
Aalborg Universitet

Flexible Framework for Statistical Schedulability Analysis of Probabilistic Sporadic
Tasks

Boudjadar, Jalil; Kim, Jin Hyun; David, Alexandre; Larsen, Kim Guldstrand; Mikucionis,
Marius; Nyman, Ulrik; Skou, Arne; Lee, Insup; Thi Xuan Phan, Linh
Published in:
18th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC 2015

DOI (link to publication from Publisher):
10.1109/ISORC.2015.21

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Boudjadar, J., Kim, J. H., David, A., Larsen, K. G., Mikucionis, M., Nyman, U., Skou, A., Lee, I., & Thi Xuan
Phan, L. (2015). Flexible Framework for Statistical Schedulability Analysis of Probabilistic Sporadic Tasks. In
18th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC 2015 (pp. 74-83). IEEE (Institute of Electrical and Electronics Engineers).
https://doi.org/10.1109/ISORC.2015.21

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/ISORC.2015.21
https://vbn.aau.dk/en/publications/5349d566-97ca-481c-9247-69ea8d98f849
https://doi.org/10.1109/ISORC.2015.21

Downloaded from vbn.aau.dk on: June 18, 2025

Flexible Framework for Statistical Schedulability
Analysis of Probabilistic Sporadic Tasks

Jalil Boudjadar, Alexandre David, Jin Hyun Kim,
Kim G. Larsen, Marius Mikučionis, Ulrik Nyman, Arne Skou

Aalborg University, Denmark
{jalil,adavid,jin,kgl,marius,ulrik,ask}@cs.aau.dk

Insup Lee, Linh Thi Xuan Phan
University of Pennsylvania, USA
{lee,linhphan}@cis.upenn.edu

Abstract—The analysis of probabilistic schedulability explores
all possible combinations of the probabilities of task attributes,
which can easily lead to exponential computation time [25].
In this paper, we present a flexible schedulability analysis
framework for periodic and sporadic tasks having probabilistic
attributes where the computation time scales linearly in the size
of analyzed systems. The framework is given in terms of a
set of Parameterized Stopwatch Automata (PSA) models, which
leads to a large degree of flexibility. Probability distributions
for response time are generated using statistical model checking
(UPPAAL SMC) while the overall schedulability can be checked
using symbolic model checking (UPPAAL). We also define PoMD
(percentage of missed deadlines) as a measure of the probabilistic
schedulability of systems. To evaluate our approach, we compare
the time used for computing response times and the analysis
results using similar task models to that of a related analytical
approach.

I. INTRODUCTION

Limited resources are a strong factor in the system setting
in many embedded software application fields. Engineers are
interested, not only, in whether or not the system always meets
its requirements, but also how it behaves with insufficient
resources. Supplying a system with less resources than it
requires may lead to a degradation of the quality of service.
A certain level of degradation may be acceptable in a given
setting and we thus consider it important to answer questions
regarding schedulability with estimates of the quality instead
of just providing a yes/no answer. Another argument for using
probability based methods is that the classical safe analysis
methods are very pessimistic.

In many areas such as real-time communication protocols,
randomized distributed algorithms and dynamic power man-
agement, the timing attributes can vary greatly. Thus, it is
advantageous to describe not only the worst case scenarios
but also the probability of all potential scenarios. In this way,
the timing attributes of tasks follow probability distributions.
Different analytical approaches to schedulability under prob-
abilistic conditions have been defined [25], [14], [15]. We
pursue the analysis of probabilistic tasks in a setting of a
model-based schedulability analysis framework for single core
systems.

The research presented in this paper has been partially supported by EU
Artemis Projects CRAFTERS and MBAT.

In [25], the authors introduce discrete probabilities for
periods, execution times and deadlines of tasks. However, the
framework in [25] can only handle fixed priority scheduling
mechanisms. In this paper, we provide a model based frame-
work to include any dynamic priority scheduling policy. In
fact, we initiated the current work in [5] where we considered
continuous probability distributions, but only for inter-arrival
times, together with fixed and dynamic scheduling policies.

Contributions: In this paper, we present a flexible and
scalable schedulability analysis framework for periodic and
sporadic tasks having probabilistic attributes. Our framework
can analyze both schedulability and response time as well as
a new metric called Percentage of Missed Deadlines (PoMD)
[5].

The framework is given in terms of a set of Parameterized
Stopwatch Automata (PSA) models [9], which leads to a
large degree of flexibility. This flexibility is obtained because
each of the templates used in the framework can be changed
independently. This means, for instance, that we can handle
any scheduling algorithm simply by changing the scheduling
template [4]. Probability distributions for response times are
generated using statistical model checking (UPPAAL SMC)
while the overall schedulability can be checked using symbolic
model checking (UPPAAL). The analysis time of the statistical
method presented in this paper scales linearly in all aspects of
the analyzed systems: number of tasks, simulation time given
as a number of triggerings, and the number of samples in the
probability distributions.

Compared to the approach in [25], we provide a much more
flexible and scalable framework. Thus, we can analyze the
same types of models, but with any type of scheduling mech-
anism. We also show that we can estimate other properties
of scheduling systems such as PoMD (percentage of missed
deadlines). We also believe that model based approaches are
easier than formula based methods to understand and update
for engineers working with embedded real-time systems. Some
of the advantages come from the ability to provide concrete
system traces. Like the approach in [25], we do not consider
the problem of obtaining samples, but assume that they are
provided as input to our framework. Such samples will never
be 100% exact, but it is reasonable to use statistical input to a
flexible and scalable statistical method like the one presented
in this paper.

