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Error Floor Analysis of Coded Slotted ALOHA

over Packet Erasure Channels
Mikhail Ivanov, Fredrik Brännström, Member, IEEE, Alexandre Graell i Amat, Senior Member, IEEE,

Petar Popovski, Senior Member, IEEE

Abstract—We present a framework for the analysis of the error
floor of coded slotted ALOHA (CSA) for finite frame lengths over
the packet erasure channel. The error floor is caused by stopping
sets in the corresponding bipartite graph, whose enumeration is,
in general, not a trivial problem. We therefore identify the most
dominant stopping sets for the distributions of practical interest.
The derived analytical expressions allow us to accurately predict
the error floor at low to moderate channel loads and characterize
the unequal error protection inherent in CSA.

I. INTRODUCTION

Coded slotted ALOHA (CSA) has recently been proposed

as an uncoordinated multiple access technique that can provide

large throughputs close to those of coordinated schemes [1],

[2]. The need for CSA arises in scenarios where high through-

put is required and coordinated techniques cannot be used

due to various reasons, such as random number of devices in

machine-to-machine communication. In this work, we assume

a scenario where, besides throughput considerations, reliability

plays an important role. We therefore focus on the probability

of communication failure as our main figure of merit [3].

Different versions of CSA have been proposed (see [4]

for the most recent review). All of them share a slotted

structure borrowed from the original slotted ALOHA [5] and

the use of successive interference cancellation. The contending

users introduce redundancy by encoding their messages into

multiple packets, which are transmitted to the base station

(BS) in randomly chosen slots. The BS buffers the received

signal, decodes the packets from the slots with no collision

and attempts to reconstruct the packets in collision exploiting

the introduced redundancy. A packet that is reconstructed is

subtracted from the buffered signal and the BS proceeds with

another round of decoding.

The analysis of CSA is usually done assuming that a

packet in a collision-free slot can be reliably decoded and

the interference caused by a packet can be ideally subtracted

if the packet is known. Under these assumptions, the system

can be viewed as a graph-based code operating over a binary
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erasure channel (BEC). Most papers on CSA consider error-

free transmission. Here, we consider transmission over the

packet erasure channel (PEC) [6]. The PEC can be used

to model packets that are erased due to a deep fade for a

block fading channel in the large signal-to-noise ratio (SNR)

regime. It can also be used to model a network with random

connectivity.

The BEC model allows us to use density evolution (DE)

to predict the asymptotic performance of the system when the

frame length tends to infinity. The typical performance exhibits

a threshold behavior, i.e., all users are reliably resolved if the

number of users does not exceed a certain threshold. Most

of the work on CSA focuses on optimizing the threshold.

However, the performance in the finite frame length regime

is more relevant in practice. Similarly to low-density parity-

check (LDPC) codes, a finite frame length gives rise to an

error floor due to stopping sets present in the graph [7]. For

regular CSA, some simple approximations to predict the error

floor were proposed in [8]. In this paper, we derive analytical

expressions to predict the error floor for irregular CSA [9]

over the PEC. The derived expressions also allow us to predict

the unequal error protection (UEP) inherent in irregular CSA.

Moreover, we show that the asymptotic analysis using DE fails

for systems operating over the PEC.

II. SYSTEM MODEL

We consider m users that transmit to the BS over a shared

medium. The communication takes place during a contention

period called frame, consisting of n slots of equal duration.

Using a properly designed physical layer1, each user maps its

message to a physical layer packet and then repeats it l times (l
is a random number chosen based on a predefined distribution)

in randomly chosen slots, as shown in Fig. 1(a). This setup

can be viewed as repetition coding and such a user is called a

degree-l user. Every packet contains pointers to its copies, so

that, once a packet is successfully decoded, full information

about the location of the copies is available.

The received signal at the BS in the ith slot is

yi =
∑

j∈Ui

hi,jaj , (1)

where aj is a packet of the jth user, hi,j is the channel

coefficient and Ui ⊂ {1, . . . ,m} is the set of users that trans-

mit in the ith slot. We assume the channel coefficients to be

1A particular implementation of the physical layer is not important in the
context of this paper. However, it greatly affects the system performance over
more realistic channels.
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Fig. 1: System model.

independent across users and slots and identically distributed

such that Pr {|hi,j | = 0} = ǫ and Pr {|hi,j | > 0} = 1 − ǫ,
i.e., ǫ is the probability of a packet erasure. We refer to such

a channel as a PEC. If the number of nonzero coefficients

hi,j 6= 0 for j ∈ Ui is one, the ith slot is called a singleton

slot. Otherwise, we say that a collision occurs in the ith slot.

