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Scalable learning of probabilistic latent models for

collaborative filtering

Helge Langsetha, Thomas D. Nielsenb

aDepartment of Computer and Information Science, The Norwegian University of Science
and Technology, Trondheim (Norway)

bDepartment of Computer Science, Aalborg University, Aalborg (Denmark)

Abstract

Collaborative filtering has emerged as a popular way of making user recommen-
dations, but with the increasing sizes of the underlying databases scalability is
becoming a crucial issue. In this paper we focus on a recently proposed proba-
bilistic collaborative filtering model that explicitly represents all users and items
simultaneously in the model. This model class has several desirable properties,
including high recommendation accuracy and principled support for group rec-
ommendations. Unfortunately, it also suffers from poor scalability. We address
this issue by proposing a scalable variational Bayes learning and inference al-
gorithm for these types of models. Empirical results show that the proposed
algorithm achieves significantly better accuracy results than other straw-men
models evaluated on a collection of well-known data sets. We also demonstrate
that the algorithm has a highly favorable behavior in relation to cold-start sit-
uations.

Keywords: collaborative filtering, scalable learning, probabilistic model,
latent variables, variational Bayes

1. Introduction

Recommender systems have become a well-established technology to help
users cope with vast amounts of information. This is achieved by only presenting
to the users the information which is deemed most relevant. Over the last
years the diversity of the domains in which recommender systems have been
successfully applied has increased significantly and include movies, books, news,
and products in general.

Recommender systems are typically grouped into two categories: content-

based systems make item recommendations by combining content descriptions
of the items in questions with a preference model of the user (e.g. inferred us-
ing previously rated items). On the other hand, collaborative filtering systems
provide recommendations based on the ratings of other users with similar prefer-
ences. The two types of systems exhibit different characteristics; collaborative
filtering systems typically enjoy a greater flexibility in terms of the types of
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items that can be recommended whereas content-based systems are usually less
susceptible to cold-start problems.

Collaborative filtering systems are often further sub-divided into model-based

and memory-based [4] methods, although combinations of the two have also
been proposed [29]. Memory-based systems rely on a distance measure to es-
timate user similarity, whereas model-based approaches learn a model of the
user’s preferences, which is subsequently used for making predictions. The ear-
liest model-based approaches used a multinomial mixture model [10] for either
grouping the users into user groups or items into item-categories. More recently,
uniform models have been proposed that treat users and items equivalently and
represent them jointly in the same model. An example of such a model is the
probabilistic latent variable model proposed by Langseth and Nielsen [20].

The model described in [20] bears some resemblances with relational prob-
abilistic models [13] in that it explicitly combines all users and items directly
in the model [34, 33, 12]. More specifically, the model is a special type of con-
ditional linear Gaussian model [21], where each item and user is represented
by a collection of abstract latent variables encoding intrinsic properties about
the user/item in question. The rating assigned to item i by user p is in turn
modeled as a linear Gaussian distribution conditioned on the corresponding la-
tent user/item representations. This joint representation of users and items
allows the model to take advantage of all the user/item information available
when making recommendations. Not only does this result in high-quality rec-
ommendations, as documented in [20], but it also supports a well-founded and
principled way of making group recommendations [7, 25].

In order to learn the probabilistic latent variable models, Langseth and
Nielsen [20] proposed an Expectation-Maximization (EM) algorithm tailored
to the specific model class. Unfortunately, the algorithm requires the calcula-
tion of the full covariance matrix for all the latent variables representing the
users and items. Consequently, the algorithm does not scale to larger data sets.

In this paper we address the scalability problem by proposing approximate
learning and inference algorithms based on a variational Bayes approach [1, 3].
The algorithms employ a (generalized) mean-field approximation of the varia-
tional distribution, which ensures that the complexity of the learning algorithm
grows linearly in the number of data points/ratings. Furthermore, we show
that the model fits within the general class of statistical query models that in
turn supports an efficient use of the MapReduce framework [8, 6]; hence the
algorithms are easily parallelizable and can exploit distributed architectures.
We empirically evaluate the proposed algorithms using several well-known data
sets and demonstrate that the algorithm obtains results that are significantly
better than what is obtained by a collection of straw-men methods. Finally, we
analyze the performance of the method under cold-start conditions [19].

The remainder of the paper is structured as follows: In Section 2 we provide
background information and describe the probabilistic latent variable model
by Langseth and Nielsen [20]. Section 3 describes the variational Bayes based
learning algorithm (with detailed derivations included in the appendix) and in
Section 4 we present the empirical results. We conclude the paper in Section 5
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and outline directions for future research.

2. A Latent model for Collaborative Filtering

2.1. Bayesian network

A Bayesian network (BN) is a probabilistic graphical model that defines a
compact representation of a joint probability distribution by exploiting and ex-
plicitly encoding conditional independence properties among the variables. The
specification of a BN over a collection of variables {X1, . . . , Xn} consists of two
parts: a qualitative part and a quantitative part. The qualitative part corre-
sponds to an acyclic directed graph G = (V , E), where the nodes V represent the
variables {X1, . . . , Xn} through a one-to-one mapping, and the edges E specify
the direct dependencies between the variables. For ease of exposition, we shall
refer to nodes and variables interchangeably.

