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Zero-Error Capacity of a Class of Timing Channels
Mladen Kovačević, Student Member, IEEE, and Petar Popovski, Senior Member, IEEE

Abstract— We analyze the problem of zero-error communica-
tion through timing channels that can be interpreted as discrete-
time queues with bounded waiting times. The channel model
includes the following assumptions: 1) time is slotted; 2) at most
N particles are sent in each time slot; 3) every particle is delayed
in the channel for a number of slots chosen randomly from the set
{0, 1, . . . , K}; and 4) the particles are identical. It is shown that
the zero-error capacity of this channel is log r , where r is the
unique positive real root of the polynomial x K+1 − x K − N.
Capacity-achieving codes are explicitly constructed, and a
linear-time decoding algorithm for these codes devised. In the
particular case N = 1, K = 1, the capacity is equal to log φ,
where φ = (1 +√

5)/2 is the golden ratio, and constructed codes
give another interpretation of the Fibonacci sequence.

Index Terms— Zero-error capacity, zero-error code, timing
channel, timing capacity, molecular communications,
discrete-time queue, Fibonacci sequence.

I. PRELIMINARIES

THE study of timing channels, i.e., channels that arise
when the information is being encoded in the transmis-

sion times of messages, has resulted in many interesting and
relevant models. Two important and relatively recent examples
are the models adopted from queuing theory [3], [4], [15]
and those that arise in molecular communications [5].
We analyze here the problem of zero-error communication
over certain channels of this type. The study is partly motivated
by settings in which the communication is done with rather
unconventional physical carriers, such as particles, molecules,
items, etc. These channels can also be viewed as discrete-
time queues with bounded waiting times, and the results can
thus be seen as supplementing in a sense the work carried
out in [4] and [15] (see also [10], [12]); however, due to the
combinatorial nature of zero-error information theory [8], [14],
the methods used are quite different from those in [4] and [15].

A. The Channel Model

We assume that multiple transmissions can occur at the
same time instant without interfering with each other. In this
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Fig. 1. Illustration of the DTPC(4, 2). The particles are numbered only for
the purpose of illustration, they are assumed identical.

regard, we will use the term particle (instead of symbol
or packet) for the unit of transmission. We believe that this
convention will make the discussion clearer.

Let N denote the set of nonnegative integers {0, 1, . . .}.
Definition 1: The Discrete-Time Particle Channel

with parameters N, K ∈ N, denoted DTPC(N, K ), is
the communication channel described by the following
assumptions:

1) Time is slotted, meaning that the particles are sent and
received in integer time instants;

2) At most N particles are sent in each time slot;
3) Every particle is delayed in the channel for a number of

slots chosen randomly from the set {0, 1, . . . , K };
4) The particles are indistinguishable, and hence the infor-

mation is conveyed via timing only, or equivalently, via
the number of particles in each slot. �

We elaborate briefly on the definition of the DTPC. If the
duration of the transmission is n slots, then the assumption
4) implies that the sequence of particles can be identified with
an n-tuple of integers (x1, . . . , xn) ∈ {0, 1, . . . , N}n , where xi

represents the number of particles in the i ’th slot. For example,
Figure 1 illustrates a situation where the transmitted sequence
is (3, 1, 4, 0, 0) and the received sequence is (2, 1, 2, 1, 2).
Hence, the DTPC can be defined purely in terms of sequences
of nonnegative integers, and in the rest of the paper we will
rely entirely on this representation.

As for the assumption 3), observe that if the delays of
the particles were unbounded (as is the case, e.g., in queues
having service times with geometric distribution [4]), the
zero-error capacity would be zero. Therefore, in order to
obtain interesting models, some restrictions on the delays
have to be imposed. Similarly, if there is no restriction on
the number of particles sent in each slot, then the zero-
error capacity is infinite for any K ∈ N, which justifies the
assumption 2).

Note that we have not imposed a restriction on the number
of particles at the output of the DTPC(N, K ) in a single slot
(though it is obviously bounded by (K + 1)N). It is not hard
to argue that this does not affect the zero-error capacity of the
above channel, i.e., it would be the same if this number were
also bounded by N . This is proven in Appendix A.

