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Abstract—Today, airport baggage handling is far from perfect.
Baggage goes on the wrong flights, is left behind, or gets
lost, which costs a lot of money for the airlines, as well as
frustration for the passengers. To remedy the situation, we
present a data warehouse (DW) solution for storing and analyzing
spatio-temporal Radio Frequency Identification (RFID) baggage
tracking data. Analysis of this data can yield interesting results
on baggage flow, the causes of baggage mishandling, and the par-
ties responsible for the mishandling(airline, airport, handler,...),
which can ultimately lead to improved baggage handling quality.
The paper presents a carefully designed data warehouse (DW),
with a relational schema sitting underneath a multidimensional
data cube, that can handle the many complexities in the data.
The paper also discusses the Extract-Transform-Load (ETL) flow
that loads the data warehouse with the appropriate tracking data
from the data sources. The presented concepts are generalizable
to other types of multi-site indoor tracking systems based on
Bluetooth and RFID. The system has been tested with large
amount of real-world RFID-based baggage tracking data from
a major industry initiative. The developed solution is shown to
both reveal interesting insights as well as being several orders of
magnitude faster than computing the results directly on the data
sources.

Index Terms—RFID; data warehouse; data cube; data analysis;
baggage tracking; moving objects; indoor tracking;

I. INTRODUCTION

A recent report1 discloses the enormous loss caused by
baggage mishandling in the aviation industry. Each year more
than 31M passengers and 34M bags are affected by baggage
mishandling which costs the aviation industry 3,300 M USD.
A passenger wastes on average 1.7 days of his vacation or
business trip waiting for the mishandled bag. Typical baggage
mishandling problems include flight delay, bag loss, wrong
bag destination, failure to load bags at the origin airport,
missed connection at transit hubs, etc. During the travel from
the origin airport to the final destination, a bag is moved
over different places in multiple steps: check-in, screening,
sortation, loading, transition, arrival, etc. In these steps, a bag
is handed over between a large number of stakeholders. In
contrast with the visibility of passengers’ movement steps
during the end-to-end journey, the baggage movement is
considerably less visible due to the very limited information to
passengers. A single error or inefficacy in a handover can cause
a bag not to reach its intended destination with its owner [12].

1SITA Baggage Report 2012 www.sita.aero/content/baggage-report-2012

Radio Frequency Identification (RFID) technology is used
in many applications for monitoring object movement. The use
of RFID in baggage tracking systems enables to track a bag
in an airport as well as along its travel route cross airports.
RFID tracking systems generate huge amounts of data. For
example, Walmart has recently started using tags at the item
level and research firm Venture Development Corporation
predicts that this will generate up to 7 terabytes of data per
day [5]. In RFID-based airport baggage tracking systems, these
huge amounts of RFID data can be very useful for analyzing
and mining purposes. Coupled with other kinds of informa-
tion about routes, transit airports, transit durations, flights
and punctuality, airlines, handler, special events, etc., RFID
baggage tracking data can reveal a lot of information about
baggage handling quality. Analyzing these data will open the
door to identifying the different problems in baggage handling
and finding solutions for the problems. This is exactly the goal
of the BagTrack project (www.daisy.aau.dk/bagtrack), within
which this work took place. Here, a number of important
industry players have teamed up with our data management
team to revolutionize baggage handling using RFID.

In this paper, we present a multidimensional database ware-
house solution for RFID-based baggage tracking data. To the
best of our knowledge, this paper is the first to design a
multidimensional data warehouse, including a relational DW
schema with a data cube on top, for this important domain. The
proposed data warehouse contributes to the airline baggage
handling process by providing a framework for data analysis
and answering complex queries that can ultimately improve
the baggage handling quality. For example, the manager of
Copenhagen airport may ask a query like how many bags
were sent to wrong destination from Copenhagen airport in the
Easter holidays of 2012. Another query can be find the average
number of baggage traveling from Copenhagen airport in the
afternoon of each Sunday. Our data warehouse supports such
useful queries effectively and efficiently.

Our data warehouse design features several novelties. First,
it captures not only the RFID baggage tracking data but
also baggage flow along different dimensions like airport,
airline, date and time, all at several levels of granularity. We
also handle the complex many-to-many relationship between
bag and flight effectively. Second, our design treats date and
time as different dimensions, each with different hierarchical



levels. Each date is localized to a particular airport, to allow
capturing special local events, like strikes, sports games, etc.
This localization makes it easy to ask complex queries about
baggage movement in a particular event or occasion. Third,
our data warehouse design supports powerful data analysis
queries in a both easy and efficient way. The relevant results
enable the users (e.g., an airline) to find out the places (e.g., a
particular airport) where mishandling occurs most of the time,
and thus to determine the reasons of baggage mishandling. The
paper also discusses the complexities of performing Extract-
Transform-Load (ETL) to load the DW from the source data,
including our solutions to the encountered challenges.

The remainder of the paper is organized as follows. Section
2 reviews related work. Section 3 presents an overview of
RFID-based airport baggage handling process and the structure
of RFID data. Section 4 presents the relational data warehouse
design and the multidimensional data cube design. Section 5
represents the ETL steps to load the data from source schema
into the data warehouse. Section 6 presents the experimental
results. Finally, Section 7 concludes the paper and points to
the challenges for future work that we encountered.

II. RELATED WORK

Data warehousing, mining and work flow analysis tech-
niques have been proposed for RFID-based supply chain
systems [3], [4], [5], [6]. Those proposals take advantage of
bulky movement of objects in supply chains to compress the
massive RFID data. Efficient storage scheme and encoding
the object paths are designed [9], [10] to support faster query
performance for supply chain RFID data. RFID data warehous-
ing for tracking patients and drugs has been studied [2]. The
general challenges and solutions for RFID data management
are also discussed [1], [13].