We shall describe the relations between the variables in a Bayesian network
using graph terminology. Thus, the nodes whose outgoing edges intersect a
node/variable Xi are called the parents of Xi, denoted πXi

, and the nodes to
which there exists an edge emanating from Xi are called the children of Xi. If
there is a directed path from a node Xi to a node Xj , then Xj is said to be
a descendant of Xi. Together the edges in the graph encode the conditional
independence assumptions in the Bayesian network. Specifically, a node Xi is
conditionally independent of its non-descendants given its parents.

The quantitative part is defined by a collection of conditional probability
distributions or density functions s.t. each node is assigned exactly one proba-
bility distribution conditioned on its parents. In the remainder of this paper we
shall assume that all variables are continuous. In particular, a variable Xi with
parents πXi

is assumed to follow a conditional linear Gaussian distribution

f(xi|πxi
) = N (µi +w

T

i πxi
, σi),

i.e., the mean value is given as a weighted linear combination of the values of
the parent variables whereas the variance is fixed. The underlying conditional
independence assumptions encoded in the BN allow us to calculate the joint
probability function using the chain rule:

f(x1, . . . , xn) =

n
∏

i=1

f(xi|πxi
).

With linear Gaussian distributions assigned to all the variables it follows that
the joint distribution is a multivariate Gaussian distribution. The inverse of the
covariance matrix (also called the precision matrix) for this multivariate distri-
bution directly reflects the independencies defined by the BN; the entry defined
by a pair of variables is zero if and only if the two variables are conditionally
independent given the other variables in the network.
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2.2. A latent variable model

The collaborative filtering method proposed in [20] relies on a Bayesian net-
work representation that provides a joint model of all items, users, and their
ratings. Before presenting the details of the model, we shall first introduce some
notation.

We will denote the matrix of ratings by R, which is of size #U ×#M . Here
#U is the number of users and #M is the number of items that are rated. R is a
sparse matrix, meaning that it contains a considerable amount of missing values
(more than 99% missing observations is quite common). The observed ratings
are either realizations of ordinal variables (discrete variables with ordered states,
e.g., “Dislike”, “Neutral”, “Like”) or real numbers. In the following we will
consider only continuous ratings encoded by real numbers, and assume that
ratings given as ordinal variables have been translated into a numeric scale.

We use p as the index of an arbitrary person using the system, and i is
the index of an item that can be rated. Consequently, R (p, i) is the rating
that person p gives item i. Next, we will use δ(p, i) as an indicator function to
show whether or not person p has rated item i. Specifically, δ(p, i) = 1 if the
rating exists and δ(p, i) = 0 otherwise. Furthermore, I(p) is the set of items that
person p has rated, i.e., I(p) = ∪i:δ(p,i) 6=0{i}, and similarly P(i) = ∪p:δ(p,i) 6=0{p}
is the set of persons that have rated item i. Lowercase letters are used to signify
that a random variable is observed, so r (p, i) is the rating that p has given item
i (that is, δ(p, i) = 1 in this case). Finally, we let r denote all observed ratings
(the part of R that is not missing).

When doing model-based collaborative filtering from a general perspective
we look for a probabilistic model that for any item i and user p defines a prob-
ability distribution over R(p, i) given model parameters ρ and observed ratings
r. Given such a probability distribution, we can make recommendations based
on the expected rating or the median rating for that distribution.

The probabilistic model that is proposed in [20] defines a joint distribution
over all ratings by introducing abstract latent variable representations of both
the items and the users. Specifically, each item i is represented by the random
variables Mi and each user p is represented by the random variables Up. In
a movie context one may for example interpret the different dimensions of mi

as representing different features of movie i such as to what extend the movie
uses a well-known cast and the amount of explicit violence in the movie. Simi-
larly, the dimensions of up can be interpreted as corresponding to different user
characteristics. Hence, since the variables are continuous, the value up,j of the
jth variable Up,j can be interpreted as representing to what extent user p has
the characteristics modeled by variable j. This also means that rather than
assigning a user to a single “user group”, the continuous variables Up,j encode
to what extent a user belongs to a certain group.1 A priori we assume that
Up ∼ N (0, I), for 1 ≤ p ≤ #U , and Mi ∼ N (0, I), for 1 ≤ i ≤ #M .

1See [20] for an empirical investigation into the possible semantics of the abstract latent
variable representations.
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Figure 1: The full statistical model for collaborative filtering; this model has #M = 3 and
#U = 2. The figure is from [20].

The rating assigned to item i by user p is modeled by assuming the existence
of a linear mapping from the space describing users and items to the numerical
rating scale:

R (p, i) |{Mi =mi,Up = up} = v
T

pmi +w
T

i up + φp + ψi + ǫ. (1)

The rating in Equation (1) is thus determined as an additive combination of
user p’s preferences vp for (or attitude towards) the features describing item i
and item i’s disposition wi towards the different user groups.