Organization of this paper: Section II cites most relevant
related work. Section III introduces the background of our
work, for a statistical analysis method of probabilistic schedul-
ing systems. In Section IV, we present our framework for
the statistical schedulability analysis and introduce a metric
that shows the schedulability in a probability perspective.
Section V shows the analysis results of the response time
distributions relying on the probabilistic task attributes, as
well as comparisons of our work with the work in [25]. In
Section VII, we conclude this paper.

II. RELATED WORK

This work contributes to the analysis of probabilistic real-
time systems using a model based framework.

In [15], Edgar and Burns argued for the use of probabilistic
methods instead of only using WCET when analyzing the
schedulability of an embedded system. In [1] Atlas and
Bestavros provide and implement a rate monotonic scheduling
approach where the task execution time is given by a proba-
bility density function. They analyze the system schedulability
over superperiods. The superperiod of a task is given by the
period of the next lower priority task. In [14], Diaz et al
provide an analysis method for both fixed and dynamic priority
scheduling policies where the execution times are given as
probability distributions.

In [29], the authors propose a method to control the pre-
emptive behavior of real-time sporadic task systems by the use
of CPU frequency scaling. They introduced a new sporadic
task model in which the task arrival may deviate, according
to a discrete time probability distribution, from the minimum
inter-arrival time. A similar approach is presented in [12].
The work of [25] extends the work in [14] by making all the
task attributes probabilistic. The authors developed a piece of
Matlab software that randomly generates a scheduling system
given a number of samples for the probability distributions and
a number of tasks, while the analysis can systematically be
performed using the Matlab implementation of the underlying
theory. However the aforementioned methodology does not
handle dynamic scheduling policies. In [28], Santinelli et al
define a framework for schedulability analysis of hierarchical
scheduling systems on single core platforms. Two task pa-
rameters are characterized by discrete probabilistic functions;
execution time and period. Their paper provides a theoretical
framework, but not a practical implementation. Moreover, the
complexity of the analysis presented in the paper is unknown.
Compared to our work, [28] models similar types of systems
but does not provide an implementation of the analysis.

In [7], Carnevali et al introduces a framework for dead-
line miss analysis in the context of flat fixed priority non-
preemptive scheduling systems. The execution time is the
only probabilistic parameter. The probability distribution is
obtained using extreme value theory. If a job is not completed
on time it will be immediately discarded. A simulation model
for the framework has been implemented using stochastic
time Petri nets. Compared to our work, the framework only

considers the probability of missing a deadline, but not the
response time nor the time by which a deadline is missed.

Other statistical modeling tools, such as PRISM [18] and
PARAM [17], have also been applied to model the domain of
probabilistic scheduling systems. In [26] the authors compare
three different approaches for re-sampling discrete probability
distributions characterizing task execution times. Re-sampling
is used to combat the complexity when performing exact
schedulability analysis on probability distributions.

The current work relies on [5] where we introduced a model
based framework for the schedulability analysis of real-time
systems having probabilistic execution times. Contrary to the
current work, the probability distributions used in [5] are
continuous. We follow the approach of [25] in the aspect of
making all task attributes probabilistic.

III. BACKGROUND

Classical analytical methods have aimed at giving 100%
guarantees about the schedulability of a system. However,
when the system inputs are statistical then either certainty
cannot be obtained or the pessimism of the analysis will be
extreme as only the worst cases are used. The framework we
present can be used to obtain the desired confidence level,
given by the number of simulated traces and the length of
each trace. This paper introduces a framework for analyzing a
soft real-time system and providing realistic response time dis-
tributions for each of the probabilistic tasks in the system. For
scheduling systems, probabilities can be used to describe the
timing attributes (period, execution time, ...) of tasks. So that
each task attribute may have different exclusive values, each
of which is associated with a probability stating how probable
it is for the task attribute to be assigned this particular value.
The method presented in this paper can be used to analyze
a soft real-time component being part of a larger hierarchical
scheduling system, following the method described in [4].

A. Probabilistic Tasks and Analysis

Analytical approaches for the response time and schedu-
lability analysis of tasks having a probabilistic execution
time have been defined in [1], [14] among many others. An
extension has been proposed in [25] by making multiple task
attributes probabilistic. In this setting, the response time is
generated in terms of a probability distribution that can be
compared to the tasks deadline.

A random variable X is given by:

X =
(x1, ..., xn
p1, ..., pn

)
(1)

where {x1, .., xn} are outcomes (samples), P (xi) = pi is the
probability of each sample xi to be selected and

∑n
i=1 pi = 1.

So that the probability of any variable x is given by P (x) if
x ∈ {x1, .., xn}, otherwise P (x) = 0.

We adopt the same scheduling system definitions as in [25].
A scheduling system is given by a set of n synchronous
tasks {T1, .., Tn} to be scheduled on one CPU according to
a scheduling policy. Each task Ti = (Ii, Ei, Di) is given by
three timing attributes: Ii is the minimum inter-arrival time,

2

Ei is the execution time and Di represents the task deadline.
Each of the timing attributes is a random discrete variable
that has different values (samples) according to a probability
distribution. In the original version, for the sake of simplicity
the authors consider that Ii and Di are always the same.

The computation of the response time of a task relies on
the response time of its triggerings (jobs). However, while
the task periods are not regular (different values according to
the probability distribution), the number of triggerings is not
constant and could be infinite. The notion of hyperperiods, for
which the task arrival patterns are repeated for all hyperperiods
has been considered in [14]. This implies that the analysis
can be restricted to a single hyperperiod. The concept of
hyperperiod is only applicable to settings where tasks have
fixed length periods.

The computation of a response time R in [25] consists of ex-
ploring all possible combinations of the values of inter-arrival
time and execution time of each task. Such a computation is
iteratively performed up to a pseudo-hyperperiod (simulation
time) given as a parameter for the analysis. The simulation
time is specified by a multiple of the longest possible inter-
arrival time of the lowest priority task. Similarly, we use the
concept of simulation time as a pseudo-hyperperiod. Once the
response time probability distribution is computed, the au-
thors use the concept of Deadline Miss Probability
(DMP) to determine whether or not the system is schedulable.