Let us also give several more concrete interpretations of the
DTPC. Namely, the “particles” referred to in the definition of
this channel can be interpreted in various ways depending on
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the context, e.g., as:

• “Molecules” in the so-called molecular communications,
where the transmission of information via the number of
molecules and their emission times is considered. The
molecules are usually assumed identical, and their arrival
times are random due to their interaction with the fluid
medium. The codes described in the present paper are
relevant precisely for the channels of this type, at least in
discrete-time models [5].

• “Customers” in queuing systems, an important example
of which are queues of “packets” formed in network
routers (see the discussion in Remark 1 below).

• “Packets” in channels introducing random delays (caused
by effects different than queuing). Note that the packets
referred to in this and the previous paragraph are not
identical in practice and usually carry information via
their contents. In this paper we will be interested in the
transmission of information via timing only, similarly as
in [4]. Alternatively, one can imagine a receiver that is
not processing the packets (e.g., a low power node in
a wireless sensor network), but only infers their arrivals
through energy detection.

• “Energy quanta” in a simultaneous transmission of energy
and information [11].

Remark 1 (DTPC vs. Discrete-Time Queues): We have
pointed out already that the results of the paper apply also
to queuing systems of certain type. We introduce them here in
a bit more detail. Denote by DTQR(N, K ) the Discrete-Time
Queue1 with N servers/processors (meaning that N particles
can be processed simultaneously), with at most N arrivals
per slot, and with Residence times bounded by K slots
(the residence time of the particle is the total time that it
spends in the queue, either waiting to be processed or being
processed). It is not difficult to argue that the DTPC(N, K )
and the DTQR(N, K ) have identical zero-error codes and
zero-error capacities. The key difference between these chan-
nels is that the delays of the particles in the DTPC are
independent, while in the DTQR they are not as they are
affected also by the service procedure (for example, in FIFO
queues the particles cannot be reordered). The assumption
that the particles are identical, however, makes this difference
irrelevant in the zero-error case. �

B. Notation and Definitions

By a “sequence” of length n over a nonempty alphabet A we
mean an n-tuple from A

n . When there is no risk of confusion,
a sequence (x1, . . . , xn) will also be written as x1 · · · xn . If, for
a given channel, the sequence x at its input can produce
the sequence y at its output with nonzero probability, then
we write x � y. For any two sequences x and y, their
concatenation is denoted by x◦y, or sometimes simply by x y.
Also, if Z is a set of sequences, we let x ◦ Z = {x ◦ z : z ∈ Z}
and Z ◦ x = {z ◦ x : z ∈ Z}. We assume that x ◦∅ = ∅◦ x = ∅,
and x ◦ ∅ = ∅ ◦ x = x, where ∅ denotes an empty set and
∅ an empty sequence. For a sequence x and a number k ∈ N,

1 Service procedure, service time distribution, and interarrival distribution
are irrelevant in this context and hence are not specified.

xk will denote the concatenation of k copies of x, where it is
assumed that x0 = ∅. The weight of a sequence x = x1 . . . xn ,
xi ∈ N, is defined as wt (x) = ∑n

i=1 xi .
A code of length n for the DTPC(N, K ) is a subset of

{0, 1, . . . , N}n . Codes will be denoted by calligraphic letters
C,D, etc., or C(n),D(n), if their length needs to be empha-
sized. The set of codewords of C having prefix u is denoted
by Cu, and the code obtained by removing this prefix by
Cu = {v : u ◦ v ∈ C}. Clearly, Cu = u ◦ Cu.

Definition 2: C is said to be a zero-error code for the DTPC
if for any m ≥ 1 and any two distinct sequences x = x1 . . . xm

and y = y1 . . . ym , where xi , yi ∈ C, there exists no sequence z
such that both x � z and y � z. �

In words, no two sequences of codewords of C can produce
the same channel output, and hence there is no confusion
about which sequence was sent. Note that we demand the
distinguishability of sequences of codewords, rather that just
of codewords. This is necessary in the delay channels. To illus-
trate this, let C = {000, 100, 001} be a code of length three for
the DTPC(1, 1), introducing delays of at most one slot. Then it
is easy to check that no two codewords can produce the same
channel output, but on the other hand 001000 � 000100, and
hence the sequences of codewords 001, 000 and 000, 100 are
confusable. C is therefore not a zero-error code.