2 The constants φp
and ψi in Equation (1) can be interpreted as representing the average rating of
user p and the average rating of item i (after compensating for the user average),
respectively. Furthermore, ǫ represents “sensor noise”, i.e., the variation in the
ratings the model cannot explain. For mathematical convenience, we assume
that ǫ ∼ N (0, θ). It follows that the marginal distribution for R (p, i) can be
written as

R (p, i) ∼ N
(

φp + ψi,v
T

pvp +w
T

iwi + θ
)

.

Finally it should be emphasized that we have the same number of latent variables
for all users (i.e., |Uo| = |Up|) and for all movies (i.e., |Mr| = |Mi|). Note,
however, that |Mi| and |Up| may differ. Figure 1 (taken from [20]) shows a BN
representation of the proposed model for a domain with two users and three
items.

As described in [20] this model has several desirable properties. It allows for a
semantic interpretation of the features/variables characterizing users and items,

2Note that the relative importance of the movie features and the user group can be encoded
in the weight vectors vp and wi.
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and it naturally provides support for making group recommendation. Further-
more, the model provides a generative perspective encompassing all ratings,
users, and items simultaneously by entertaining a global view of the recommen-
dation task. To see this, let us follow a chain of reasoning in the model depicted
in Figure 1: Assume User 1 has already rated Item 1, so that r (1, 1) has been
observed by the system. When he also rates Item 2 (that is, R (1, 2) = r (1, 2) is
observed), one immediate effect is that the posterior distributions over U1 and
M2 are updated to take the new information into account. Note that changing
U1 gives the model a new perspective towards all ratings User 1 has given, in
particular r (1, 1): If U1 is changed, we get a new understanding of how that
particular rating came to be, and this may in turn shed new light on Item 1.
Thus, the encoding of Item 1, represented by the distribution over M1, should
be altered. Next, the new posterior over M1 makes the model reconsider its
representation of all users who have already rated Item 1, and thus the inter-
nal representation of those users must also be updated. This will again change
the model’s interpretation of all ratings that these users have given, and so on,
quickly resulting in correlations between all ratings of all users. In general, the
global perspective is both a desired property of the model as well as the source
of a problem: From a predictive point of view, the model efficiently leverages
information from all observed ratings when generating new recommendations.
This results in high quality recommendations, as demonstrated in [20], where
the recommendation accuracy of the model significantly outperform other col-
laborative filtering systems when evaluated using the MovieLens 100k data set
[15]. On the other hand, since all latent variables in the model quickly become
entangled, this leads to computational challenges that must be further addressed
to ensure that the model scales to reasonably sized data sets. This is the main
topic of the next section.

3. Learning the model from data

The learning algorithm described in [20] is based on the EM-algorithm [9].
Unfortunately, the computational complexity of that approach makes learning
prohibitive for many real-world sized data sets. To see the problem, consider the
rule for learning the weight vp, where the M-step [20] amounts to calculating

vp ←



τ/θ · I+
∑

i∈I(p)

E [MiM
T

i ]





−1

×





∑

i∈I(p)

(

r (p, i)E [Mi]− E
[

MiU
T

p

]

wi − E [Mi] (ψi + φp)
)



 ,

(2)

where τ is a parameter introduced by Tikhonov regularization of the learned
weights. Notice that the terms E [MiM

T

i ] and E
[

MiU
T

p

]

are required. They
are established during the algorithm’s E-step, where the covariance matrix over
all latent variables must be calculated. To find the correlation between two
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latent vectors we must first determine the full covariance matrix of all latent
variables before the non-relevant variables can be marginalized out. The size
of the full covariance matrix quickly becomes problematic; a modest data set
containing #U = 10.000 users and #M = 1.000 items results in a covariance
matrix with more than 108 entries that need to be calculated. The source
for this computational problem is the model’s global perspective (discussed in
Section 2.2), which generally introduces a posteriori correlations among all the
latent variables.

In what follows we propose two approaches for speeding up the learning of
the parameters. Firstly, an alternative learning algorithm based on a varia-
tional Bayes method is developed. As we shall see, by relying on this learning
algorithm, the complexity problem mentioned above is mitigated (in fact, each
iteration of the algorithm is linear in the number of ratings, users, and items).
Secondly, we position the proposed learning algorithm within a MapReduce
context, thereby also achieving a framework that can exploit distributed archi-
tectures and is scalable with the size of the data.

3.1. Variational Bayes approximations

Our starting-point for the subsequent developments is the definition of the
variational Bayes [2, 32] framework. An introduction to the variational Bayes
procedure can be found in [16]. In its general form, one considers the ran-
dom variables (X,Z), where X = x is observed and we want to approximate
f(z|x). We call the approximation q (z), where we for simplicity of notation
suppress that q (z) depends on the observation x. We measure the quality of
the approximation by the KL distance from q to f , and obtain

D ( q ‖ f ) =

∫

z

q (z) log

(

q (z)

f(z|x)

)

dz

=

∫

z

q (z) log

(

q (z)

f(z,x)

)

dz + log (f(x)) .

By simple rearrangement, defining F(q) = −
∫

z
q (z) log

(

q(z)
f(z,x)

)

dz and noting

that D ( q ‖ f ) ≥ 0, we get that

log (f(x)) ≥ F(q).

It follows that finding the q (z) that minimizes D ( q ‖ f ) is equivalent to max-
imizing F(q), under the constraints that q (z) is to be a probability density.