A necessary, but not sufficient, condition for schedulability
is that all potential values of the response time distribution R
are smaller than the possible values of the deadline distribution
D. If this is not the case, a single triggering can occur where
the deadline cannot possibly be met because the deadline is
shorter than the response time.

Formally, the response time distribution R of the jth

triggering (job) of task Ti that is released at time λi,j is
given by Ri,j = Bi(λi,j) ⊗ Ci ⊗ Ii(λi,j), where ⊗ is
the convolution operator [25] which computes the combined
probability distribution of two independent random variables.
Bi(λi,j) is the accumulated backlog of higher priority tasks
released before λi,j and still running at time λi,j , Ii(λi,j) is
the sum of execution times of tasks having priority over task
Ti and triggered after λi,j . So that the execution of the jth job
of task Ti can be preempted for Ii(λi,j) time units. Each of
the variables of the aforementioned equation is a probability
distribution.

In this paper we propose a model-based framework for
the modeling, schedulability and response time analysis of
probabilistic scheduling systems. Our framework enables to
model the concrete behavior of tasks in terms of UPPAAL
parameterized stopwatch automata [8], while it can check
the system schedulability under any scheduling policy and
estimate the response time using UPPAAL SMC tool. Methods
based on statistical model checking (SMC) scale logarithmi-
cally in the size of the analyzed models; moreover they are
trivially parallelizable and still scale sub-linearly [21], thus
easily scaling to industrial size systems.

Our models are flexible in the way that can be easily updated

to fit different systems and configurations. Moreover, they also
provide other insurance measures for any engineering setting
like the percentage of missed deadlines (PoMD).

B. Statistical Model Checking

Statistical Model Checking (SMC) is a simulation-based
analysis approach used to give a probabilistic estimate of a
certain property being satisfied by a given model. SMC [6] is
a widely accepted analysis technique in many research areas
such as industrial applications in software engineering [2], [24]
and systems biology [10].

In order to estimate the probability of a property, SMC
generates a number of stochastic runs and checks the property
on each of the runs. The property is checked up to a certain
confidence level (using confidence coefficient δ) and with a
certain maximum error limit (ε distance from the center). Since
many natural properties are monotone, the truth at length k of
a run implies truth on the entire run [20], therefore we only
check runs up to a certain bound of a run. In UPPAAL SMC the
length of runs can be specified either as a number of discrete
transitions or as a simulation time or cost bound. In our work
we use a constant time bound timeBound. The confidence
level, error limit and run length are all user parameters in our
framework.

In theory, the maximum number of runs n required to
achieve the needed confidence level δ and precision ε can
be derived from Hoeffding’s inequality Pr(|p̄ − p| > ε) ≤
2e−2nε2 [19], which says that the probability of the wrong
result (when the estimated p̄ probability differs from the real
probability p by more than ε) is no greater than 2e−2nε2 .
The probability of the wrong result is called the level of
significance α = 1 − δ, and hence n ≥ −ln(α/2)/(2ε2) runs
is enough. Hoeffding’s inequality implies that the number of
runs is sub-linear in terms of confidence and quadratic in
terms of precision. Moreover, the complexity does not depend
on the structure of the model, but merely on the simulation
performance. Therefore, it is not prohibitively expensive to get
a very high degree of confidence even on the models which are
prohibitively difficult to solve analytically. In practice, we can
exploit the fact that our samples follow binomial distribution
and hence the probability estimation is even more efficient
by using sequential methods [16], which adapt to the actual
probability value and the confidence interval is computed by
more precise methods [11].

Besides the statistical check of property satisfaction, UP-
PAAL SMC can evaluate the modeled process performance by
estimating the mean value of an expression over the model
variables. In this case we cannot assume any distribution,
hence the value estimation is based on the Central Limit The-
orem which says that the distribution of means of sufficiently
large samples follow Normal distribution, while the small
sample means follow Student’s t-distribution [27]. Therefore
the confidence interval with level δ and significance α = 1−δ

3

is estimated using mean and t-distribution with standard error:

Σni xi
n
± tα/2,n−1

√
Σni x

2
i − (Σni xi)

2/n

n(n− 1)

where xi are the measured samples and tα/2,n−1 is the α/2-
quantile of t-distribution with (n− 1) degrees of freedom.

In order to estimate the mean of maximum (minimum) value
over the run of an expression V , the following syntax is used:
E[time<=TimeBound; RunCount] (max: V)

The size of the estimated interval depends on the variance
of the measured samples, therefore there is no generic way to
limit the error and hence the user has to specify the number
of runs in the query (RunCount) while α is still the level of
significance and confidence level is δ = 1−α. The confidence
interval can be made arbitrary tight by increasing the number
of runs. All experiments shown in this paper are performed as
SMC estimation queries with 1,000 traces (RunCount) and a
simulation time (TimeBound) of 100,000 time units. In order
to have valid results we performed experiments where we
analyze the same system with a varying amount of traces and
simulation time. When reaching more than 1,000 traces and a
simulation time of more than 100,000 time units we see that
the estimated values are stable.

IV. FLEXIBLE FRAMEWORK FOR PROBABILISTIC
SCHEDULING SYSTEMS

In this section, we present a statistical method to ana-
lyze the schedulability of sporadic tasks where the timing
attributes are probabilistic. Following probability distributions,
the schedulability may not be qualitative but also be quanti-
tative. So that the probabilistic schedulability is said to be a
probabilistic guarantee for the system schedulability. We study
the probabilistic schedulability in terms of two metrics: 1)
the response time probability distributions; 2) percentage of
missed deadlines PoMD.