The scenario of airport baggage management in this paper
differs from the settings of previous research. Unlike objects
in supply chain management, airport bags do not move in a
bulky way. In addition, the bag locations in airport baggage
management are much more fine grained so that places and
reasons of mishandling can be identified at a satisfactory
level. Further, the time dimension in airport baggage manage-
ment is also much more fine grained so that complex time-
dependent queries can be supported. Last but not least, our
data warehouse design considers other important dimensions
which enable complex analysis on baggage tracking data.

III. RFID-BASED AIRPORT BAGGAGE HANDLING

In airport baggage management a bag needs to pass different
stages to go from origin to final destination. Suppose that
Lisa needs to travel from Aalborg Airport (AAL) to Arlanda
Airport (ARN) via Copenhagen Airport (CPH). First, Lisa has
to check-in and handover her bag to the check-in desk staff.
Then the staff puts the bag into the conveyor belt for automatic
baggage sortation system. After passing all the stages inside
AAL, the bag is loaded into the aircraft using belt loader for
the targeted flight. As the bag has to be transferred to ARN,
upon arrival at CPH it is shifted to the transfer system. After

all the required stages at CPH, the bag is loaded to the aircraft
for its next flight to ARN. After arriving at ARN, the bag is
shifted to arrival belt and finally Lisa collects the bag from
the arrival belt.

Figure 1 shows an example of RFID reader deployment
at different locations of a baggage management system. An
RFID reader corresponds to the location where it is deployed.
For example, reader1 in Figure 1 corresponds to check-in1,
reader6 corresponds to Gateway-1 etc. The circles represent
the RFID reader and their activation range.
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Fig. 1: RFID reader deployment for airport baggage handling

At check-in, an RFID tag is attached to the bag. The tag
is then read by readers is passes through their respective
activation ranges. An RFID reader continuously detects the
tags, and the reader’s controller software determines which
actual records are stored: if the read rate is 1 sec, an object
staying under a reader for 30 sec will generate 30 records,
unless it is specified that only one record can be sent per 15
sec, which will yield only 2 records.

An RFID tag has small built-in memory that stores bag
information.An example of this data is {0123456789, 28APR,
AAL, SK1234, 28APR, CPH, LH2345, 28APR, ARN}. The first
10 digits are the LicensePlate2. Specifically, the 1st digit is a
flag, the 2-4th digits state the bag issuer code (e.g., 117 for
SK (SAS)) and the 5-10th digits are the baggage tag number.
Next, the flight date is 28APR, the tag is printed in AAL(borg),
the first flight leg is SK1234 on 28APR to CPH, the second
leg is LH2345 on 28APR to ARN.

Due to the huge number of taggings, the 10 digit integer
LicensePlate is reused after some time. Thus, a BagID is
added to uniquely identify a bag. The records are stored in
the format: 〈BagID, L, T, info〉, meaning that a reader at
location L detects a bag with ID BagID at timestamp T and
the tag stores the information info. Considering only location
and time related information, some example tracking records
are shown in Table I. The records are represented in the form:
〈ReadingID, BagID, LocationID, ReadingTime〉.

2The license plate is a unique 10 digit code encoding bag information.
IATA specifies the rules for using the (Baggage) License Plate in Resolution
740B of their Passenger Services Conference Resolutions Manual.



TABLE I: Raw Baggage Tracking RFID Data

〈 ReadingID, BagID, LocationID, ReadingTime 〉
(r1, b1, L1, 1) (r2, b2, L2, 2) (r3, b1, L3, 4) (r4, b1, L3,
5) (r5, b2, L3, 5) (r6, b2, L3, 6) (r7, b1, L4, 8) (r8, b1,
L4, 9) (r9, b2, L4, 9) (r10, b2, L4, 10) (r11, b2, L5, 14)
(r12, b2, L5, 15) (r13, b1, L4, 19) (r14, b1, L4, 20) . . .

As explained earlier, the raw readings contain many re-
dundant records. A LocationTrace table can be constructed
from the raw tracking sequence after eliminating the multiple
readings. The format of the records in LocationTrace table
is: (recordID, BagID, LocationID, tin, tout), where recordID
is the identifier of each location trace record and tin, tout
respectively represent the timestamps of first reading and last
reading of BagID by the RFID reader deployed at location
LocationID. This means that the bag was within the readers
activation range during time tin, tout. An example of a table
containing location trace records from Table I is shown in
Table II. In this table the record rec3 represents, a bag b1 is
observed by RFID reader at location L3 from time t4 to time
t5, and record rec5 means that b1 is observed by reader at
location L4 from time t8 to t9. This is a lossless compression
with huge data reduction in volume.

TABLE II: Tracking records after duplicate elimination

ObjectID TrackingRecord〈RecordID,ObjectID, LocationID, tin, tout〉
b1 (rec1, b1, L1, 1, 1) (rec3, b1, L3, 4, 5) (rec5, b1, L4, 8, 9)

(rec8, b1, L4, 19, 20)
b2 (rec2, b2, L2, 2, 2) (rec4, b2, L3, 5, 6) (rec6, b2, L4, 9, 10)

(rec7, b2, L5, 14, 15)
... ...

IV. DATA WAREHOUSE DESIGN

To support business intelligence analysis using complex
analytical queries, we propose a data warehouse design, shown
in Figure 2. The proposed multi-dimensional data warehouse
schema is a mixture of a star and a snow-flake schema with
one fact table and eight dimension tables. A star schema is
less complex compared to a snow-flake schema where the
dimensions are partly normalized, but in some places, a snow-
flake schema is needed, as discussed in the following. In
the following, the different dimensions are described, after
which the fact table is introduced to link all the dimensions
to the facts and calculated measures. As seen in the Figure 2,
all the dimension tables follows the standard data warehouse
convention of having auto-generated surrogate keys.

