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Abstract—This paper presents an application of the Glow-

worm Swarm Optimization method (GSO) to solve the 

optimal power flow problem in three-phase islanded 

microgrids equipped with power electronics dc-ac inverter 

interfaced distributed generation units. In this system, the 

power injected by the distributed generation units and the 

droop control parameters are considered as variables to be 

adjusted by a superior level control. Two case studies with 

different optimized parameters have been carried out on a 

6-bus test system. The obtained results showed the 

effectiveness of the proposed approach and overcomes the 

problem of OPF in islanded microgrids showing loads 

unbalance. 

 

Index Terms— Optimal power flow, three phase 

systems, islanded microgrid, glow-worm swarm 

optimization 

I.  INTRODUCTION 

ICROGRIDS, that are low or medium voltage 

autonomous systems integrating large amount of 

Renewable Energy, to be operated in islanded mode require a 

hierarchical control architecture [1]. Such architecture is 

composed of three levels, the highest of which is called 

tertiary control provides functionalities such as real and 

reactive power dispatching, voltage regulation, contingency 

analysis, expandability, or reconfiguration, among others. 

Optimal power dispatching in particular must account for 

frequency and voltage dependency of generation and 

consumption units, especially in islanded mode operation. 

Indeed the optimized operating point of all sources strongly 

depends on these features whose values else than providing a 

minimum losses operating point, should also not overcome the 

rated ranges of variations. Therefore, the solution of three-

phase Optimal Power Flow in islanded distribution systems is 

needed. The formulation of the problem accounts for the 
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presence of inverter interfaced units with control laws 

specifically designed to compensate voltage and frequency 

deviations when sudden load variations occur. Power flow 

calculation in three-phase balanced and unbalanced islanded 

microgrids systems is concerned and studied recently. The 

work appearing in [2] proposes a model that reflects the 

important features of islanded power network operation. 

However this model can only be applied in three phase 

balanced power systems. A generalized three-phase power 

flow algorithm using a trust-region method to solve balanced 

and unbalanced three phase islanded microgrids is proposed in 

[3]. The authors in [4] use a Matlab solver (fsolve) function to 

calculate power flow in three-phase balanced and unbalanced 

islanded microgrids.  

Optimal operation of electrical systems has been researched 

intensively in the last decades. Many optimization techiques 

have been used, such as “the steepest descent” method [5], 

particle swarm optimization (PSO) method [6], [7], fuzzy 

logic [8], [9], dynamic programming [10], semi-definite 

programming [11], globally optimization [16], [17], and so 

forth. Optimization methods have been progressively 

improved and applied in power flow problems on three-phase 

balanced [12], [13] and unbalanced systems [14]. In addition, 

optimization problems have been solved in for energy storage 

systems, which are critical in islanded microgrid systems [10], 

[18-23]. 

In the above mentioned research works, optimal power flow 

of three-phase balanced and unbalanced systems is usually 

applied on high voltage electrical systems or medium voltage 

microgrids, while the constraint variables are the generators 

injected real power. However, to the best knowledge of the 

authors, there is no paper concerning optimization power flow 

on islanded microgrids where generated and consumption 

powers depends on frequency and voltage levels. In these kind 

of systems no generator unit can be physically considered a 

slack bus, and reactive power management must also be 

considered as a variable to be controlled. 

In this paper, a comprehensive optimal power flow 

formulation taking into account both active power-to-

frequency and reactive power-to-voltage droop parameters is 
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considered. Since the problem cannot be solved in closed form 

using analytical methods, the problem is dealt with using a 

recent heuristic strategy, the Glow-worm Swarm Optimization 

(GSO) algorithm. 

A number of tests have been done on 6-bus islanded 

microgrid systems in order to show the feasibility of the 

proposed technique.  

II.  POWER STAGE MODELING OF 3 PHASE ISLANDED 

MICROGRID 

 In this Section, a comprehensive model of a three phase 

islanded microgrid system oriented to study unbalances is 

presented. The general model encompasses power lines, loads, 

generators, including their control loops such as droop 

characteristics and virtual impedance loops. 

A.  Lines modeling 

 Line modeling [3] in this study is based on the dependency 

on frequency of the lines reactances.  