A. Probabilistic Schedulability

In contrast to the classical techniques of schedulability
analysis, we do not only consider if a system is schedulable
or not but we provide the Percentage of Missed Deadlines
(PoMD) as a way to measure how schedulable a system
is. PoMD can be computed for either a task or a complete
embedded system. It must be measured or simulated over a
sufficiently large time bounded run and a sufficiently large
number of runs in order to obtain usable values. A run π of
a system is an infinite sequence:

π = s0(t0, e0)s1(t1, e1) . . . sn(tn, en) . . .

where si is a global state giving information about the state
of each task (e.g. idle, ready, running, blocked) and resource
(e.g. idle, occupied) at stage i; s0 is the initial state; ei indicate
events (triggering, completing or preempting tasks) taking
place with ti time-units separating ei−1 and ei resulting in
a transition from state si to si+1. We denote by Runs the set
of runs of a system. For a run π and a time-bound t ∈ R≥0

we may define (in an obvious manner) the functions:

• Misst(Ti, π) ∈ N is the total number of missed deadlines
for task Ti up to time t;

• Trigt(Ti, π) ∈ N is the total number of triggerings of task
Ti up to time t.

Definition 1 (Percentage of Missed Deadlines (PoMD)):
The PoMD of an entity X for a run π is given by:

PoMDX(π) = (lim sup
t→∞

Misst(X,π)

Trigt(X,π)
)× 100%

The entity X could be a task or a system. Now, the proba-
bilistic arrival patterns of a set of tasks S give rise to a unique
probability measure PS over (Runs, B)1 as such PoMDT is
a random variable. In order to estimate the expected value of
PoMDX , ePoMDX , we generate a set Π of random (according
to the stochastic semantics of S) and independent runs and
calculate the mean using the following formula:

ePoMDX(Π) =

∑
π∈Π PoMDX(π)

|Π|
In fact, we estimate the ePoMD at the system level by

simulating the complete system and summing up all triggering
events and deadline misses. Our concept of PoMD is similar
to the concept Deadline Miss Ratio (DMR) from [23].

B. Modeling of Scheduling Systems

The PSA models of our framework are; a sporadic task
model, a task’s attributes generator model depending on the
attributes distributions, scheduling policy models and a CPU
resource model. Moreover, two analyzer models are added for
the analysis of response time and PoMD.

Fig. 1. Overview of PSA models composition

Fig. 1 gives and overview of the composition and com-
munication between our PSA models. The execution of task
process, STask, follows the probabilistic execution attributes
prob info. The execution attributes of a task are instantly fed
by Probability Distribution, a probabilistic attribute genera-
tor, at each arrival point; and the beginning of a task execution
is captured by an event startSTask. As soon as a task process
starts an execution (job), it requests a CPU assignment to a
resource manager process, CPU Resource, then the resource
manager executes a scheduling function Scheduling Policy
based on a specific scheduling policy. During this process,
the two analyzers, PoMD Analyzer and RT Analyzer, track
timing information of each running task to compute PoMD
and response time (RT).

1Here B is the standard Σ-algebra over Runs generated from a standard
cylinder construction. For more see e.g. [13].

4

Fig. 2. PSA model of sporadic tasks

In our PSA model, a clock can be used as a stopwatch that
stops and resumes according to some conditions. Also, a clock
can be used to store a double-typed value. When a clock is
used as a double-typed variable, the progress rate of the clock
is set to 0, and thus the clock behaves as a regular variable.

Fig. 2 shows the PSA task model as a UPPAAL template.
Locations are represented by mauve colored circles, and the
initial location has a double circle. The location names are
written in red and locations can also have invariants . Edges are
black arrows from source locations to destination locations. On
an edge we have guards, synchronization events and updates.
Exponential rates are used to give an exponential probability
distribution for the waiting time in this location. Intuition;
a high number indicates that there is a high probability of
leaving very fast. The figure also contains tags that are not part
of the model, but are used solely to make easier the description
of the models elements.

The behavior of the task model, Fig. 2, is as follows:
• Init (location): A task process at this location waits for

event startSTask[tid] fired by a probability attribute gener-
ator. Then, it sets the default execution attributes to actual
task’s execution attributes in tstat[tid] using user-defined
function, set default mode() and moves to PDone.

• PDone (location): A task process leaves this location
when it receives the startSTask and starts a new job.
During transition to location WaitOffset, it resets all
clocks and add one to cnt exe[tid] for future PoMD
computation.

• WaitOffset (location): A task process delays for the offset
time. When moving to location Executing, it requires a
CPU allocation from the resource manager pid through
the event r req[pid].

• Executing (location): A task process in this location

Fig. 3. PSA model for the assignment of probabilistic task attributes

performs the actual execution using a CPU. The execution
may stop if the CPU is not available to the task. Two
stopwatches, curTime[tid] and exeTime[tid], are running
at this location. curTime[tid] measures the actual running
time of a task while exeTime[tid] measures the running
time of a task when the task can use a CPU. The function
isTaskSched() checks the availability of CPU. Thus exe-
Time[tid] runs only if the function returns 1, otherwise
it stops. But curTime[tid] keeps running, regardless of
function isTaskSched(). When the current time reaches
the deadline, the transition tr-2-06 must be taken to make
the log of the error situation at a shared global variable er-
ror and increases the missed deadline counter cnt md[tid]
for PoMD computation. If the required execution time
is fulfilled, the transition tr-2-04 outgoing from location
Executing is taken with updating the clock rt[tid] with the
running time curTime[tid] of a task for response time (RT)
computation.

Fig. 3 shows the PSA model of a probabilistic attribute
generator, which assigns probabilistic execution attributes to
actual task attributes. The PSA process behaves as follows:

• Init (location): The process leaves this location imme-
diately and instantiates a task tid by sending the event
startSTask[tid] on transition tr-3-01.