A. Dimension Descriptions
The different dimensions of the data warehouse presented

in Figure 2 are described in this section.
1) Date and TimeOfDay Dimension: As seen in Figure 2,

date and time has been split up into two dimensions in order
to save records compared to a combined dimension table. If
date and time were modeled in one table there could be over
86400 records for each day. In a year that would give over 31
million records in the dimension which could result in a slow
query performance. Another reason for splitting up the two
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Fig. 2: Relational Data Warehouse Schema

dimensions is that queries are normally performed on either a
date basis or a time of day basis.

The main hierarchy of the Date dimension consists of: Year,
Month, and DayOfMonth. To allow more detailed analysis, the
dimension includes the following attributes: HalfYear, Quarter,
WeekNumberOfYear and DayOfYear. DayOfWeek is included
as a one level hierarchy to specify the specific days of the
week. The HalfYear attribute indicates if it is the first or last
half of the year. The DayOfYear attribute enables queries on a
specific day or range of days (1..365). The WeekNumberOfYear
attribute enables queries on specific weeks of a year. The
DayOfWeek makes it possible to query on a specific weekday
and the last attribute DayOfWeekType enables classification of
days, e.g. holiday, weekend, weekday, etc.

Location based events may occur on a particular date.
For example Aalborg, Denmark celebrates a special occasion



called Aalborg Carnival which is one of the biggest carnivals in
Europe. As a result lot of people from Europe come to Aalborg
to celebrate this occasion. Another example can be a strike in
the city of an airport or conveyor belt broken of an airport etc.
Additionally, bad weather in the area of an airport should be
captured to relate baggage handling quality with the weather.
So, it is very important to localize each date to the airport
for capturing these types of location based special events and
weather status. We use two special attributes: SpecialEvent,
EventType which allow queries on a specific event or type of
event. For localizing each date and date related information
to a particular airport, we use AirportID as an attribute of the
Date dimension. As a result the Date dimension has to store
a copy of same date for each airport. Figure 4b shows the
hierarchy of the Date dimension.

The Date dimension stores a copy of all stored dates for
UTC which is independent of the airport. We store a default
AirportID, (AllAirports), which indicates all airports and the
other attributes also store default values for the corresponding
UTC date. An example of date localization concept is shown
in Fig. 5a. From Fig. 5a we can see that date May, 29, 2012 is
localized for each airport and as a result it is possible to capture
an special event i.e., ConveyorBeltBroken at AAL airport.

The Time dimension called TimeOfDay consists of the
three necessary attributes to specify a time hierarchy down
to a specific second: Hour, Minute, and Second. Attribute
TimeOfDayType indicates whether this is rush hour or normal
hour, and DaySections3Hours divides the 24 hours of a day
into eight 3-hour sections. As a result it will be easier to
analyze the baggage movement at different parts of the day.
Figure 3b shows the hierarchy of the TimeOfDay dimension.
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Fig. 3: Hierarchy of Status, Time of Day and Bag
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2) Location Dimension: In order to refer to different
points of interest in the airport, a hierarchy of seven levels is
introduced to handle the various degrees of detail. The lowest
level in the hierarchy is denoted as a TagReaderLocation,
which describes the specific location of an RFID reader like
Check-in-1, Sorter-1, Sorter-2, Gateway-1, Arrival-1 etc. A lo-
cation belongs to a category e.g., Sorter-1, Sorter-2 belongs to
the location category Sorter. A number of location categories
are grouped into an airport. The other levels of hierarchy of
Location dimension are showed in Figure 4a.

The location hierarchy enables queries for the baggage
movement at different abstraction levels, e.g., from one tag
reader location to another tag reader location at the lowest
level, and from one region to another region at the top level.
Here, the meaning of region indicates the baggage movements
between North America, Europe, Middle East and Africa
(EMEA), Latin America (LATAM) and Asia-Pacific etc,. The
Location dimension is snow-flaked at airport level and we
use Dim airport as an outrigger dimension [7] as some other
dimensions like Dim Date, Dim Flight etc., depend on the
location at the airport level not at the tag reader level.

3) Status Dimension: The Status dimension captures
the status of a bag while moving from one location to
another. The status domain is {WrongDestination, OK, LeftBe-
hind, TrackedInNonRouteAirport, StillTrackedInNonRouteAir-
port, LongerDurationThanExpected, UnexpectedReader}. To
make a hierarchy, another column StatusGroup is introduced
which contain the group of the status, e.g., WrongDestination,
LeftBehind, TrackedInNonRouteAirport belong to mishandled
group etc. Figure 3a shows the hierarchy of Status dimension.

4) Bag Dimension: The Bag dimension contains the identi-
fier of the bag, LicensePlate and other planned travel informa-
tion of bags like route, airline, date of departure etc. To keep
track of the bags planned to move together in the same route
and the same flight on the same date, we create a separate ID
called BagFlightRouteID. This ID is generated while loading
the data from the source schema. As a result, it creates a
hierarchy in the Bag dimension. Each BagFlightRouteID cor-
responds to a given combination of StartDateID, FlightString
and RouteString. Here, StartDateID is the departure date,
FlightString contains a sequence of flights, e.g., ”SK1202-
QI1354-#”; RouteString contains a sequence of airports of the
route, e.g., ”AAL-CPH-ARN-#”. In both strings ’#’ indicates
the end of the sequence. Use of these strings enables queries
on flight and route sequences more easily. For example, to
find the number of mishandled bags starting from AAL and



ending at ARN, the route string wild-card ”AAL%ARN:#” can
be used. Figure 3c represents the hierarchy of Bag dimension.