At first the BS decodes the packets in singleton slots and

obtains the location of their copies. Using data-aided methods,

the channel coefficients corresponding to the copies are then

estimated. After subtracting the interference caused by the

identified copies, decoding proceeds until no further singleton

slots are found. The PEC also models the capture effect since

a packet in the ith slot may be decoded even if |Ui| > 1.

The system can be analyzed using the theory of codes on

graphs over the BEC. Each user corresponds to a variable

node (VN) and represents a repetition code, whereas slots

correspond to check nodes (CNs) and can be seen as single

parity-check codes. In the following, users and VNs are used

interchangeably. An edge connects the jth VN to the ith CN

if j ∈ Ui and hi,j 6= 0. For the example in Fig. 1(a), the

corresponding bipartite graph is shown in Fig. 1(b). A bipartite

graph is defined as G = {V , C, E}, where V , C, and E represent

the sets of VNs, CNs, and edges, respectively. The perfor-

mance of the system greatly depends on the distribution that

users use to choose the degree l or, using graph terminology,

on the VN degree distribution

λ̃(x) =

q
∑

l=0

λ̃lx
l, (2)

where x is a dummy variable, λ̃l is the probability of choosing

degree l, and q is the maximum degree, which is often bounded

due to implementation constraints, for instance, by eight in [9].

We define a vector representation of (2) as λ̃ = [λ̃0, . . . , λ̃q].
For a graph G̃ generated using λ̃, we define the graph profile

as the vector v(G̃) = [v0(G̃), v1(G̃), . . . , vq(G̃)], where vl(G̃)
is the number of degree-l VNs in G̃. The profile of a random

graph G̃ has a distribution Pr
{

v(G̃) = u

}

= pmn(u, λ̃,m),

where

pmn(u, λ̃,m) =

{

m!
∏q

l=0
λ̃
u
l

l

ul!
if ‖u‖1 = m,

0 otherwise
(3)

is the multinomial distribution and ‖ · ‖1 is the ℓ1 norm.

The key performance parameters are defined as follows.

The channel load g = m/n shows how “busy” the medium

is. The average number of users that successfully transmit

their message, termed resolved users, is denoted by r. The

throughput t = r/n shows how efficiently the frame is used.

In this paper, we focus on the average packet loss rate (PLR)

p̄ = (m−r)/m = 1− t/g, which is the fraction of unresolved

users, i.e., the users whose messages are not successfully

decoded by the BS.

III. PERFORMANCE ANALYSIS

Let a user repeat its packet l times. Each copy is erased

with probability ǫ. Hence, the BS receives k ∈ {0, . . . , l}
packets with probability

(

l

k

)

ǫl−k(1− ǫ)k. Averaging over the

VN degree distribution λ̃(x) leads to the induced VN degree

distribution λ(x) observed by the BS2

λ(x) =

q
∑

l=0

λ̃l

l
∑

k=0

(

l

k

)

ǫl−k(1− ǫ)kxk, (4)

which can be written similarly to (2), where

λl =

q
∑

k=l

(

k

l

)

ǫk−l(1− ǫ)lλ̃k (5)

is the fraction of users of degree l as observed by the BS. The

PEC can thus be analyzed by considering λ(x) over a standard

collision channel [9]. The main peculiarity of the induced

distribution, not considered in the standard CSA analysis, is

that it contains all degrees up to q, including zero and one.

This implies that the PLR exhibits an error floor, which is

lowerbounded by λ0 = λ̃(ǫ) > 0 for ǫ > 0. Hence, the

threshold, i.e., the channel load below which the PLR is zero

when n → ∞, predicted by DE is zero over a PEC with ǫ > 0
for any distribution λ̃(x). Moreover, DE devised in [9] does

not correspond to the decoding algorithm for distributions with

λ1 6= 0. In the following, we focus on the induced distribution

λ(x) and the induced graph G = {V , C, E}.

By construction CSA features UEP, similarly to the UEP in

coding theory, since users with different degrees are protected

differently3. The inherent UEP is illustrated by dashed lines

in Fig. 3(a) for λ̃(x) = 0.25x2 + 0.6x3 + 0.15x8 and ǫ = 0.