Note that F(q) = −
∫

z
q (z) log

(

q(z)
f(z,x)

)

dz = Eq

[

log
(

f(z,x)
q(z)

)]

= H(q) +

Eq [log f(z,x)], where H(q) = −Eq [log (q (z))] is the entropy of q (·).
It turns out that we can maximize F(q) in a tractable way if we make

structural assumptions about q (·). One popular strategy is to assume that q (z)
factorizes into smaller factors, like for instance its separate variables, q (z) =
∏

i qi (zi). This approach is commonly known as the mean-field approximation.
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In this case, through calculus of variations, we find that F(q) is maximized by
setting

log qi (zi) = E [log (f(z,x))] + c, (3)

where c is a constant and the expectation is wrt. all Zj ∼ qj s.t. j 6= i [32]. In
principle, this allows us to calculate the distribution for Zi if we assume that
the distribution for each Zj , j 6= i, is known.

However, an iterative procedure will have to be followed in practice. When
utilizing Equation (3) to find the optimal approximation for q1 (z1), say, the
right-hand side of the equation will include expected values of (functions of) the
other variables, that are calculated according to their respective approximate
distributions. Thus, if, say, q2 (z2) is wrongly assessed, the error will in turn
affect the estimate of q1 (z1), and so on. Fortunately, the contraction theorem
applies, ensuring an eventual convergence to a local optimum [32]. To this end,
F(q) is monitored and used to determine the termination of the iterations.

3.2. Variational Bayes in our model

The specification of the full generative model over (R,U,M) given the pa-
rameters ρ = (φ,ψ,v ,w , θ) can be expressed as

f(r,u,m|ρ) = f(r|m,u,ρ)f(m|ρ)f(u|ρ),

where

f(r|m,u,ρ) =

#U
∏

p=1

∏

i∈I(p)

√

θ

2π
exp

(

−
θ

2
(r (p, i)− (vT

pmi +w
T

i up + φp + ψi))
2

)

;

f(mi|ρ) = N (0s, Is×s);

f(up|ρ) = N (0t, It×t).

Further, in a Bayesian formulation of the problem, we give the following prior
distributions to our parameters

f(θ) = Gamma(a, b), f(ψi) = N (µψ , 1/κψ) , f(φp) = N (µφ , 1/κφ)

f(wi) = N (0s, 1/τ · Is×s) , f(vp) = N (0t, 1/τ · It×t) .

This allows us to, in principle, calculate f(u,m,ρ|r). Note that we have kept
µφ = 0 fixed in the experiments reported in this paper, and for each experiment
we have defined µψ as the mid-point of the relevant rating-scale. Furthermore,
we have found the behavior of the model to be rather robust wrt. the values of
κψ , κφ , a and b, and have for simplicity set each of them equal to one.

To cast the present problem into the formulation of Equation (3), we let Z
denote all the latent variables and model parameters Z = (M,U,φ,ψ,v,w, θ)
and X be the part of R that is observed (the other ratings are barren, and can
be disregarded during parameter learning).

8



Two flavors of the variational Bayes framework will be examined. The first
one, which we will name generalized mean-field (GMF), takes as its starting
point that the variational approximation of the full joint factorizes according to

q (u,m,ρ) = q (θ)

#U
∏

p=1

q (φp) q (up) q (vp)

#M
∏

i=1

q (ψi) q (mi) q (wi) .

Thus, the posterior distribution over the variables of interest given the ratings
are approximated by assuming independence between vectors of latent vari-
ables. For instance, the generalized mean-field approximation prescribes that
Mi⊥⊥Up|{R = r}, and Mi⊥⊥Mj |{R = r}. On the other hand, note that the
dimensions of each random vector are seen as correlated in the posterior, e.g.,
Mi,k 6⊥⊥Mi,l|{R = r} for a specific item i.

The second formulation, which is the standard mean-field (later to be re-
ferred to by MF), assumes that the posterior factorizes over all variables, giving
us

q (u,m,ρ) = q (θ)

#U
∏

p=1



q (φp)

|Up|
∏

j=1

q (up,j) q (vp,j)



×

#M
∏

i=1



q (ψi)

|Mi|
∏

j=1

q (mi,j) q (wi,j)



 ,

which introduces the additional set of assumptions that Mi,k⊥⊥Mi,l|{R = r}
and Up,k⊥⊥Up,l|{R = r} further to those previously discussed. The details of
the developments are given in Appendix A, so here we will only show one exam-
ple and comment on the relevant time complexity of the calculations, namely
the weight vp, used to model user p’s preferences towards the items’ latent
representations.

Using the (generalized) variational Bayes machinery, Vp is now modeled as
a random variable with posterior distribution q (vp), which has the form of a

multivariate Gaussian distribution, q (vp) = N
(

µvp
,Q−1

vp

)

, where

Q
vp
← τI+ E [Θ]

∑

i∈I(p)

E [MiM
T

i ] (4)

µvp
← Q−1

vp
E [Θ]

∑

i∈I(p)

E [Mi]

(

r (p, i)− E [Up]
T

E [Wi]− E [Ψi]− E [Φp]

)

.