• tr-3-02, tr-3-03, tr-3-04 (transition): The process
assigns probabilistic execution attributes, e.g.
ta[tid].[EXECUTION][i].val, to the associated
task execution attributes, e.g tstat[tid].wcet,
according to discrete probability distributions, e.g.
ta[tid].[EXECUTION][i].prob.

• tr-3-05 (transitions): The process initiates a task’s new job
by triggering the event startTTask[tid].

• WaitJobEnd (location): The process at this location waits
for the job end, i.e. x>=tstat[tid].next arrival, then it joins
the location FinalizeTaskExecution.

• FinalizeTaskExecution (location): In the case where a task

5

misses the deadline and also the next arrival, the start of
a new job must be delayed. Thus the process residing
at this location checks whether the task completes the
execution. If the task is still running, i.e !tstat[tid].status,
the process postpones the release of a new job until the
end of the current job.

Fig. 4. PSA model of the response time analyzer

Fig. 4 and Fig. 5 show two PSA templates used for the
analysis of RT and PoMD, receptively. The RT analyzer in
Fig. 4 uses the following variables:
• gclock (clock): A global clock.
• prt[tid] (clock): A stopwatch to store the response time

rt[tid] at the end of a single run of a task. It is used to
generate the RT distribution.

• pn (int): The random periods of a task to be performed
for stochastic task execution.

• prd end[tid] (channel): The RT analyzer is reported via
this channel about the end of each period of a task.

The RT analyzer in Fig. 4 behaves as follows:
• tr-7-01 (transition): The process initializes rt[tid] with the

execution time of task tid according to the probability
distribution.

• tr-7-02 (transition): The process stochastically selects the
number of periods but less than the maximum number of
periods for a task to execute for the statical analysis of
the response time.

• Wait (location): The process waits the end of an execu-
tion period reported via the channel prd end[tid]. If the
number of periods is fulfilled, it finalizes a single run of a
task by assigning the final response time rt[tid] to prt[tid].

The PoMD analyzer in Fig. 5 calculates a PoMD at the end
of a single run of a task. It behaves as follows:
• tr-8-01 (transition): If the process reaches the end of a run,

it moves to location CalPoMD and starts the calculation of
PoMD for each task using the equation on the transition
tr-8-04 (transition).

PoMD analyzer takes one loop over the committed location,
in the right hand side, for each of the tasks (i <= tid n) in the
system. The transition tr-8-04 calculates the PoMD for one

Fig. 5. PSA model of PoMD analyzer

task at a time. Transition tr-8-03 is only used if no deadline
was missed by the current task, in order to avoid division by
zero. When all PoMDs have been calculated (i > tid n) the
transition tr-8-05 is triggered moving to the End location.

V. PROBABILISTIC ANALYSIS AND COMPARISON

In this section, we present our analysis method and compare
our results, given in terms of response time distributions and
the time used to compute the response time distributions, to
the results obtained using the method from [25].

In the different graphs and tables presented in this section
results will be named after the tools used to obtain them,
thus UPPAAL for the method of this paper and Matlab for
the method presented in [25]. Each instance that we analyze
will be identified by two numbers. The first number indicates
the number of tasks that are in the task set, the second number
indicates how many multiples of the maximal inter-arrival time
(abbreviated maxATime) for the tasks that are analyzed.

For all the experiments we present, in the first part we have
fixed the number of samples in the probability distributions
for the execution time, inter-arrival time and deadline to four.
Three different task sets were randomly generated using the
random task set generator provided by the Matlab implemen-
tation. The exact same task sets were then analyzed with the
two different methods.

A. Our Analysis Method

Based on the models presented in the previous section, we
explore the potential executions of the system using Statistical
Model Checking (UPPAAL SMC). We also use Symbolic
Model Checking (UPPAAL) to check the schedulability of the
systems. The computation times for these results are presented
at the end of this section.

UPPAAL SMC allows different types of queries for analyz-
ing statistical properties of a system. In the current analysis
we use the following estimation query:

E[<= runT ime; runCnt](max : prt[tid]) (2)

runT ime is the time bound of each single run (trace), runCnt
is the number of runs generated in order to perform the
statistical analysis, and prt[tid] is the clock variable tracking
the response time of the task tid for each triggering (job). Each
generated trace has the same maximum number of triggerings.
UPPAAL SMC stochastically selects one of the prt values gen-
erated over the same task trace, and then performs a statistical
analysis over the selected prt values of all (runCnt) traces.

6

So that the query computes the response time distribution
of the given task tid over the set of traces runCnt. In our
setting, max does not have any real impact, since the prt[tid]
is assigned only one value during the individual trace. But it
is still needed to respect the UPPAAL SMC query syntax. We
use a simple auxiliary PSA process to compute the PoMD.

All the models and analysis results are available at http://
people.cs.aau.dk/∼ulrik/submissions/340472/ISORC2015.zip.

B. Comparison of the Response Time Analysis

In the following, we first compare the computation times of
the two methods. In the next subsection we will present and
compare the probability distributions that the methods produce
for the response time distributions. All the graphs and the raw
data obtained from the experiments are also included in the
above mentioned zip-file.

Fig. 6. Probability distributions of response time for a set of 2 tasks.

As shown in Fig. 6, the two methods do not produce the
same response time distributions for a set of 2 tasks analyzed
for 35 maxATime. Again, we recall that in all of our figures
the legend includes numbers such as “Uppaal-2-35”, the first
number “2” refers to the number of tasks and the second
number “35” refers to the number of job triggerings. That
legend is also the name of the specific data file used for the
plot, which can be found the in the referenced zip file. The
first obvious difference in Fig. 6 is that the UPPAAL method
produces response times below 7 while this is not the case for
the Matlab method on this specific set of tasks. This can easily
be explained as the Matlab method only analyzes the cases
where the task under analysis has always been preempted by
a higher priority task. In this task set, the shortest possible
response time for the lower priority task is exactly 7. This
number is in fact the sum of the shortest execution time (1) of
the lower priority task and the longest execution time (6) of the
task having higher priority. In contrast, our analysis technique
considers also the cases where the task under analysis is not
preempted by any other task. So that the shortest possible
response time of a task is the same as its shortest execution
time (1).