Carson’s equations are used for a three phase grounded four 

wire system. With a grid that is well grounded, reactance 

between the neutral potentials and the ground is assumed to be 

zero. The impedance matrix required to model the 

electromagnetic couplings between conductors and the 

ground, assumes the following form:  

 

[𝑍𝑖𝑗
𝑎𝑏𝑐𝑛(𝑓)] =
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(1) 

 

Kron’s reduction [24] is applied to (1), and the line model 

including the effects of the neutral or ground wire and the 

impacts of the frequency in unbalanced systems can be 

attained: 

[𝑍𝑖𝑗
𝑎𝑏𝑐] = [

𝑍𝑖𝑗
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](2) 

B.  Load modeling 

The frequency and voltage dependency of the power supplied 

to the loads can be represented as follows: 

 

𝑃𝐿𝑖 = 𝑃0𝑖|𝑉𝑖|
𝛼(1 + 𝐾𝑝𝑓∆𝑓)    (3) 

𝑄𝐿𝑖 = 𝑄0𝑖|𝑉𝑖|
𝛽(1 + 𝐾𝑞𝑓∆𝑓)    (4) 

 

where P0i and Q0i are the rated real and reactive power 

operating points respectively; α and β are the real and reactive 

power exponents. The values of α and β for these kinds of 

loads are given in [25]. △f is the frequency deviation (f-f0); Kpf 

ranges from 0 to 3.0, and Kqf ranges from -2.0 to 0 [26]. 

 

C.  Distributed Generators modeling 

The three phase injected real and reactive power from a 

Distributed Generator, DG, units with droop inverter 

interfaced generation can be expressed in the following 

equations: 

𝑃𝐺𝑖 = −𝐾𝐺𝑖(𝑓 − 𝑓0𝑖)           (5) 

𝑄𝐺𝑖 = −𝐾𝑑𝑖(|𝑉𝑖| − 𝑉0𝑖)        (6) 

In these equations, the coefficients KGi and Kdi as well as V0i 

and f0i characterize the droop regulators of distributed 

generators. The other generators that do not perform droop 

regulation are modeled as PQ buses. 

D.  Mathematical model with virtual impedance 

The mathematic model of our proposed power flow analysis 

can be obtained as follows: 

 

{
 
 

 
 𝑓0𝑖 − 𝑓𝑜𝑔 − 𝐾𝑃𝑖𝑃𝐺𝑖 + 𝐾𝑃𝑔𝑃𝐺𝑔 = 0

|𝑉𝐺0𝑖| − |𝑉𝐷𝑟𝑜𝑜𝑝𝑖| − 𝐾𝑄𝑖𝑄𝐺𝑖 = 0

𝑃𝐺𝑖 − 𝑃𝐿𝑖 − 𝑃𝑖 = 0
𝑄𝐺𝑖 − 𝑄𝐿𝑖 − 𝑄𝑖 = 0

      (7) 

 

where  𝑉𝐷𝑟𝑜𝑜𝑝𝑖 is the voltage at 𝑉𝐷𝑟𝑜𝑜𝑝 bus i 

III.  OPTIMAL POWER FLOW CALCULATION 

The Optimal Power Flow in this paper is carried out to 

minimize power losses by the MicroGrid Central Controller, 

MGCC in Fig. 1. The aim of this work is to find an efficient 

optimization method in order to devise new droop parameters 

for primary regulation and replace the secondary regulation 

level by finding an iso-frequency working condition for all 

units within admissible ranges. The results of the 

computations are sent to the individual inverter interfaced 

units, these being the optimized operating point and the 

optimized droop parameters, together with the unified working 

frequency. 

 

 
 

Fig. 1. The 6_bus test system. 

 

It has been shown in [4] that the power losses term is of course 

connected to the droop parameters values and thus such choice 

influences the steady state operation of the microgrids. 

Moreover sharing power among units so as to get a minimum 

loss operation will lead also to stable operation as proved in 

[27]. 
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A.  Variables 

In this paper, the considered variables, both for P-f droop 

generation units and for Q-V droop generation units, are the 

parameters of inverter interfaced units 𝐾𝐺  and 𝐾𝑑 

𝐾𝐺 = (𝐾𝐺1, 𝐾𝐺2… ,𝐾𝐺𝑛𝑔𝑟  )     (8) 

𝐾𝑑 = (𝐾𝑑1, 𝐾𝑑2… ,𝐾𝑑𝑛𝑔𝑟 )      (9) 

where 𝑛𝑔𝑟 is the number of generators. 

B.  Objective functions (OF) 

Let 𝑃𝑖  denote the calculated three phase real power injected 

into the microgrid at bus i. The formulation to calculate 𝑃𝑖  can 

be expressed, as follow: 

𝑃𝑖(𝐾𝑔,𝐾𝑑) = ∑ |𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗|𝑐𝑜𝑠(𝜃𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)
𝑛𝑏𝑟
𝑗=1    (10) 

where:  

 𝑉𝑖 and 𝑉𝑗 are the voltages at bus 𝑖 and bus j, depending on 

𝐾𝑔 and 𝐾𝑑 at droop buses. 

 𝛿𝑖 and 𝛿𝑗 are the phase angles of the voltages at bus 𝑖 and 

bus j, depending on 𝐾𝑔 and 𝐾𝑑 at droop buses. 