This problem can easily be circumvented by simply padding
each codeword with K zeros (empty slots, in the original
terminology). Empty slots at the end of each codeword serve to
“catch” the particles that are (potentially) sent in the preceding
slots and are (potentially) delayed in the channel. In this way
these particles do not interfere with the following codeword.

Definition 3: A code C(n) for the DTPC(N, K ) is said to
be zero-padded if all of its codewords end with min{n, K }
zeros. �

Clearly, a zero-padded code is zero-error if and only if for
every two distinct codewords x, y, there exists no sequence z
with x � z and y � z.

Definition 4: The rate of a code C(n) for the DTPC(N, K )
is defined as 1

n log |C(n)|. The zero-error capacity of the DTPC
is the supremum of the rates of all zero-error codes for this
channel. The base of log is assumed to be 2 and hence the
rates and capacities are expressed in bits per time slot. �

It is easy to show that this supremum is equal to the lim sup
of the rates of the largest zero-error codes for the DTPC. Fur-
thermore, when considering the capacity of the DTPC(N, K ),
there is no loss in generality to restrict oneself to
zero-padded codes, because padding with a constant number
of zeros does not affect the code rate in the asymptotic sense.

II. OPTIMAL ZERO-ERROR CODES FOR THE DTPC
In this section we give two constructions of optimal

zero-padded zero-error codes for the DTPC. The results have
similar flavor to those obtained for some other types of
combinatorial channels, see [1], [2], [7], [18].

A. Recursive Construction

The claim that follows establishes a general property of
zero-padded zero-error codes for the DTPC(N, K ), from
which the construction of optimal codes will follow in a



6798 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

straightforward way. It states that such codes can, without
loss of generality, be assumed to contain only codewords with
prefixes N and i ◦ 0K , i ∈ {0, 1, . . . , N − 1}.

Proposition 1: Let C(n), n > K , be a zero-padded
zero-error code for the DTPC(N, K ). Then there exists a
zero-padded zero-error code D(n) of the same size, and such
that:

D = DN ∪
N−1⋃

i=0

Di ◦ 0K
. (1)

Proof: Let C(n) be a zero-padded zero-error code for
the DTPC(N, K ). We will construct D(n) by removing the
codewords of C(n) that do not satisfy the desired form, and
add the corresponding codewords that do. For any codeword
of C(n) of the form x = u ◦ v, where u = u1 · · · uK+1 is of
length K +1 and weight wt (u) = q , we let the corresponding
codeword x̃ of D(n) be specified as follows: If q < N , then
x̃ = q ◦ 0K ◦ v, while if q ≥ N , then x̃ = N ◦ ũ ◦ v, where
ũ = ũ2 · · · ũK+1 is some sequence of length K and weight
q − N satisfying ũi ≤ ui , i = 2, . . . , K + 1 (in other words,
the prefix of x̃ is in the latter case constructed from u by
removing N − u1 of its particles from slots 2, . . . , K + 1, and
placing them in the first slot, together with the u1 particles that
are already there). Thus, we can write D(n) = {x̃ : x ∈ C(n)}.
It is now not difficult to argue that |D(n)| = |C(n)| and that
the fact that C(n) is a zero-padded zero-error code implies
that D(n) is such a code too. The key observation is that C(n)
cannot contain two distinct codewords of the form x1 = u1 ◦v
and x2 = u2 ◦v, where the prefixes u1, u2 are of length K +1
and have the same weight, that is wt (u1) = wt (u2) = q . This
is because C(n) is zero-error, and clearly x1 � 0K ◦ q ◦ v
and x2 � 0K ◦ q ◦ v.

Lemma 1: Let D(n), n > K , be a zero-padded code of the
form (1) for the DTPC(N, K ). Then D(n) is zero-error if and
only if DN (n − 1) and Di ◦ 0K

(n − K − 1), 0 ≤ i < N , are all
zero-error.