The [25] analysis method only considers cases where the
lowest priority task has always been preempted by a higher
priority task, i.e. it is a kind of probability distribution of the

response time in almost worst cases. For the computation of
response time, the authors consider only the case where all
tasks are running simultaneously, so that the lowest priority
task is assumed never to be triggered alone (best scenario). Our
analysis method, on the other hand, produces the probability
distribution of the response time for all possible scenarios
where the lowest priority task has just been triggered.

When analyzing a task set for different multiples of
maxATime with the same method we can see that the
analysis results keep changing. The authors of [25] do not even
consider analyzing more than one job ahead and do not treat
this in their discussion. However their Matlab implementation
facilitates calculation for more than one triggering, which
we have used. Our experiments show that their calculated
distributions remains quite stable after three triggerings, as can
also be graphically seen from Fig. 7. From this we conclude
that for a lot of cases it could be sufficient to compute the
response time distributions only for a few triggerings using
the Matlab implementation.

Fig. 7. Probability distributions of response time for 2 tasks analyzed with
2 different multiples of maxATime.

When analyzing the same task set with two different multi-
ples of maxATime using the UPPAAL method, the response
time probabilities vary more as can be seen in Fig. 8. On the
other hand, we would not normally have chosen to use such
a low multiple of maxATime for the analysis. This is only
done to better compare with the Matlab based method.

Fig. 8. Probability distributions of response time for 2 tasks analyzed with
2 different multiples of maxATime

7

http://people.cs.aau.dk/~ulrik/submissions/340472/ISORC2015.zip
http://people.cs.aau.dk/~ulrik/submissions/340472/ISORC2015.zip

TABLE I
TIME USED FOR COMPUTING THE RESPONSE TIME DISTRIBUTIONS

#maxATime
Matlab 2-Task Matlab 3-Task Matlab 4-Task
Uppaal 2-Task Uppaal 3-Task Uppaal 4-Task

3 0.0624 0.3432 1.4976
1.355 3.844 4.437

7 0.3744 5.3508 21.6997
2.963 4.005 13.392

15 3.1668 69.202 254.078
6.733 6.976 19.237

35 40.7943 1315.5 5053.4
14.122 19.724 38.92

90 1152.2 39501. 168500.
30.603 40.498 86.095

C. Comparison of the Computation Time

In this section, we present and compare the time used for
computing the response time distributions. In fact, using the
Matlab implementation we randomly generate three different
task sets of 2 tasks, 3 tasks and 4 tasks respectively. All
task execution attributes follow probability distributions of
4 samples. The three different task sets have been analyzed
using the two methods for a varying number of triggerings.
All computation times in MATLAB are performed without
re-sampling. The provided software package had re-sampling
disabled because enabling it leads to a software bug.

Table I presents the computation times for all of these
experiments. The first six data points of the second column
(experiment for 2 tasks) of Table I are presented in Figure 9
in order to illustrate that the computation time of our method
grows linearly in the number of maxATime that we analyze,
while the Matlab method grows exponentially with regard
to the number of triggerings that are being analyzed. For
the experiments with 90 maxATime, Table I shows huge
differences between the results obtained by both analysis
methods.

Fig. 9. Computation time for the 2-task set with different #maxATime.

Since we have concluded that the Matlab method stabilizes
after only a few triggerings of look ahead, we here choose
to analyze the computation time for different numbers of
samples in the probability distributions. We run both Matlab

and UPPAAL analysis for a set of 4 tasks with 7 multiples of
maxATime, while we vary the number of samples from 2 to
5. Fig. 10 presents the results of such experiments.

Fig. 10. Computation time for different sample sizes of the probability
distributions.

So one can see that the computation time of Matlab grows
with a higher rate compared to our UPPAAL analysis in the
number of samples.

As stated in the introduction, our method is very flexible and
can just as easily handle dynamic scheduling policies such as
EDF. Fig. 11 shows the response time probability distributions
for the same task set using two different scheduling algorithms.
Only one of the PSA models has to be exchanged in order to
change the scheduling policy.

Fig. 11. Response time distributions for identical task sets with 2 different
scheduling policies.

TABLE II
TIME AND MEMORY USAGE OF SMC ANALYSIS (10 TASKS, 8 SAMPLES)

runTime / runCnt Time Memory
100,000 / 10 11 s 35,632 KB
100,000 / 100 115 s 33,132 KB
100,000 / 1000 1,039 s 30,632 KB

Table II shows the computation time and memory usage
for the analysis of 10 tasks with 8 samples. We have fixed
the runT ime to 100,000 while we vary the number of runs

8

(runCnt). This further illustrates, as stated in the introduction,
the well known fact that Statistical Model Checking scales to
industrial size systems [21].

D. PoMD Computation

PoMD can be used to answer the question; how schedulable
is the system? It is a statistical metric that conceptually has
the same meaning as DMP [25] but computed differently.

TABLE III
PoMD ANALYSIS FOR 4 TASKS WITH 4 SAMPLES

#maxATime PoMD Time
3 36.368 1.3s
7 31.388 2.48s
15 30.000 5.1s
35 29.535 11.34s
90 29.361 29.35s

1000 29.216 301.53s

Table III shows the PoMD we computed for a set of 4 tasks
having 4 samples for each probability distribution, while we
vary the multiple of maxATime in the analysis. One can see
that the PoMD becomes stable from a certain point (35 time
maxATime) of the analysis duration.