5) Flight Dimension: In addition to the general informa-
tion of a flight like FlightID, Airline, FlightNumber, departure
date and time etc., we also store the source airport, destination
airport, delay in departure, delay in arrival etc. Storing this
delay information enables queries that can give an idea about
how baggage mishandling is related with punctuality of flights.
We store FlightNumberString which includes airline and flight
number together e.g., ”SK1202” indicates a flight of SAS (SK)
Airline with flight number 1202. Instead of querying only on
a flight number it is common to query on a flight based on
FlightNumberString which can be rolled up to the airline level.
Hierarchy of Flight dimension is represented in Figure 5b.

6) Handler Dimension: While traveling from origin to
destination a bag is handled by many handler organizations
at different stages of baggage movement. So handler is an
extremely important entity related to baggage management.
The Dim Handler table represents the Handler dimension.
It contains attributes HandlerID and Handler. The Handler
dimension enables to find relationship between baggage han-
dling quality and handlers.

B. Many-to-Many Relationship Between Flight and Bag
A bag can travel in many flights and a flight can carry

many bags, and therefore the relationship between bag and
flight is many-to-many. Additionally a sequence number is
maintained when a bag is planned for traveling more than
one flight. It also includes a transit duration i.e., duration
between scheduled departure time of next flight and actual
arrival time of the current flight. If a flight is the final flight
of a bag in its sequence of flights then the transit duration
is remain null. A standard approach of handling many-to-
many relationship is the use of a bridge table that use foreign
keys from both entities [8] e.g., Bag-Flight-Bridge〈BagID,
FlightID, SequenceIndex, TransitDuration〉 where BagID and
FlightID are foreign keys taken from Bag table and Flight
table respectively.

However this type of implementation produces huge amount
of data in the bridge table which results a low query perfor-
mance due to join lot of data. In Figure 6 the bag-flight bridge
table shows some examples of association between bags and
flights. Even though bags B1, B2 and B6 follows same flights
with same sequences, due to the database design they have
to be inserted thrice. Moreover in the whole table there are
2 different collection of pairs for 〈FlightID, Sequence〉 i.e.,
{〈F1, 1〉, 〈F1, 2〉} → 1 and {〈F1, 1〉} → 2. The process of
transformation this table is exemplified in Figure 6.

Specifically, we create a separate table called
BagFlightRoute table. It contains an ID BagFlightRouteID
for each distinct set of pairs. Also, we store the flight string
and route string for each BagFlightRouteID. The features of
these two strings are described in the earlier sub section. For
each BagFlightRouteID the pairs and its related info is stored
in the FlightRouteBridge table. Finally in the bag table each
bag is assigned with its relevant BagFlightRouteID. It makes

a one-to-many relationship between BagFlightRoute table and
bag table. The discussed transformation reduces huge amount
of rows which results better query performance.

1

1

1

2

2

2

Bag‐Flight Bridge Table 

BagID  FlightID  Sequence 

B1  F1  1 
B1  F2  2 

B2  F1  1 
B2  F2  2 

B3  F1  1 

B4  F1  1 

B5  F1  1 

B6  F1  1 
B6  F2  2 

 

Bag‐Flight‐Route Bridge Table 

BagFlightRouteID  FlightID  Sequence 

1  F1  1 
1  F2  2 

2  F1  1 

 
Bag‐Flight Route Table

BagFlightRouteID FlightString RouteString

1  F1–F2# AAL‐CPH‐ARN# 

2  F1# AAL‐CPH#

 
Bag Table 

BagID  BagFlightROuteID  Other 
Attributes 

B1  1  … 

B2  1  … 

B3  2  … 

B4  2  … 

B5  2  … 

B6  1  … 

  Fig. 6: Example of bag-flight many-to-many relationship

C. Fact Table
The Fact Stay is the fact table and it binds the tracking

records to the relevant entries in the dimensions. The relations
to the TimeOfDay and Date dimension are represented twice
for each datetime attribute from the source data. This is to
store both the wall clock time, and the UTC time when
considering tracking records from different sites, e.g. AAL
where the standard time zone is UTC/GMT+1 hour, Los
Angeles International Airport (LAX) where the standard time
zone is UTC/GMT-9 hours etc. As an RFID reader does not
cover the whole area of a location, the value of tout in Table II
does not necessarily give us the time when an object actually
get out from a location. As in the airport baggage tracking
scenario a bag moves from one symbolic location to another
symbolic location sequentially, instead of storing this tout we
store the timeend in the fact table which specify when the
object reaches another location.

Attributes FromLocation and ToLocation specify the
baggage movement from one tag reader location to the next
tag reader location in its path sequence. Usually time start
and time end of a particular bag indicates the timein at
FromLocation and timein at ToLocation, respectively. However
for the final location (which means there is no reading of a bag
after this location), FromLocation is same as ToLocation and
time end specify the last reading time of the bag at this final
location which is timeout at FromLocation. The duration taken
by a bag to go from FromLocation to ToLocation is stored in
the Duration attribute. If FromLocation to ToLocation both are
from same airport then the value of Duration also represents
the time spent by a bag at FromLocation.

We store HandlerID for each movement of a bag to track
the responsible handler of the bag for that specific location. If
it takes longer than expected to transfer the bag between the
tracked location or the movement of the bag is not correct, then
it will be possible to know which handler actually handled that



section and this mishandling can be attributed to the quality
of that handler. The status of a bag at each stay is stored
in StatusID attribute. Storing both source and destination for
each tracking record enables lot of opportunity for analysis
of baggage flow from one location to another in an easy and
efficient way. This technique also allows giving a status to
each movement of a bag from one tag reader location to
another. The ResponsibleFlightID column points to the Flight
dimension to keep track which flight is responsible for the
movement. It allows to find the baggage handling quality of
different flights and airline. Additionally we store FlightLegID
that points to Dim FlightRouteBridge table. It helps to find
how baggage handling quality affects for transit duration.