Proof: If DN and Di ◦ 0K
are zero-error, then so are

DN and Di ◦ 0K
. Observe also that no two sequences x, y,

such that x has prefix i ◦ 0K and y either j ◦ 0K or N
(where i, j ∈ {0, 1, . . . , N − 1}, i �= j ), can produce the same
channel output, implying that D is zero-error. The opposite
direction is also easy.

The above claims imply that an optimal zero-padded
zero-error code of length n for the DTPC(N, K ) can be
constructed recursively from the codes of length n − 1 and
n − K − 1. To start the recursion, optimal zero-padded
zero-error codes of length j ∈ {0, . . . , K } are needed, which
are trivially {0 j }.

Theorem 1: The largest zero-padded zero-error code for the
DTPC(N, K ), denoted CN,K , is given by:

CN,K (n) = (
N ◦ CN,K (n − 1)

) ∪
N−1⋃

i=0

(
i ◦ 0K ◦ CN,K (n − K − 1)

)
, (2)

for n > K , and CN,K (n) = {0n} for 0 ≤ n ≤ K .
In the following subsection we will describe a different,

perhaps more intuitive construction of the codes CN,K .

Theorem 1 implies that the cardinalities of the codes CN,K

satisfy the recurrence relation:
∣
∣CN,K (n)

∣
∣ = ∣

∣CN,K (n − 1)
∣
∣ + N

∣
∣CN,K (n − K − 1)

∣
∣, (3)

with initial conditions
∣
∣CN,K (n)

∣
∣ = 1, 0 ≤ n ≤ K , which

further implies that:

∣
∣CN,K (n)

∣
∣ =

K+1∑

k=1

akrn
k , (4)

where rk are the (complex) roots of the polynomial
x K+1 − x K − N , and ak are (complex) constants.

Remark 2: In the particular case N = 1, K = 1, the
analysis of the channel amounts to analyzing binary sequences
whose 1’s are being shifted by at most one position to the
right (hence, the DTPC(1, 1) can also be seen as a type of a
“bit-shift” channel [9], [13]). In this case, the codes C1,1 satisfy
the relation2:

C1,1(n) = (
1 ◦ C1,1(n − 1)

) ∪ (
00 ◦ C1,1(n − 2)

)
, (5)

with C1,1(0) = {∅}, C1,1(1) = {0}, which implies that
|C1,1(n)| = |C1,1(n − 1)| + |C1,1(n − 2)|, with |C1,1(0)| =
|C1,1(1)| = 1. In other words, (|C1,1(n)|) is the Fibonacci
sequence3 (Fn). �

B. Direct Construction

Let DN,K (n) be the code defined by the following pro-
cedure. First enumerate in the inverse lexicographic order
all sequences of length n over {0, 1, . . . , N} ending with
min{n, K } zeros (so that, for n > K , the first sequence on the
list is Nn−K ◦ 0K , the second one is Nn−K−1 ◦ (N − 1) ◦ 0K ,
etc.; see Table I). Then repeat the following step until there
are no more sequences to process: Select the first sequence
on the list that has not been processed, call it x, to be a
codeword, and then exclude all sequences y such that x � y.
Table I illustrates the construction for N = 2, K = 1 (only
the codewords are listed to save space).

Proposition 2: DN,K (n) = CN,K (n) for every n ∈ N.
Proof: Since DN,K (n) = CN,K (n) = {0n} for 0 ≤

n ≤ K , it is enough to show that DN,K (n) satisfy the
relation (2). Observe that DN

N,K (n) = N◦DN,K (n−1) because
adding a fixed prefix to a set of sequences does not affect
the process of construction and, moreover, the prefix N puts
the sequences on the top of the list. It is left to prove that
Di

N,K (n) = i ◦ 0K ◦ DN,K (n − K − 1), for 0 ≤ i < N . First
consider the case i = N − 1. Let x be a sequence with prefix
(N −1)◦u, where u is of length K and strictly positive weight,
and construct x̃ as in the proof of Proposition 1. Now, if x̃ is
a codeword, then x is not because x̃ � x and so x would
have been excluded in the process of construction. On the
other hand, if x̃ is not a codeword, then it has itself been
excluded by some sequence y that precedes it in the inverse

2 As one of the referees pointed out, this resembles a well known charac-
terization of Fn as the number of binary sequences of length n − 1 with
no consecutive ones. Such a set of sequences, S(n), obeys the recursion
S(n) = (

0 ◦ S(n − 1)
) ∪ (

10 ◦ S(n − 2)
)
, with S(0) = {∅}, S(1) = {0, 1}.