As can be seen, the calculation of µvp
strongly resembles the calculation of the

point-estimate when using the EM algorithm (Equation (2)), but slightly simpli-
fied by utilizing that Mi is constrained to be independent of the other random
variables in the posterior q (u,m,ρ). The real benefit from a calculation point
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of view, though, is due to the simplifications of the expectations coming into the
calculations. Where the EM-algorithm using exact inference demanded that the
covariance matrix over all latent variables was calculated to find E [MiM

T

i ] and
E
[

MiU
T

p

]

, it is in the generalized mean-field model sufficient to look at each
latent vector at a time (as they are assumed to be independent a posteriori);
E [MiM

T

i ] can be found directly from the posterior variational distribution for
Mi.

Finally, the standard MF approach results in q (vp,k) = N
(

µvp,k
, Q−1

vp,k

)

,

where

Qvp,k
← τ + E [Θ]

∑

i∈I(p)

E
[

M2
i,k

]

(5)

µvp,k
← Q−1

vp,k
E [Θ]

∑

i∈I(p)

E [Mi,k]

(

r (p, i)− E [Up]
T

E [Wi]− E [Ψi]− E [Φp]

−
∑

ℓ 6=k

E [Mi,ℓ]E [Vp,ℓ]

)

.

The logic behind the updating-rule remains the same, but the calculations are
further simplified completely removing the need to invert matrices during the
calculations. A Matlab implementation of the algorithm can be downloaded
from http://people.cs.aau.dk/~tdn/VB-CF/.

3.3. Parallelization

MapReduce [8, 6] is a paradigm and framework to efficiently distribute data-
intensive calculations in parallel over multiple computational cores/CPUs. This
parallelization is most efficient when calculations are done concurrently and re-
quire no or little communication between the different calculation units. It has
been shown [6] that Statistical Query Models (SQMs) [17] fit the MapReduce
framework well. The mean-field approximation described above lead to calcu-
lation steps as in Equation (5), where – for a fixed p – the calculations amount
to calculations of (weighted) sums over subsets of the data. Parallelization is
immediate with subsets of data being summarized at each computational core.
This comes as no surprise as the mean-field model is indeed an SQM. We have
run our experiments on a configuration with relatively simple computational
nodes (separate memory, shared disk). Here, data transfer and memory usage
can be kept low by loading a separate subset of the data at each node, letting
the mappers calculate the relevant statistics from that subset of the data, and
having the reducer summarize the partial sums and finalize the calculations.

To see how this works in detail, assume that the rating data is separated
into #Γ parts. Each part of the data is defined as a sparse matrix over the
same domain as the full data set would occupy, but holding only a subset of the
ratings. For simplicity of notation, assume that the calculations are done on a
cluster with #Γ cores, and that each core is able to hold its dedicated subset of
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the data in memory. When calculating µvp,k
in Equation (5), we let each core

γ calculate

partial(γ)←
∑

i∈I(p|γ)

E [Mi,k]

(

r (p, i)− E [Up]
T

E [Wi]− E [Ψi]− E [Φp]

−
∑

ℓ 6=k

E [Mi,ℓ]E [Vp,ℓ]

)

,

where we use I(p|γ) to signify the set of items that person p has rated in the
data set held by core γ. Then, the reducer simply calculates

µvp,k
← Q−1

vp,k
E [Θ]

#Γ
∑

γ=1

partial(γ),

and the result is identical to Equation (5). Similar parallelization is readily
available for all the remaining learning rules of the recommender model.

Note that the quantities entering into the calculations are either scalars
(E [Mi,ℓ], E [Vp,ℓ], E [Ψi], E [Φp], Qvp,k

, E [Θ]) or modestly sized vectors (E [Up],
E [Wi]), and that the reducer step is computationally simple. The overhead
due to the parallelization is therefore negligible, and in practice one will observe
that the computational time is close to inversely proportional to #Γ. This is
in contrast to the maximum-likelihood learning [20]: In that case, the reducer
would have to calculate E

[

MiU
T

p

]

(see Equation (2)). These expectations are
found by calculating the inverse of the precision matrix containing all latent
variables, which is a computationally daunting task.

4. Empirical results

In this section we will report on the results of the proposed collaborative
filtering algorithm when run on a number of standard data sets. For the smaller
data sets, where more computationally expensive straw-men can be employed,
we will also report on those results for comparison.

4.1. Empirical setup

When learning the parameters of our model with a fixed model structure,
we use the MF learning scheme described in Section 3. For the results reported
in this section, we terminated the algorithm when the relative increase in the
likelihood bound was less than 10−5 from one iteration to the next, or when
the algorithm had run for 100 iterations. As we have already discussed, the
GMF method is computationally more expensive than the standard MF. When
learning a model using the generalized mean-field method we therefore initialize
the learning algorithm by first learning a model using the MF algorithm, and
then using the learned model as the starting-point for the GMF algorithm.
Following this approach, GMF learning typically terminated after only 10–25
iterations.
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Name #ratings #users #items Sparsity Range

MovieLens 100k [15] 100.000 943 1.682 93.7% 1⋆ – 5⋆
MovieLens 1M [15] 1.000.209 6.040 3.952 95.8% 1⋆ – 5⋆
MovieLens 10M [15] 10.000.054 71.567 10.681 98.7% 1⋆ – 5⋆
Last.fm 92.834 1.892 18.745 98.4% 1⋆ – 5⋆
Jester [14] 4.136.630 73.421 100 43.7% [−10,+10]
BookCrossing 433.671 77.805 185.973 99.9% 1⋆ – 10⋆
Yahoo! 717.872.016 1.823.179 136.736 99.7% 1⋆ – 5⋆

Table 1: Summary statistics for the data sets included in our study.