  𝑌𝑖𝑗  is the admittance of branch 𝑖𝑗  

 𝜃𝑖𝑗 is the phase angle of  𝑌𝑖𝑗   

 𝑛𝑏𝑟 is the number of branch connected into bus 𝑖 
So the total real power loss of the system or OF for three 

phases balanced system can be calculated as follow: 

           𝑂1(𝐾𝑔,𝐾𝑑) = 𝑃𝐿𝑜𝑠𝑠 = ∑ (𝑃𝑖(𝐾𝑔,𝐾𝑑))
𝑛𝑏𝑢𝑠
𝑖=1    (11) 

where 𝑛𝑏𝑢𝑠 is the number of bus in system. 

C.  Constraints 

The optimal dispatch problem is thus that to find the set of 

droop parameters (𝐾𝐺𝑖 ) and (𝐾𝑑𝑖 ) and relevant operating 

frequency and bus voltages minimizing the function expressed 

in (9), subject to the constraint that generation should equal 

total demands plus losses 

∑ 𝑃𝐺𝑟𝑖 = ∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠

𝑛𝑔𝑟
𝑖=1

       (12) 

where 𝑃𝐺𝑟𝑖  is the real power of generator i; 𝑃𝐿𝑖  is the real 

power of load bus i and 𝑛𝑑 is the number of load bus. 

Satisfying the inequality constraints, expressed as follows: 

𝐾𝐺𝑖𝑚𝑖𝑛 ≤ 𝐾𝐺𝑖 ≤ 𝐾𝐺𝑖𝑚𝑎𝑥 , 𝑖 = 1 to 𝑛𝑔𝑟     (13) 

𝐾𝑑𝑖𝑚𝑖𝑛 ≤ 𝐾𝑑𝑖 ≤ 𝐾𝑑𝑖𝑚𝑎𝑥 , 𝑖 = 1 to 𝑛𝑔𝑟    (14) 

D.  Proposed method 

From (11) we can see that the OF is highly nonlinear because 

the variables (𝐾𝐺  and 𝐾𝑑) do not appear in the equation. So we 

could not use classical optimization methods, such as 

Lagrange or linear programming in this case. 

When OF is highly nonlinear, the search space is typically 

multimodal. With Complex nonlinear models, we typically do 

not know if the model is multimodal (i.e. has many local 

minima) or unimodal. Hence to analyze a complex model we 

need to search for a global minimum even if we do not know 

if it is multimodal. The global optimization capability is 

important when dealing with complex nonlinear models. In 

these cases, we need a global optimizer and heuristics can be a 

good choice. 

Glow-worm Swarm Optimization (GSO) [28] is a relatively 

recent heuristics method. In GSO, agents are initially 

randomly deployed in the objective function space. Each agent 

in the swarm decides its direction of movement by the strength 

of the signal picked up from its neighbors. This is somewhat 

similar to the luciferin induced glow of a glowworm which is 

used to attract mates or prey. The brighter the glow, the more 

is the attraction. Therefore, we use the glowworm metaphor to 

represent the underlying principles of this optimization 

approach. Pseudocode of the GSO algorithm is shown in Fig. 

2. 

 
  Initialize Archive A 

       Repeat Until Termination Condition 

Do m times 

Step 1: deterministic choice (selection) of the 

base vector 

Step 2: probabilistic choice (selection) of the 

target vector (Roulette Wheel technique based on l(t)) 

Step 3: recombination 

END m 

Step 4: create new population (replace A) 

       END 

  A= archive 

  m=archive size 

 

Fig. 2. Pseudocode of the GSO algorithm. 
 

One issue we usually face when applying GSO is Termination 

Condition. It is difficult to know if the result we get is the best 

solution. To resolve this issue, we can previously give a 

number of iterations (n) as Termination Condition. And n can 

be increased until we get the results with no more 

improvements or negligible improvements. 

IV.  APPLICATIONS  

A.  Optimizing Kgs on a 6_bus balanced test system 

An application of GSO Heuristic method, optimizing Kgs is 

done in this section on a 6_bus three phase balanced system 

(Fig. 3). The features of the system and the limits of Kgs are 

shown in Table I, II, III of appendix, respectively. In this case, 

the Kd parameters cannot be optimized and the values are 

reported in the table sabove, while the reactive powers 

injections are derived from the linear control law of the droop 

regulators. 

The results of GSO method are shown in Table I.  

TABLE I - RESULT OF OPTIMAL LOAD FLOW ON 6_BUS SYSTEM BY GSO 

HEURISTIC METHOD TAKING INTO ACCOUNT KGS, PU 

Random KG1 KG2 KG3 Plossmin f 

1 17.8094 8.5080 21.2252 0.0178565 1.0507 

2 18.0566 8.5681 21.5628 0.0178565 1.0509 

B.  An application taking into account both KGs and Kds on 

6_bus balanced test system 

In this section, an application of GSO Heuristic method, 

taking into account both KGs and Kds, is shown on 6_bus test 

system. The parameters of 6_bus test system are shown in 

Table IV and V of appendix. The limits of KGs, Kds are 
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shown in Table II. The results after 2 random cases are shown 

in Table VI of appendix. 

