7%. PCA is based on
the 10 loci retained for final analyses (Table 1 and Additional file 2).

Additional file 6: Eigenvalues from a spatial principal component
analysis (sPCA) on 10 microsatellite loci from 116 wolves from the
central coast of British Columbia, Canada. Positive values (left side)
represent global structures and negative values (right side) show local
patterns. Tests for local and global structure revealed the presence of one
global structure, which was subsequently interpreted.

Additional file 7: Spatial autocorrelation analysis of wolf samples
(n = 116) from the central coast of British Columbia, Canada, using
5 km distance classes. The Y axis shows the kinship coefficient (r), and
U and L are the upper and lower limits for the 95% confidence interval
of no spatial structure occurring in the data set after permutation
(n = 999). Error bars show the 95% confidence interval around r as
determined by bootstrap resampling (n = 999).
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