Deciding upon the model structure amounts to determining the number of
latent variables to describe both users and items as well as the value for τ .
When doing so, we used the same greedy strategy as described in [20]: The idea
is to start from the simplest model structure, i.e., setting |Up| = 1, |Mi| = 1,
for all i and p, and setting τ = 1.3 τ is then gradually increased until the
results, calculated using the wrapper approach, show that this is harmful for the
predictive performance; for the experiments reported in this section we used four
folds. Next we iteratively considered the neighboring models (|Up| = 2, |Mi| =
1) and (|Up| = 1, |Mi| = 2) in the same fashion, and at each step select the
best scoring model as the current candidate model. When learning using the
GMF algorithm, we first use the standard MF algorithm for structure learning,
and then use the GMF algorithm only to calculate the posterior over the fixed
structure.

4.2. The data sets

Before presenting the experimental results we first give some summary statis-
tics for the data sets used in the experiments, see Table 1. For each data set
we report its most commonly used name together with the number of ratings,
users, and items. We also report the sparsity level, calculated as the fraction of
item-user combination not having a rating, as well as the range of legal ratings.
For the latter, numbers postfixed by stars denote integer ratings, whereas the
interval for the Jester data set indicates real-valued ratings.

The MovieLens data sets [15] contain user supplied ratings of movies. There
are three versions of the MovieLens data sets, namely MovieLens 100k, Movie-

Lens 1M, and MovieLens 10M. The MovieLens 100k data set is supplied with
five predefined folds for cross-validation, and these folds were also used dur-
ing testing. For the two other MovieLens sets, we have randomly partitioned
the data sets in a training set with 80% of the ratings and a test set with the
remaining 20% of the ratings.4

3We found that the behaviour of the system was quite robust wrt. the values of a, b, κψ
and κφ. All these parameters were therefore rather arbitrarily set to 1 in the experiments
reported in this paper.

4The MovieLens 10M data set also includes a five fold partitioning of the data. However,
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The Last.fm data set5 documents the number of times a user of the Last.fm
service has listened to different music artists. In its original form, the data
set contains information about the social networking activities, tagging, and
music listening information of the users. In order to use the data within our
framework, we have made a stripped down and re-coded version of the data set,
focusing only on the amount of time that a user has listened to a particular
artist: For each user, the 10% of the artists that the user has listened to the
least are rated with “One star”. The artists that appear between the 10% and
30% percentiles of the listening time are coded as “Two stars”. The artists with
a listening time between the 30% and 70% percentiles are recoded as “Three
stars”, and the artists the user have listened to from the 70% percentile and
up to (and including) the 90% percentile are given “Four stars”. The artists
above the 90% percentile are given “Five stars”. The encoding scheme intro-
duces some particularities in the data. Firstly, all users have the same average
rating and the same observed variance; in fact they have identical empirical dis-
tributions for their ratings. Secondly, the empirical distributions are symmetric;
there are equally many ratings of one and five stars and similarly for two and
four stars. We note that the simple structure of the ratings does not give the
proposed model an unfair advantage over the straw-men models as it, e.g., still
explicitly tries to capture potential differences in the average ratings between
users through the user offset φp.

6

The Jester data [14] contains ratings of jokes. This data set is not as sparse
as the other data sets; 19.2% of the users have rated all the jokes, approximately
17% of the items have been rated by more than 90% of the users, and in total
the sparsity level is 43.7%.

The original BookCrossing data set contains 1.149.780 ratings from 278.858
users with demographic information regarding a total of 271.379 books. For the
empirical results reported in this paper, we have disregarded the demographic
information. Further, the data set contains both explicit and implicit ratings.
We have only considered the explicit ratings, leaving us with a smaller data set
(see Table 1).

Finally, the Yahoo! data set contains users’ ratings of songs. The data set
also includes information about artist, album, and genre attributes, but this
information has been disregarded for the experiments in the present paper.

4.3. Accuracy results

In the following subsections we report on the accuracy results of the mod-
els learned by the proposed algorithms using the data sets described above.
For comparison we also evaluate the accuracy using the following straw-men
methods:

the training/test partitions define disjoint user sets, and they are therefore not suitable for
the present type of model learning and testing.

5http://grouplens.org/datasets/hetrec-2011/
6A script used to recode the data set is available from http://people.cs.aau.dk/~tdn/

VB-CF/.
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Pearson(k) denotes a memory-based approach, where the predicted rating of
the active item is calculated as a weighted sum of the ratings given to
the k items deemed most important (measured using Pearson correlation)
wrt. the active item [15].

Euclidean(k) is the k-nearest neighbors algorithm, where the distance is cal-
culated using the Euclidean norm [24].