 

 
 

Fig. 3. The 6_bus test system 

 

TABLE II.        LIMIT OF KGS AND KDS ON 6_BUS BALANCED TEST SYSTEM 

TAKING INTO ACCOUNT KGS AND KDS, PU 

Generators KGmin KGmax Kdmin Kdmax 

G1 6 18 6 18 

G2 3 10 3 10 

G3 6 18 6 18 

 

The results obtained with the GSO in both cases are expressed 

as average and it is a very stable value as zero deviation was 

observed over a sample of 10 runs. So the results of the 

heuristic for this problem could be considered reliable and 

repeatable. Nonetheless, the sets of parameters attained are 

different. This means that the OF is multimodal and there are 

some local maxima at the close values. 

V.  CONCLUSIONS 

This paper introduces an application of Glow-worm Swarm 

Optimization method (GSO) to solve the issue of Optimal 

Power Flow in three-phase islanded microgrids with inverter 

interfaced units. Both of KGs (the P-f droops parameters) and 

Kds (the Q-V droops parameters) in  the droop controllers are 

taken into account as variables. Some tests are executed on 

6_bus balanced systems to prove the efficiency of the 

proposed approach. 

Further research will be oriented towards the implementation 

of the same approach for unbalanced distribution systems, 

since the conclusions that have been drawn can be 

generalized.  
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APPENDIX  

TABLE I. BUS DATAS OF 6_BUS BALANCED TEST SYSTEM, TAKING INTO ACCOUNT KGS 

Bus number 
Type 

generator 

Load,  pu Generator,  pu Exponent of Loads 

P Q Kdi VG0i f0i/pu Alpha Beta 

1 Droop 0.000000000 0.000000000 5 1.07 1.07 0 0 

2 Droop 0.000000000 0.000000000 5 1.07 1.07 0 0 

3 Droop 0.000000000 0.000000000 5 1.07 1.07 0 0 

4   0.529334489 0.350297754  0.00 1.00 2.00 2.00 

5   0.000000000 0.000000000  - - - - 

6   0.351794954 0.248636718  0.00 1.00 2.00 2.00 

TABLE II. LINES DATAS OF 6_BUS BALANCED TEST SYSTEM, TAKING INTO ACCOUNT KGS 

Bus nl Bus nr R, pu X, pu 

4 5 0.08128544 0.02266228 

4 1 0.05671078 0.02494276 

5 2 0.03780718 0.01781626 

5 6 0.02835539 0.13134145 

6 3 0.00945180 0.00356325 

TABLE III. LIMIT OF KGS ON 6_BUS BALANCED TEST SYSTEM, TAKING INTO ACCOUNT KGS 

Generators KGmin,pu KGmax,pu 

G1 1 25 

G2 1 25 

G3 1 25 
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APPENDIX  

TABLE IV. BUS DATAS OF 6_BUS BALANCED TEST SYSTEM, TAKING INTO ACCOUNT KGS AND KDS 

Bus number Type generator 
Load,  pu Generator,  pu Exponent of Loads 

P Q VG0i f0i/pu Alpha Beta 

1 Droop 0.000000000 0.000000000 0.9877 1 0 0 

2 Droop 0.000000000 0.000000000 0.9877 1 0 0 

3 Droop 0.000000000 0.000000000 0.9877 1 0 0 

4   0.052900000 0.000000000 0 1 2 2 

5   0.052900000 0.000000000 0 1 2 2 

6   0.027872043 0.026411745 0 1 2 2 

TABLE V. LINES DATAS OF 6_BUS BALANCED TEST SYSTEM, TAKING INTO ACCOUNT KGS AND KDS 

Bus nl Bus nr R, pu X, pu 

4 5 0.08128544 0.02266228 

4 1 0.05671078 0.02494276 

5 2 0.03780718 0.01781626 

5 6 0.02835539 0.13134145 

6 3 0.00945180 0.00356325 

TABLE VI.        RESULT OF OPTIMAL LOAD FLOW ON 6_BUS SYSTEM, TAKING INTO ACCOUNT KGS AND KDS, PU  

Random KG1 KG2 KG3 Kd1 Kd2 Kd3 Plossmin f 

1 10.7587 9.9105 7.89 6.0087 6.2293 17.0326 0.0001813 0.9954 

2 10.6981 9.8547 7.8456 5.9749 6.1942 16.9367 0.0001813 0.9954 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