D. Cube Design
A multi-dimensional cube is built on top of the data

warehouse described above. There can be various types of
measures for answering different types of analytical questions
on RFID baggage data. We give a few examples of analytical
questions: a) Average time taken by bags to move from sorter to
gateway in Aalborg airport, b) Total number of bags handled
by Copenhagen airport in the Christmas holiday, c) Total
number of bag sent to wrong destination from Gteborg airport
in weekends of January 2012, d) Maximum time taken by bags
to go from check-in to sorter in Stockholm airport. To answer
these queries we used the following measures.

Duration, maximum duration, minimum duration, av-
erage duration. The duration column itself is used as mea-
sure and also enable other relevant measures like maximum
duration, minimum duration, total duration taken by objects
to go from one location to another. The Duration is also
used for a computed measure avg duration i.e., the average
duration taken by objects to move between locations. These
measures are semi-additive and should be used with appro-
priate dimension to get relevant results. Because this is not
meaningful to find the average, maximum, minimum duration
without considering the FromLocation dimension. Moreover
finding the sum of duration regardless of Bag dimension is
also not meaningful. The use of maximum duration measure is
shown in the following example MDX query in Q1. It returns a
matrix showing max time taken by all bags to go from one tag
reader location to another at AAL. In the query the parameter
2 for descendants function indicates two levels down from the
airport level i.e., the tag reader level.

Q1 . SELECT DESCENDANTS ( [ FromLoca t ion ] . [
L o c a t i o n H i e r a r c h y ] . [ A i r p o r t ] . & [AAL] , 2 )
on Axis ( 1 ) ,
DESCENDANTS ( [ ToLoca t ion ] . [

L o c a t i o n H i e r a r c h y ] . [ A i r p o r t ] . & [AAL] ,
2 ) on Axis ( 0 )

FROM [ cube name ]
WHERE [ Measures ] . [ Maximum D u r a t i o n ]

BagID distinct count. The number of distinct BagIDs in the
fact table and grouping this on interesting dimensions give lot
of interesting results. For example, the number of bags traveled
from one tag reader location to another, and one country to
another or region to region, number of bags mishandled at

different airports, number of bags traveled in different routes,
etc. For example the following MDX query, Q2 shows the
number of bags mishandled at different airports and the result
is ascending order based on number of bag(s) mishandled.

Q2 . SELECT [ Measures ] . [ Bagid D i s t i n c t Count ]
ON COLUMNS,

ORDER( NonEmpty ( [ FromLoca t ion ] . [ IATACode
] . members ) , [ Measures ] . [ Bagid D i s t i n c t
Count ] , DESC) On ROWS

FROM [ cube name ]
WHERE DESCENDANTS ( [ Dim S t a t u s ] . [ S t a t u s

Group ] .& Mishandled , 0 )

Fact stay count. The number of stay records in the fact
table can be used for many types of computed measures like
percentage calculation, average calculation, etc. For example
finding the average duration taken by bags to go from one tag
reader location to another at Aalborg airport can be calculated
by the following MDX query, Q3 where we use the measure
Fact Stay Count.

Q3 . WITH MEMBER[ measures ] . [ a v g D u r a t i o n ]
AS ’ [ Measures ] . [ D u r a t i o n ] / [ Measures ] . [

F a c t S t a y C o u n t ] ’
SELECT DESCENDANT( [ FromLoca t ion ] . [

L o c a t i o n H i e r a r c h y ] . [ A i r p o r t ] . & [AAL] ,
2 ) on Axis ( 1 ) ,

DESCENDANTS ( [ ToLoca t ion ] . [
L o c a t i o n H i e r a r c h y ] . [ A i r p o r t ] . & [AAL] ,
2 ) on Axis ( 0 )

FROM [ cube name ]
where [ Measures ] . [ a v g D u r a t i o n ]

Incorporating Flight and Bag many-to-many relation-
ship into the cube. Incorporating many-to-many relationship
into a cube needs extra care. Because improper relationship
between the dimensions and measures produce wrong aggre-
gation results. As mentioned earlier we store both planned
route and actual route of bags. The actual route taken by
a bag is found from the tracking records stored in the fact
table Fact stay. On the other hand a long chain of rela-
tional tables are maintained between Flight and Bag table
for planned route and flights. To get the aggregate results
like the number of bags planned for traveling by particular
flight or airline, the Dim Bag table is used as fact table
and a measure Bag Count is created on this fact. Here the
dimensions to be used by the measure are Dim Bag, Flight
and BagFlightRoute. As Dim Bag and Flight is related by
the Dim FlightRouteBridge table through BagFlightRouteID,
an intermediate fact table is required to incorporate them in
the cube. So the Dim FlightRouteBridge table is considered
as an intermediate fact table where this fact is related with
the Flight table by FlightID and to the Dim Bag table by
BagFlightRouteID. Now the Bag Count measure of Dim Bag
has a many-to-many relationship in the cube through the
intermediate fact table Dim FlightRouteBridge. The imple-
mentation of this concept in MS Analysis Services can be
seen in Appendix A-A. An example query on this relation can
be total number of bags planned to be carried by each airline
and this can be answered by the following MDX query.



Q4 . SELECT [ Measures ] . [ Dim Bag Count ] on
COLUMNS,
[ F l i g h t ] . [ A i r l i n e ] . members on ROWS

FROM [ cube name ]

V. ETL DESIGN

In this section, we present the Extract-Transform-Load
(ETL) design for loading relevant data from source databases
to the data warehouse. The design is shown in Figure 7.