3 The name Fibonacci code would thus be appropriate here, but it has already
been used in some other contexts [6], [18].
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TABLE I

ZERO-ERROR CODES OF LENGTH UP TO 5 FOR THE DTPC(2,1).

CARDINALITY OF THE CODES IS SHOWN IN

THE RIGHTMOST COLUMN

lexicographic order (y � x̃). But then we also have y � x,
and therefore x is not a codeword either. We have shown that
DN−1

N,K (n) does not contain codewords having prefix (N−1)◦u,
where wt (u) > 0, and hence it can only contain codewords
starting with (N − 1) ◦ 0K . Since none of the sequences
with this prefix could have been excluded in the process of
construction by a codeword from DN

N,K (n), it follows that they
have been processed independently of the rest of the list and
so DN−1

N,K (n) = (N −1)◦0K ◦DN,K (n − K −1). One can now
prove by induction that Di

N,K (n) = i ◦ 0K ◦DN,K (n − K − 1)
for i = N − 1, N − 2, . . . , 1, 0; the argument is very similar
to the above and is omitted.

C. Decoding Algorithm

The structure of the codes CN,K , captured by the rela-
tion (2), suggests a very simple algorithm for recovering
the transmitted sequence x = x1 · · · xn ∈ CN,K (n) from the
received sequence y = y1 · · · yn . The procedure is as follows:

Set y(1) = y, and observe the prefix of y(1) of length K +1,
namely y1 · · · yK+1, and its weight q .

1. If q < N , conclude that x1 · · · xK+1 = q ◦ 0K (see (2)),
and set y(2) = yK+2 · · · yn . Note that y(2) is the
(possible) output of the DTPC(N, K ) when the input is
the codeword xK+2 · · · xn from CN,K (n − K − 1).

2. If q ≥ N , conclude that x1 = N . If also y1 < N , this
means that some of the particles from the first slot have
been delayed in the channel. In that case remove N − y1
of these particles from slots 2, . . . , K + 1 (first taking
particles from slot 2, then slot 3, etc., until N − y1 of
them are collected) and put them in the first slot. Then
set y(2) = y ′

2 · · · y ′
K+1 ◦ yK+2 · · · yn , where y ′

2 · · · y ′
K+1

is obtained from y2 · · · yK+1 by removing the particles in
the above-described way, i.e., for some k ∈ {2, . . . , K +1}
we have y ′

i = 0 for i ∈ {2, . . . , k − 1}, y ′
k = ∑k

i=1 yi −
N ≥ 0, and y ′

i = yi for i ∈ {k + 1, . . . , K + 1}. Note
that y(2) is the (possible) output of the DTPC(N, K ) when
the input is the codeword x2 · · · xn ∈ CN,K (n − 1).

The procedure is repeated with y(2) by considering its prefix
of length K + 1, and so on.

Since at least one symbol of x is determined in every
iteration, the algorithm will terminate in at most n iterations
(in fact, at most n − K due to the trailing zeros).

III. ZERO-ERROR CAPACITY OF THE DTPC

The results of Section II-A imply that the capacity of the
DTPC(N, K ) can be simply found as limn→∞ 1

n

∣
∣CN,K (n)

∣
∣,

and by using the fact that the asymptotic behavior of
∣
∣CN,K (n)

∣
∣

is determined by the largest (in modulus) root of the polyno-
mial x K+1 − x K − N (see (4)).

Lemma 2: The largest (in modulus) root r of the polyno-
mial x K+1 − x K − N is real and greater than 1. Moreover,
if K → ∞, then r → 1.