E. Analysis Using Symbolic Model Checking

For more safety, in the case of hard real-time, it would be
necessary to also check whether a given task set is schedulable
or not according to a classical definition [22]. The main point
of the method presented in this paper is to handle soft real-
time systems. For the purpose of hard or mixed criticality
systems, we can use symbolic model checking on the same
models as we use for the statistical analysis [3]. Below we
present the verification times we obtained using the symbolic
model checker UPPAAL for different task sets. Notice that the

TABLE IV
SYMBOLIC MODEL CHECKING RESULTS (TASK SET = ((BCET,WCET),

(MIN PRD,MAX PRD), DEADLINE))

Tasks Task Set Results Time Memory

2 ((6, 6),(9,13),9) Schedulable 0.01s 13,952KB((1,2),(14,18),14)

3
((5,6),(16,17),12)

Schedulable 0.01s 22,820KB((2,2),(14,25),14)
((27,29),(1,2),20)

4

((2,6),(20,21),20)

Schedulable 108.14s 36,692KB((3,4),(25,26),20)
((2,2),(26,34),25)
((1,3),(36,39),31)

4

((2,6),(17,21),20)

Unschedulable 1.31s 45,388KB((3,4),(25,26),20)
((2,2),(26,34),25)
((1,3),(36,39),31)

tasks’ attributes have a range of values, i.e. bcet and wcet, and
minimum and maximum inter-arrival time. UPPAAL analyzes
the same models, but does it differently. The uncertainty is
handled as non-determinism. As shown in Table IV each
task attribute is given by lower and upper bounds. For each

task attribute UPPAAL non-deterministically selects one value
for each period, and analyze the state space obtained by all
combinations. Thus, UPPAAL provides a qualitative answer,
yes or no, for the schedulability property.

VI. DISCUSSION AND EVALUATION

In this section we compare drawbacks and advantages of
our work. As other simulation based approaches, ours can
provide concrete traces for specific scenarios. We find that the
use of concrete traces makes the method easier to understand
for software engineers. Our method can also be updated to
reflect the particularities of a given platform, something that
is impossible with an analytical approach that only abstracts
one generic task behavior.

We have performed a simple form of sensitivity analysis
[30] in Section V-D, when examining how the simulation time
(hyperperiod) affects the output. Further investigation into the
sensitivity of the model based on the different input parameters
could be future work. Thus finding a hyperperiod which can
be used when studying probabilistic scheduling systems.

Compared to classical analytical approaches, our method
has the drawback that it is a simulation based approach. Thus,
there can be cases that are very unlikely but possible and that
maybe do not show up in the statistical analysis. For medium
sized systems, we can prove the schedulability using the same
models and symbolic model checking as shown in Table IV.

Since [25] only consider fixed priorities, when computing
the response time (R) distribution of a task all lower priority
tasks can be ignored. For all shown examples the authors
compute the response time distributions of the lowest priority
tasks, but can also calculate the response time for tasks other
than the lowest priority task. When analyzing a task with
priority n where n is not the lowest priority any task with
priority lower than n will be ignored. This also has the effect
that the method cannot handle dynamic priorities.

A. Scalability

Comparing our work to [25], our framework obtains likely
results in terms of response time distributions but with a much
faster computation time. Based on the experiments shown in
Table I and Fig. 7, the computation time of Matlab is exponen-
tial in the number of tasks and the multiple of maxATime
analyzed. The Matlab analysis time also grows much faster
than the analysis time of UPPAAL based on the size of the
initial probability samples as seen in Fig. 10. Based on results
depicted in Table I, Fig. 8 and Fig. 10, the computation time of
UPPAAL analysis grows linearly in all metrics. As an example,
for a scheduling system of 3 tasks with 4 samples for each
probability distribution of the task attributes, the computation
time generated by our framework does not exceed 2% of the
computation time of the response time generated by the Matlab
implementation of [25]. An example of the computation time
used by MATLAB for a simple system of 7 tasks with 4
samples for each probability distribution and 3500 time units
(90 triggerings) as a simulation time is 47 hours.

9

We have successfully analyzed a system of 16 tasks having
each 4 samples for the probability distributions. The analysis
of such a system for 15 times maxATime takes less than 8
minutes. We can thus conclude that our analysis method scales
well.

VII. CONCLUSION

We have presented a flexible framework for the schedula-
bility analysis of probabilistic sporadic tasks. The framework
is given as a set of Parameterized Stopwatch Automata (PSA)
models that can be analyzed using both UPPAAL SMC and
UPPAAL. We have also introduced PoMD as a metric for the
degree of schedulability of probabilistic scheduling systems.
We compare the response time distributions we obtained to
those obtained in [25]. The results are not identical, but we
believe that the results we obtain are more useful when eval-
uating the schedulability of a real-time system. Our method
considers all possible scenarios in the system while [25] only
considers cases where the task under analysis has just been
preempted. This gives a probability distribution of a set of
almost worst case scenarios which we find less useful. The
analysis time of our method grows linearly in all parameters
of the system under analysis. This is in contrast with the
method of [25] which grows exponentially in the number of
tasks and the number of triggerings analyzed. We have shown
the flexibility of our framework by including the analysis of
a dynamic scheduling policy as well as by estimating another
parameter of the system (PoMD).

REFERENCES

[1] A. Atlas and A. Bestavros. Statistical rate monotonic scheduling. In
Real-Time Systems Symposium, 1998. Proceedings., The 19th IEEE,
pages 123–132, Dec 1998.

[2] A. Basu, S. Bensalem, M. Bozga, B. Delahaye, and A. Legay. Statistical
abstraction and model-checking of large heterogeneous systems. Interna-
tional Journal on Software Tools for Technology Transfer, 14(1):53–72,
2012.