SVD(λ) performs a singular value decomposition, where λ is the regularization
weight. For each setting of λ we ran experiments with the number of
dimensions ranging from one to twenty-five, and we present the best of
these results here. Note that when choosing the number of dimensions
based on the obtained results on the test set, we slightly favor the SVD
algorithm over the other algorithms. Two options were considered for λ:
λ = 0, resulting in a non-regularized model, and λ = 0.01 (as done by
[30]). The learning was implemented with an adaptive learning rate. It
was terminated when the relative improvement in error was lower than
10−5 or when the algorithm had run for 10.000 iterations.

The quality of recommendations are measured using the Mean Absolute Error

(MAE). For the calculation of the MAE results in this section we rounded off
the predicted ratings to the nearest integer value between one and five as this
slightly improved the results.

4.3.1. The MovieLens data sets

In addition to the straw-men methods listed above, we also compared the
accuracy results with the collaborative filtering model learned using the method
described in [20], denoted EM in Table 2.

The results for MovieLens 100k are shown in Table 2, where we see that
both the regular and generalized mean-field models outperform the straw-men
models. The results in the scientific literature are not directly comparable to
ours, mainly because the experimental settings are different. Many researchers
using the MovieLens 100k data set have made their own training and test sets
without further documentation. However, the reported MAE values are typi-
cally about 0.73 – 0.74 or poorer [15, 31, 26, 23, 27, 18, 5, 28, 22, 35] although
results as low as 0.690 have also recently been reported [12]. See [20] for further
discussion of the performance of these straw-men models.

The data sets MovieLens 1M and 10M do not come with predefined cross-
validation folds and were instead randomly divided into two sets each: 80% for
training and 20% for testing. The results of the comparison can also be seen
in Table 2. For the MovieLens 10M data set we have only made a comparison
based on SVD; the size of the data set makes direct use of the other straw-men
models intractable.

Based on the MovieLens 10M data set, the mean-field learning algorithm
produced a model with two latent variables representing the users and nineteen
latent variables representing the items; the prior precision was set to 100. In
comparison, the best SVD model uses C = 15 dimensions; the SVD model was

14



selected from a set of candidate models with dimensions {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
12, 14, 15, 16, 18, 20}. The mean-field model learned for the MovieLens 1M data
set contains two latent variables representing users and 10 latent variables rep-
resenting items.

MovieLens
100k 1M 10M

Pearson(10) 0.7295 0.7433 —
Euclidean(10) 0.7446 0.7809 —
Pearson(25) 0.7080 0.7161 —
Euclidean(25) 0.7244 0.7532 —
Pearson(50) 0.7110 0.7046 —
Euclidean(50) 0.7328 0.7389 —
Pearson(all) 0.7122 0.7081 —
Euclidean(all) 0.7220 0.7229 —
SVD(λ = 0) 0.6916 0.6829 0.6223
SVD(λ = 0.01) 0.6869 0.6563 0.6099
EM 0.6848 — —
MF 0.6745 0.6412 0.5953
GMF 0.6736 0.6412 0.5953

Table 2: The table shows the MAE results for the data sets MovieLens 100k, MovieLens
1M, and MovieLens 10M. Note that the values can only be compared vertically and not
horizontally.

4.3.2. The Last.fm, Jester, and BookCrossing data sets

Due to the relatively small size of the modified Last.fm data set we have been
able to compare the proposed method with all the straw-men methods. On the
other hand, we were only able to compare the results of the proposed method
with that of SVD for the Jester and BookCrossing data sets. The results can
be found in Table 3.

4.3.3. The Yahoo data set

The size of the Yahoo! 700Mmusic data set prohibit a full structural learning
using the equipment at our disposal. Instead we have, somewhat arbitrarily,
chosen to learn a regular mean-field model with four latent variables for both
the users and the items; in total the learned model contains approximately 7.7
million latent variables. The learned model provides an MAE of 0.7942 based on
the predefined training/test set division. In comparison, the best MAE result
reported by MyMediaLite [11] is 0.81445 using a factorized matrix approach;7

due to the size of the data set we have not been able to compare the method
with the other straw-men methods listed above.

7http://mymedialite.net/examples/datasets.html
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Last.fm Jester BookCrossing
Pearson(10) 0.8915 — —
Euclidean(10) 0.9485 — —
Pearson(25) 0.8664 — —
Euclidean(25) 0.9291 — —
Pearson(50) 0.8601 — —
Euclidean(50) 0.9209 — —
Pearson(all) 0.8547 — —
Euclidean(all) 0.9131 — —
SVD(λ = 0) 0.8405 3.3669 1.8362
SVD(λ = 0.01) 0.8460 3.2545 1.7813
MF 0.8077 3.1335 1.1576
GMF 0.8077 3.1191 1.1576

Table 3: The tables shows the MAE results for the Last.fm, Jester and BookCrossing data
sets. Note that MAE is not normalized wrt. the range of the ratings. The MAE values for
Jester, which contains ratings between -10 and +10, are therefore larger than those for Last.fm
(ranging from one to five ) and BookCrossing (between one and ten).