ETL Steps

Load Dim_Location_Airport 
with relevant airports and a 
default airport “AllAirports”

Load Dim_TimeOfDay with 
all the hours, minutes and 

seconds of a day

Load Dim_Status with 
relevant status

Load Dim_Location_Tagreader with 
relevant tag reader locations 

information

Load Dim_Date with relevant dates 
for all airports and a copy each date 
for UTC with “AllAirports” as airport

Load Dim_Flight with 
relevant flights information 

Load Dim_Bag, BagFlightRoute and 
Dim_FlightRouteBridge. (The algorithm 

can be found in Appendix A-B)

Load Fact_Stay (The algorithm 
can be found in Appendix A-C)

Fig. 7: Steps of ETL operation

First Dim Location Airport is loaded with the relevant
airports as this table is independent of any other dimension.
This table is also loaded with a default airport ”AllAirports”
and an airport ”INVALIDAirport”. The default airport is used
as a reference from the Date dimension to handle UTC date
and time. On the other hand INVALIDAirport is referred when
there are some records containing some invalid values or
null values. The Dim Location TagReader is loaded with tag
reader information from the source data. Here also we have
a default tag reader UnknownReader which points to INVAL-
IDAirport. The name of the tag reader is made self contained,
e.g., check-in1 reader of Aalborg Airport of Denmark is stored
as ’DK.AAL.Check-in’.

The Date dimension is preloaded with relevant years and
the TimeOfDay dimension is preloaded with each second of a
day. Both Date and TimeOfDay dimension is loaded for the
airports where RFID readers are deployed and reading records
are coming from these airports. There is a copy of Date for
the default airport which is discussed earlier.

The flight table is loaded directly from the source data where
date and time of departure and arrival is pointed to the Date
and TimeOfDay dimension respectively. The departure airport
and arrival airport points to the Dim Location Airport table.

The Bag, BagFlightRoute and Dim FlightRouteBridge are
loaded together at the same time from the source data. The
detailed algorithm can be seen in Appendix A-B.

The fact table Fact Stay is loaded by the tracking records
and relevant data from the source schema. Some preprocess-
ing like creating some views in the source data can make
the loading steps much easier and faster. We create two
database view for this purpose. One view is created inside
data warehouse schema with structure: v bag flight〈BagID,
FlightId, sequenceIndex, FromAirportID, ToAirportID, Actu-
alDepartureTimeUTC, FlightLegID〉 where the columns are
taken by joining Dim Bag, Flight, Dim FlightRouteBridge
tables of data warehouse schema. Another view is created
inside source schema with structure:v track airport〈BagID,
LocationID, tin, tout, AirportID〉, where the columns are
taken from the location tracking records of Table II and
Airport Table of source schema. The v track airport includes
AirportID which helps to easily track, when actually a bag
changed its airport as well as tracking the responsible flight
of a bag for the tracked airport. The overall algorithm to load
the fact table can be seen in Appendix A-C.

VI. EXPERIMENTAL RESULTS

We implemented the relational data warehouse in SQL
Server 2008 R2 and the cube in SQL Server Analysis Services
2008 using MS Business Intelligence Development Studio
2008. The source data is stored in Oracle 11g. The ETL
loads the source data from Oracle into the SQL Server DW
and is implemented in C# with .Net framework 4.0. For
advanced querying and visualization, TARGIT BI suite 2K11
is used. The experiments are conducted on a laptop with an
Intel Core i7 2.7 GHz processor with 8 GB main memory.
The operating system is Windows 7 64 bit. We use RFID-
based airport baggage tracking data collected from 57 RFID
readers deployed at 57 different baggage handling locations at
7 airports in 7 cities in 2 countries. There were 149K bags with
4M filtered RFID readings. There was a huge data reduction
after conversion of the RFID readings into location tracking
records where it becomes 483K records. The readings were
taken between 15-Dec-2011 and 17-Apr-2012 and the bags
traveled on 36K flights.

Example Analysis Results We have generated many
analysis results from the cube using through TARGIT BI
suite, some are described here. The bar chart of Figure 8a
shows bagID distinct count per Status where the status is
one of {OK, Left Behind, and WrongDestination}. This shows
that 97% of the bags are OK, 2% bags sent to the wrong
destination, and 1% is left behind. Figure 8b shows the value of
bagID distinct count grouped by the dimensions {Status, and
TimeOfDay}. The status is drilled down to Wrong Destination
and the TimeOfDay is at the DaySectionsIn3Hours level. This
shows that among the 2% bags sent to wrong destination, 31%
of the mishandlings happened between 15 PM to 18 PM, i.e.,
improvement efforts should focus here.

Performance We tested the above MDX queries on the
MS Analysis Services cube and produced equivalent SQL



BagId Distinct Count per Status. Status Value: OK, Wrong Dest, Left Behind

LeftBehind                                  OK WrongDestination
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(a) Overall baggage status
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Fig. 8: Some analysis results and performance study

queries for both of the source database and the relational data
warehouse. To allow direct comparison, the source data was
migrated from Oracle into SQL Server 2008. To observe MDX
query performance, MDX Studio3 was used. To observe SQL
query performance, SQL Server 2008 Profiler was used and
the queries is executed in SQL Server Management Studio.
Each query is executed 5 times and for each execution, the
query editor software is restarted and the cache is cleared.
Finally, the average execution time is reported in Figure 8c
and 8d for each query.