[3] A. Boudjadar, A. David, J. Kim, K. Larsen, M. Mikuionis, U. Nyman,
and A. Skou. Hierarchical scheduling framework based on compositional
analysis using uppaal. In J. L. Fiadeiro, Z. Liu, and J. Xue, editors,
Formal Aspects of Component Software (FACS 2013), Lecture Notes
in Computer Science, pages 61–78. Springer International Publishing,
2014.

[4] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Hierarchical scheduling framework based
on compositional analysis using uppaal. In Proceedings of FACS 2013,
LNCS volume 8348, P 61-78, 2013.

[5] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Degree of schedulability of mixed-criticality
real-time systems with probabilistic sporadic tasks. In Proceedings of
TASE 2014. IEEE Computer Society Press, 2014.

[6] P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen,
A. Legay, and Z. Wang. UPPAAL-SMC: Statistical model checking for
priced timed automata. In H. Wiklicky and M. Massink, editors, QAPL,
volume 85 of EPTCS, pages 1–16, 2012.

[7] L. Carnevali, A. Melani, L. Santinelli, and G. Lipari. Probabilistic
deadline miss analysis of real-time systems using regenerative transient
analysis. In Proceedings of the 22Nd International Conference on Real-
Time Networks and Systems, RTNS ’14, pages 299:299–299:308, New
York, NY, USA, 2014. ACM.

[8] F. Cassez and K. Larsen. The impressive power of stopwatches. In
Proc. of CONCUR 2000, pages 138–152. Springer, 2000.

[9] F. Cassez and K. G. Larsen. The impressive power of stopwatches.
In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in
Computer Science, pages 138–152. Springer, 2000.

[10] E. Clarke, J. Faeder, C. Langmead, L. Harris, S. Jha, and A. Legay. Sta-
tistical model checking in biolab: Applications to the automated analysis
of t-cell receptor signaling pathway. In M. Heiner and A. Uhrmacher,
editors, Computational Methods in Systems Biology, volume 5307 of
Lecture Notes in Computer Science, pages 231–250. Springer Berlin
Heidelberg, 2008.

[11] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika, 26(4):404–413, 1934.

[12] L. Cucu and E. Tovar. A framework for the response time analysis of
fixed-priority tasks with stochastic inter-arrival times. SIGBED Review,
3(1):7–12, 2006.

[13] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen,
J. van Vliet, and Z. Wang. Statistical model checking for networks
of priced timed automata. In U. Fahrenberg and S. Tripakis, editors,
FORMATS, volume 6919 of Lecture Notes in Computer Science, pages
80–96. Springer, 2011.

[14] J. Diaz, D. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J. Lopez, S.-L. Min,
and O. Mirabella. Stochastic analysis of periodic real-time systems. In
Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE, pages
289–300, 2002.

[15] S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In
Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd
IEEE, pages 215–224, Dec 2001.

[16] J. Frey. Fixed-width sequential confidence intervals for a proportion.
The American Statistician, 64(3):242–249, 2010.

[17] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A model
checker for parametric Markov models. In Proc. 22nd International
Conference on Computer Aided Verification (CAV’10), volume 6174 of
LNCS, pages 660–664. Springer, 2010.

[18] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A
tool for automatic verification of probabilistic systems. In H. Hermanns
and J. Palsberg, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 3920 of Lecture Notes in Computer Science,
pages 441–444. Springer Berlin Heidelberg, 2006.

[19] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–
30, 1963.

[20] T. Hrault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate
probabilistic model checking. In B. Steffen and G. Levi, editors,
Verification, Model Checking, and Abstract Interpretation, volume 2937
of Lecture Notes in Computer Science, pages 73–84. Springer Berlin
Heidelberg, 2004.

[21] A. Legay and B. Delahaye. Statistical model checking : An overview.
CoRR, abs/1005.1327, 2010.

[22] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[23] S. Manolache, P. Eles, and Z. Peng. Optimization of soft real-
time systems with deadline miss ratio constraints. In Real-Time and
Embedded Technology and Applications Symposium, Proceedings. RTAS
2004. 10th IEEE, pages 562–570, 2004.

[24] J. Martins, A. Platzer, and J. Leite. Statistical model checking for
distributed probabilistic-control hybrid automata with smart grid appli-
cations. In S. Qin and Z. Qiu, editors, Formal Methods and Software
Engineering, volume 6991 of Lecture Notes in Computer Science, pages
131–146. Springer Berlin Heidelberg, 2011.

[25] D. Maxim and L. Cucu-Grosjean. Response Time Analysis for Fixed-
Priority Tasks with Multiple Probabilistic Parameters. In RTSS 2013 -
IEEE Real-Time Systems Symposium, Vancouver, Canada, 2013.

[26] D. Maxim, M. Houston, L. Santinelli, G. Bernat, R. I. Davis, and
L. Cucu-Grosjean. Re-sampling for statistical timing analysis of real-
time systems. In RTNS, pages 111–120. ACM, 2012.

[27] D. C. Montgomery. Design and Analysis of Experiments. June 2000.
[28] L. Santinelli, P. Yomsi, D. Maxim, and L. Cucu-Grosjean. A component-

based framework for modeling and analyzing probabilistic real-time
systems. In Emerging Technologies Factory Automation (ETFA), 2011
IEEE 16th Conference on, pages 1–8, Sept 2011.

[29] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Probabilistic preemption
control using frequency scaling for sporadic real-time tasks. In The 7th
IEEE International SIES, June 2012.

[30] F. Zhang, A. Burns, and S. Baruah. Sensitivity analysis for edf
scheduled arbitrary deadline real-time systems. In Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2010 IEEE 16th
International Conference on, pages 61–70, Aug 2010.

10