As clearly seen from the figure, the higher the degree, the

better the PLR performance. We remark that the performance

of a degree-l user depends on the entire distribution and not

only on its degree. To characterize the performance of users

of different degrees, we define the PLR for a degree-l user as

observed by the BS as

pl =
w̄l

m̄l

=
w̄l

mλl

, (6)

2We use tilde to denote quantities related to the original distribution; the
analogous quantities without tilde correspond to the induced distribution.

3We note, however, that in a series of contention rounds, each user will
have the average performance if the degree is chosen randomly each time.
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Fig. 2: Stopping sets.

where m̄l and w̄l are the average number of all and unresolved

degree-l users, respectively. For degree-0 users, p0 = 1. The

average PLR is

p̄ =
1

m

q
∑

l=0

w̄l =

q
∑

l=0

λlpl. (7)

Since packet erasures are accounted for in the induced

distribution, the only source of errors in the considered model

is harmful structures in the graph G. When, e.g., two degree-

2 users transmit in the same slots (see Fig. 2(e)), the BS

will not be able to resolve them. Such harmful structures are

commonly referred to as stopping sets. A subset of VNs of

non-zero degrees S ⊂ V forms a stopping set if all neighbors

of S are connected to S at least twice [7]. S induces a graph,

which, with a slight abuse of notation, is also referred to as

stopping set and denoted by S. Therefore, S can be described

by its profile v(S). For S2 in Fig. 2(b), the graph profile is

v(S2) = [0, 2, 1, 0, . . . , 0], where the number of zeros in the

end depends on q.

Stopping sets are referred to as “loops” in [8]. However,

stopping sets do not form a loop if degree-1 users are present,

as in Fig. 2(a)–(d). On the other hand, if there are no degree-1
users, all stopping sets create cycles (or loops) in the graph,

as in Fig. 2(e)–(h). Length-4 cycles are the shortest cycles

possible and are always avoided in properly designed LDPC

codes. Due to the randomly generated graph, however, length-

4 cycles are intrinsic to CSA.

We denote the probability of a stopping set S to occur by

ρ(S). Let A be the set of all possible stopping sets. Using

a union bound argument, the number of unresolved degree-l
users can be upperbounded as

w̄l ≤
∑

S∈A

vl(S)ρ(S). (8)

The probability ρ(S) is in general difficult to evaluate.

In the following, we give an example to show how it can

be approximated. Consider S5 in Fig. 2(e) and assume a

particular realization of G so that v2(G) ≥ 2. Numerical results

show that for low channel loads, the probability to observe

exactly one stopping set S5 is at least one order of magnitude

larger than the probability of any other possible stopping set

formed by degree-2 users (including multiple S5) to occur. We

therefore assume that only one stopping set S5 occurs. This

also hints that S5 is the most dominant among all stopping sets

containing only degree-2 users. Users of other degrees may

transmit in the same slot as the users in S5. This may create

a new larger stopping set, or these users may be successfully

resolved and their interference subtracted. However, the users

in S5 will remain unresolved. Each of the degree-2 users has

γ =
(

n

2

)

possible combinations of slots for transmission. Given

that the number of slots is large enough for the realization of

G (γ ≥ v2(G)), we write

ρ(S5,G) ≈ α(S5,G)β(S5,G), (9)

where

α(S5,G) =

(

v2(G)

2

)

(10)

and

β(S5,G) =
1

γv2(G)

v2(G)−2
∏

k=0

(γ − k) =
γ!

(γ − v2(G) + 1)!γv2(G)
,

where the right-hand side of (9) is the probability of one

stopping set S5 to occur and is split into a product of two

variables for future use.

In the following, we remove the dependency on G from (9)

in order to obtain ρ(S5). To do so, we simplify β(S5,G)
assuming that γ ≫ v2(G). By letting γ grow large, we obtain

β(S5,G) ≈ β(S5) = γ−1. The same result can be obtained

setting v2(G) to the minimal possible value, i.e., two. To find

ρ(S5), α(S5,G) in (10) needs to be averaged over all G,

i.e., α(S5) = EG {α(S5,G)}, where EG { · } stands for the

expectation over G.

For a generic S, (10) generalizes to

α(S,G) =

q
∏

l=1

(

vl(G)

vl(S)

)

. (11)

Using (11) and the definition of the multinomial distribution

in (3), α(S) = EG {α(S,G)} can be calculated as

α(S) =

(

m

‖v(S)‖1

)

pmn(v(S),λ, ‖v(S)‖1). (12)

We apply the reasoning above to all stopping sets and write

ρ(S) ≈ α(S)β(S), (13)

where β(S) is the probability of the stopping set S to occur

in a graph with profile v(S), and α(S) is the number of

combinations to choose vl(S) users out of vl(G) users present

in the graph G for all degrees, averaged over G. The numerical

results presented later on justify the approximation in (13).