Query Q1 and Q3 is reported together in Figure 8c as both
of them works with duration between tag reader locations of
Aalborg airport. For the source data the value of duration,
FromLocation and ToLocation is calculated using complex
SQL queries and some intermediate views on the filtered RFID
readings. Due to the complexity some criteria e.g., the final
location of an object is not considered (In DW FromLocation
and ToLocation is same for the final location of an object).
The results show that, for Q1, the CPU time on cube is
7 times faster compared to relational data warehouse and
2.3K times faster compared to source data. For the same
query CPU time on relational data warehouse is 313 times
faster compared to source data. Similarly for other queries,
the results show that, the CPU time for all of the cases
cube is significantly faster whereas the source database is
significantly slower. The queries on relational data warehouse
are also much faster compared to source database. The queries
on the source database are very slow due to the huge data
volume which is also not structured for analysis purposes.
On the other hand, the proposed relational data warehouse
is specially structured for analysis purposes and we also have
reduced the data volume. Finally, the designed cube employs
specialized MOLAP storage and has pre-computed aggregate
results, which make the queries much faster. The differences
between the execution times will become even larger for larger
data sets.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a data warehouse solution for
analysis of RFID-based airport baggage tracking data. We
designed DW, including a number of complex dimensions
and measures, in order to provide insight into the baggage
tracking data and the reasons of baggage mishandling. We
localized each date to a particular airport to capture special

3www.sqlbi.com/tools/mdx-studio/

events related to that airport. We handled the many-to-many
relationship between Bag and Flight dimension effectively
both in the relational data warehouse and cube the design.
The proposed data warehouse concepts can be used in similar
types of indoor tracking application.

Future work will aim to solve the challenges encountered
during this work as well as planned work. One important
aspect is to scale the solutions to handle data from thousands
of airport over long time periods, along with more precise
capturing of the bag movement. This will require developing
new pre-aggregation techniques. Another important aspect is
to develop native support for spatio-temporal sequences, e.g.,
flight sequences, within the DW and BI tools, in order to get
both more seamless querying and better performance.
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APPENDIX A

A. Implementation of Many-To-Many Relationship into Cube

Implementation of many-to-many relationship into cube
in MS Analysis services is shown in Figure 9. The fig-
ure shows the dimension usage of SQL Server Business
Intelligence Development Studio 2008 for the cube con-
taining many-to-many relationship between Bag and Flight.
For generating the figure, a Visual Studio add-in BIDS
Helper4 is used. From the figure we can see that Dim Bag
is used as both fact and dimension. Two measure groups
on Dim Bag and Dim FlightRouteBridge are created. For
Dim Bag measure group the Flight dimension is used as
many-to-many relationship where Dim FlightRouteBridge is
used as intermediate measure group. The BagFlightRoute is in
regular relationship with the Dim Bag measure group. Here
the dimension column is BagFlightRoute.BagFlightRouteID
and measure group column is Dim Bag.BagFlighRouteID.
Both Flight and BagFlightRoute dimension is in regu-
lar relationship with Dim FlightRouteBridge measure group.
For BagFlightRoute dimension the dimension column is
BagFlightRoute.BagFlightRouteID and measure group col-
umn is Dim FlightRouteBridge.BagFlightRouteID. On the
other hand for Flight dimension the dimension col-
umn is emphFlight.FlightID and measure group colum is
Dim FlightRouteBridge.FlightID.

Fig. 9: Incorporating Flight and Bag relationship into cube

B. Algorithm: LoadBag BagFlightRoute FlightRouteBridge

The algorithm for loading Dim Bag, BagflightRoute and
Dim FlightRouteBridge is shown in Algorithm 1 . In the
algorithm at line 1, all the bags information is stored into
variableB in the form 〈BagID, LicensePlate, FlightDate, Pri-
ority〉 as BagID wise ascending order. It helps to track easily
which bags are already inserted into the data warehouse. If
any error/failure occurs at the mid step during loading, we can
quickly know which bags are already loaded by checking only
the last inserted BagID. Putting additional condition: Where
BagID>Last inserted BagID in line 1 of the algorithm can
avoid reloading of existing bags and decreased the loading
time. For each bag in the source data the algorithm gets all
the flight info and the sequence of flights the bag has planned
to travel. To find out the existence of a BagFlightRouteID
for the bag with exact same number of pairs of 〈FlightId,

4http://bidshelper.codeplex.com/

SequenceIndex〉 we use the concept of relational algebra for
exact relational division [11] or relational division without
reminder. A general relational division does not consider exact
number of pair. For example consider the data of table Bag-
Flight Bridge of Figure 6. Let us assume in Bag-Flight-
Route Bridge table there be only one BagFlightRouteID exist
which is 1: {〈F1, 1〉, 〈F1,2〉}. To find out the existence of
BagFlightRouteID for bag B3 in Flight-Route Bridge table,
the relational algebra expression for general division op-
eration can be: (ΠBagFlightRouteID,F lightID,Sequence〈Flight-
Route Bridge〉)÷(ΠFlightID,SequenceσBagID=B3〈Bag-Flight
Bridge〉). For example the operation: {〈1, F1, 1〉, 〈1,
F1,2〉}÷{〈F1, 1〉} results 1. It seems that trying to find out the
existence of BagFlightRouteID for bag B3 by the given general
division operation returns 1 which is not correct. Because
BagFlightRouteID 1 contains more flight sequences and we
need to get a BagFlightRouteID containing exactly the set of
value pair〈FlightID, Sequence〉 of bag B3 i.e., { 〈F1, 1〉}.