Proof: The following theorem is proven in
[16, Ch. 3, Th. 2] (see also [17]): If p(x) = cm xm +
cm−1xm−1 + · · · + c1x + c0 is an arbitrary polynomial with
complex coefficients, and c0 · cm �= 0, then all roots of p(x) lie
in the (complex) circle |x | ≤ r , where r is the unique positive
real root of p̃(x) = |cm |xm −|cm−1|xm−1 − · · ·− |c1|x −|c0|.
Since our polynomial is precisely of the form p̃(x), we
conclude that it has a unique positive real root r , and that
all other roots are smaller in modulus than r . This root
can be found as the point of intersection of the curves x K

and N(x − 1)−1 (viewed as real functions). By analyzing
these curves it follows easily that r > 1 and that r → 1
when K → ∞.

Theorem 2: The zero-error capacity of the DTPC(N, K ) is
equal to log r , where r is the unique positive real root of the
polynomial x K+1 − x K − N .

The zero-error capacity of the DTPC(1, 1) is therefore log φ,
where φ = (1+√

5)/2. More generally, the zero-error capacity
of the DTPC(N, 1) equals log

( 1
2 (1 + √

1 + 4N )
)
. Explicit

expressions can also be obtained in the following two cases,
which are intuitively clear: The zero-error capacity of the
DTPC(N, 0) is log(N + 1), while that of the DTPC(N,∞)
(which allows arbitrarily large delays) is zero.

The following proposition states some basic properties of
the capacity, regarded as a function of the channel parame-
ters N and K . This function is also illustrated in Figure 2.

Proposition 3: Both r and log r are monotonically increas-
ing concave functions of N , for fixed K , and monotonically
decreasing convex functions of K , for fixed N .

Proof: The function r is defined implicitly by r K+1−r K −
N = 0, r > 1, and the function c = log r by 2c(K+1) − 2cK −
N = 0, c > 0. Note that r and c are well-defined for
all N, K ∈ R+, not necessarily integers. One can therefore
differentiate them with respect to N and K and verify that
ṙN > 0, r̈N < 0, ċK < 0, c̈K > 0. The remaining claims
follow from the properties of the logarithm and the exponential
function.

APPENDIX A
RESTRICTING THE CHANNEL OUTPUT

In this section we demonstrate that bounding the number of
particles that can be received in a slot by N (or by N ′ ≥ N)
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Fig. 2. The behavior of the zero-error capacity of the DTPC(N, K ).
(a) Dependence on K , for N = 1, 3, 7, 15, 31, 63. (b) Dependence on N ,
for K = 0, 1, …, 10.

does not change the zero-error capacity of the DTPC. For the
purpose of this argument we will refer to the channel with this
additional restriction as the DTPC(N, K ; N). To clarify what
is meant by the DTPC(N, K ; N), we emphasize that there is
no “limiter” in the channel that drops some of the particles if
their number in a slot exceeds N . As in the DTPC(N, K ), all
particles must arrive at the destination, only now their delays,
in addition to being ≤ K , have to be such that the number of
particles at the channel output in every slot is ≤ N . One can
perhaps imagine a “membrane” at the channel output allowing
at most N particles per slot to pass through.

Proposition 4: Any zero-error code for the DTPC(N, K ) is
a zero-error code for the DTPC(N, K ; N), and vice versa.

Proof: Let x and y be two sequences such that they can
both produce z = z1 · · · zl at the output of the DTPC(N, K ).
Then there exists w = w1 · · · wl such that x � w and y � w
in the DTPC(N, K ; N), i.e., such that wi ≤ N . To see this,
observe that if zi > N for some i ∈ {1, . . . , l}, then some of
these zi particles have not been delayed for a maximal number
of slots (K ) and could be further delayed. We can therefore
find the desired w by going through slots 1, . . . , l, respectively,
and whenever we find that z′

i > N , we move z′
i − N of these

particles to slot i +1, where z′
i is the sum of zi and the number

of particles that were moved from slots 1, . . . , i − 1 to slot
i during this procedure. We conclude that if a code is not a
zero-error code for the DTPC(N, K ), then it is not a zero-error
code for the DTPC(N, K ; N) either. The opposite direction is
obvious.

We note, however, that bounding the number of received
particles in a slot by N ′ < N reduces the zero-error capacity
because it excludes some sequences as valid inputs.
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