Identifying all stopping sets and calculating the correspond-

ing β(S) in a systematic way is not possible in general. In

practice, distributions with large fractions of low-degree VNs

are most commonly used since they achieve high thresholds.

For instance, the soliton distribution [10], which asymptoti-

cally provides throughput arbitrarily close to one, has λ̃2 = 0.5
and λ̃3 = 0.17. If we constrain ourselves to the family of

such distributions, i.e., distributions with large fractions of

degree-2 and degree-3 users, identifying the most dominant

stopping sets becomes possible. By running extensive simula-

tions for different distributions from the aforementioned family

of distributions for g = 0.5, we determined the stopping sets

that contribute the most to the error floor by estimating their
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Fig. 3: The PLR performance for n = 200. Dashed lines show
simulation results and solid lines show analytical error floor
approximations (16).

relative frequencies. These stopping sets are shown in Fig. 2,

with

β(S1) =
1

n
, β(S2) =

2

n2
, β(S3) =

6

n3
, β(S4) =

6

(n− 1)n2
,

β(S5) =
2

(n− 1)n
, β(S6) =

4(n− 3)

(n−2)n3
, (14)

β(S7) =
36(n− 3)

(n− 2)(n− 1)n3
, β(S8) =

6

(n− 2)(n− 1)n
.

Note that constraining the set of the considered stopping sets

turns the upper bound in (8) into an approximation. The PLR

of a degree-l user can thus be approximated as

pl ≈
1

mλl

∑

S∈A8

vl(S)α(S)β(S), (15)

where A8 is the set of the eight stopping sets in Fig. 2 with

the corresponding α(S) in (12) and β(S) in (14).

The analysis above is presented for the induced degree

distribution, i.e., pl in (6) is the PLR for a user of degree

l as observed by the BS. The PLR for a degree-l user (from

the user’s perspective) can be found as

p̃l =
l

∑

k=0

pk

(

l

k

)

ǫl−k(1− ǫ)k (16)

if λ̃l 6= 0 and zero otherwise. When ǫ = 0, it is easy to

see from (5) that λ̃l = λl and from (16) that p̃l = pl for all

l = 0, . . . , q. We remark that calculating (16) is not required if

we are interested in the average PLR, i.e., it can be calculated

based on pl and λ(x) as in (7).

IV. NUMERICAL RESULTS

In Fig. 3, we plot the PLR for a degree-l user (from the

user’s perspective) for λ̃(x) = 0.25x2 + 0.6x3 + 0.15x8 and

two different values ǫ. This distribution was suggested in [9]

as a distribution that provides low error floor. The dashed

lines show the simulation results and the solid lines show

the proposed analytical PLR expression (16) based on the

approximation (15). The analytical PLR predictions demon-

strate good agreement with the simulation results for low

to moderate channel loads. This justifies the approximation

in (13) and the use of the stopping sets in Fig. 2. Considering

other stopping sets can improve the PLR prediction for higher

channel loads and would make it possible to predict the

performance of users of higher degrees. However, as Fig. 3

suggests, the contribution of these users to the average PLR is

negligible, especially in the error floor region. We also remark

that the accuracy of the approximations improves when the

frame length increases. In Fig. 3(b), we also show the value

of λ0 = λ̃(0.03) = 2.4×10−4 to demonstrate the lower bound

on the average PLR.

The proposed PLR approximation can also be used for the

optimization of the degree distribution. As an example, we

performed the optimization for n = 200 and ǫ = 0 using

a linear combination of the threshold provided by DE and

the analytical prediction of the average PLR as the objective

function. One of the obtained distributions is λ̃(x) = 0.87x3+
0.13x8 and its average PLR performance is shown with blue

lines in Fig. 3(a). This distribution has considerably lower error

floor without significant degradation of the performance in the

waterfall region compared to the distribution from [9].

V. CONCLUSIONS

In this letter, we proposed analytical approximations of the

error floor of CSA for finite frame length over the PEC. These

approximations show good agreement with simulation results

for most distributions of practical interest. The approximations

can be used to optimize the degree distribution for a given

frame length and packet erasure probability.
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