Algorithm 1 LoadBag BagFlightRoute FlightRouteBridge()
1: B := Set of all bags from the source data in the form 〈BagID,

LicensePlate, FlightDate, Priority〉 in bagid wise ascending or-
der;

2: BR := Set of routes of all the bags in the form 〈 Bagid, Flightid,
Sequenceindex 〉 from the source data;

3: for each record bi ∈ B do
4: R := all the route info of bag bi.Bagid from BR;
5: U :=

⋃SizeOf(R)
j=1 〈 Rj .flightid, Rj .Sequenceindex〉;

6: result := ExecuteQueryInDataWarehouse 〈
”WITH pair AS ( SELECT U )
SELECT b.BagFlightRouteID as BagFlightRouteID
FROM Dim FlightRouteBridge b LEFT JOIN pair p
ON ( b.SequenceIndex = p.SequenceIndex AND b.FlightID =
p.FlightID )
GROUP BY b.bagFlightRouteID
HAVING count( CASE WHEN p.flightid IS NULL THEN 1 END
) = 0 AND count(*) = ( SELECT count(*) FROM pair )” 〉;

7: if result.RowCount 6= 0 then
8: Insert into Dim Bag〈 bi.Bagid, bi.Licenseplate,

result.BagF lightRouteID, bi.P riority〉 ;
9: else

10: Generate FlightString and RouteString from BR and
flight’s source and destination information;

11: Add a new record to BagF lightRoute table with a
new BagF lightRouteID. This can be done by using database
sequence or auto generated identifier;

12: Add records to Dim FlightRouteBridge table with all the
values of U and the new BagF lightRouteID. For TransferDu-
ration subtract actual arrival time of current flight sequence from
the schedule departure time of next flight. For the final flight of
a BagF lightRouteID put TransferDuration as 0 (Zero);

13: Insert into Dim Bag〈bi.Bagid, bi.Licenseplate, The
new BagFlightRouteID, bi.P riority〉 ;

To match the exact pairs it is important to count the
number of pair(s) at divisor and divide it only with those
dividend which contain the same number of pair(s) as the
divisor. The concept of exact relational division is imple-
mented by a complex SQL query shown in line 6 of Al-
gorithm 1. Getting any row by executing this SQL indi-



cates there exist a BagFlightRouteID with the given set of
pairs (U of line 5 in Algorithm 1). If the SQL returns
any BagFlightRouteID for this SQL, it inserts the bag with
the returned BagFlightRouteID into the Dim Bag table (line
8). In contrast with that, if the SQL does not return any
BagFlightRouteID then a new record is inserted into the
BagFlightRoute table with a new BagFlightRouteID (line 11).
In line 13 it inserts the bag with this new BagFlightRoute.

C. Algorithm: LoadFactStay

The algorithm for loading the Fact table Fact Stay is shown
in Algorithm 2. As mentioned in the paper we have used
some views to make the steps easy. The structure of the views
are: v bag flight〈BagID, FlightId, sequenceIndex, FromAir-
portID, ToAirportID, ActualDepartureTimeUTC, FlightLegID〉
and v track airport〈BagID, LocationID, tin, tout, AirportID〉.
At the beginning of the algorithm the tracking records, distinct
BagID and flight info is loaded into variables (lines 1-3).

Algorithm 2 LoadFactStay()
1: TR := Set of all tracking records from v track airport in BagID

and tin wise ascending order ;
2: B := Set of distinct BagID in TR on BagID wise ascending order;
3: BF := Set of all flight records from v bag flight in BagID and

SequenceIndex wise ascending order ;
4: for each BagID bi ∈ B do
5: F := All records for bag bi from BF;
6: R := All tracking records for bag bi from TR;
7: Rend := Last record of R; seq := 1;
8: for each record ri ∈ R \Rend do
9: fromLoc := ri.LocationID; toLoc:= ri+1.LocationID;

10: fromAirport := ri.AirportID; toAirport:= ri+1.AirportID;
11: timestart:=ri.tin;timeend:=ri+1.tin;
12: Duration := timeend - timestart; Status := ”OK”;
13: if fromAirportID = toAirportID then
14: Find the status of the movement and the responsible

flight with the help of F.;
15: else . // fromAirportID 6= toAirportID
16: if toAirportID6= Airport of planned destination. Check

this from F with the help of seq then
17: Status := ”WrongDestinaion”;
18: Find ResponsibleFlightID from F with the help of

seq;
19: seq++;
20: Insert a new record into the Fact table with bi, fromLoc,

toLoc, StatusID for Status, Duration, ResponsibleFlight,
DateID and TimeID of timestart, timeend for both UTC,
fromAirportID and toAirportID;

Now for the last tracking record R end,
21: fromLoc := Rend.LocationID; toLoc := fromLoc;
22: timestart := Rend.tin; timeend := Rend.tout;
23: Duration := timeend - timestart; Status := ”OK”;
24: Find the status and other attributes based on the above logic;
25: Insert a new record into the Fact table with bi, fromLoc,

toLoc, StatusID for Status, Duration, ResponsibleFlight,
DateID and TimeID of timestart, timeend for both UTC,
fromAirportID and toAirportID;

For each bag the algorithm retrieves and determine neces-
sary fields for each tracking record and insert it into Fact Stay
table (lines 4-27). For each bag the algorithm filters the

records of the particular bag and keep them into variables
(lines 5-6). As for the final tracking record of a bag the
FromLocation and ToLocation is same in the Fact Stay table,
we separate that tracking record into a variable Rend (line 7).
This record is handled separately for each bag (lines 22-27).
For each tracking record of a bag except Rend (line 8), the
algorithm determine the FromLocation and ToLocation (line
10), timestart and timeend (line 11), check whither the bag
changes the airport or not (lines 13 and 16) and based on the
information it determines the Status of that particular tracking
record (lines 14 and 17). The variable seq is used to track how
many airport is changed by the bag which helps to retrieve
flight info for that particular sequence and also to determine
the Status. For Rend the operations are very similar to the
other records except the value of ToLocation (line 21) and
timeend (line 22). After retrieving and determining the values
of necessary fields a record is inserted into Fact Stay (lines
20 and 25).