4.4. Run-time performance

In this section we compare the run-time performance of the regular mean-
field implementation (that does not exploit the MapReduce architecture) with
the EM-algorithm described in [20] based on the MovieLens 100k data set. The
results of the comparison can be seen in Figure 2, which shows a log-log plot
of the learning time for sixteen different collaborative filtering models using the
mean-field approach as well as the EM-algorithm described in [20]. The sixteen
different models vary in the number of latent variables (ranging from one to
four) used to descried the users and the items in the domain. As can be seen
from the figure, the mean-field approach achieves a substantial performance
improvement compared to the EM-algorithm, and, as demonstrated in Table 2,
this improvement is obtained without a loss in precision.

4.5. Cold-start

In this section we investigate how vulnerable our model is to cold-start prob-
lems. For the investigation, we have used the MovieLens 100k data set with
the pre-defined cross-validation folds, but with the following changes: For each
cross-validation iteration, we modify the training set by randomly removing all
but κ ratings from one fifth of the users (called the cold-start users). A model is
then learned from this modified training set, and evaluated using MAE on the
associated predefined test set (retaining only the cold-start users). We repeat
the process five times to minimize the stochasticity of the results due to the ran-
dom selection of which ratings to retain for the chosen users. Next, the process
is repeated, by choosing a new set of cold-start users, and calculating the MAE
for the five models learned when their ratings are partly removed. We continue
in this way a total of five times, making sure that each user has been selected as
a cold-start user exactly once. The MAE results from these 25 repetitions are
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Figure 2: Log-log plot of the comparison of the runtime between the mean-field approach and
the learning scheme described in [20]. The numbers relate to the MovieLens 100k data set
[15].

averaged, and stored as the MAE on the first cross-validation fold. The same
procedure is then repeated for the other four folds, thus in total requiring 125
runs of the learning algorithm.

For each cross-validation fold, we chose the structure (|Up|, |Mi|, τ) by
structural learning. For simplicity, the structure was kept fixed for all 25 repli-
cations inside one cross-validation fold, and was chosen to fit the original data
set, i.e., the data set we had prior to the removal of any ratings. The results
aggregated over all five cross-validation folds are reported in Figure 3. On the
x-axis we show κ, the number of ratings left in the training set for the cold-start-
users. On the y-axis we give the cold-start efficiency, which for a particular κ
value is defined as the MAE of the full data set divided by the MAE obtained
as above when the cold-start users had only κ ratings. An efficiency close to one
thus means that the system has been able to learn almost all the information
available about the cold-start users using only κ of these users’ ratings. The
figure shows the results for the mean-field algorithm in solid line with circular
markers and the results of the SVD algorithm (dashed line and crosses). We
note that not only does the mean-field algorithm obtain better results for the
whole data set (as reported in Table 2), it is also better suited for cold-start,
with an efficiency above 0.8 for κ = 1. The results for the generalized mean-field
model was similar to the results of the mean-field model, but are omitted for
clarity of the figure.
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Figure 3: Efficiency vs κ for MF and SVD.

4.6. Summary of results

The first thing to notice from the results reported in this section is that
the latent variable model described in Section 2.2 consistently and significantly
outperforms the collection of straw-men methods on a wide range of data sets
(see Table 2 and Table 3). Furthermore, strong results were documented in cold-
start situations (Figure 3). Three different algorithms for learning the latent
variable model have been evaluated:

• The EM algorithm relies on exact inference and is described in [20] for
the latent variable model considered in this paper. The computational
complexity of this algorithm is, however, problematic when considering
realistically sized data sets. In this paper it thus serves as a point of refer-
ence for the two approximate algorithms (MF and GMF) being proposed.

• The MF algorithm is an approximate inference algorithm that assumes
that every latent variable is independent of all the other latent variables
a posteriori. This assumption, which improves the run-time performance
with several orders of magnitude (Figure 2), violates the inherent mod-
eling premises of the model. Still, as reported in Table 2, this apparent
inconsistency does not lead to a loss in precision. In fact, a small improve-
ment is observed. One possible explanation for this is the regularization
effect produced by the prior distributions over the model parameters, thus
reducing the risk/effect of over-fitting.

• The GMF alternative is a natural intermediate solution, where only some
of the latent variables (namely those representing different aspects of a
single item or person) are correlated a posteriori. The application of the
GMF algorithm had only a modest impact on the results when compared
to the MF approach, thus indicating that the extra modelling flexibility
was not significant when evaluated on the data sets we considered. On
the other hand, its computational complexity is higher than that of the
MF algorithm, because it requires inversion of matrices that are in gen-
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eral non-diagonal whereas the MF algorithm works with scalers (compare
Equation (4) to Equation (5)).

We conclude that out of the three approaches examined, the MF algorithm
appears to find the best balance between computational complexity and predic-
tive ability for the data sets we have considered in this study.

5. Conclusion and future work

In this paper we have proposed two scalable algorithms for learning prob-
abilistic collaborative filtering models that explicitly represents all users and
items simultaneously [20]. The algorithms are based on the variational Bayes
framework and differ in terms of the complexity of the variational distributions
being applied. The computational complexity of the algorithms is linear in the
number of ratings. Furthermore, both algorithms support a seamless parallel
implementation that can easily be exploited in a MapReduce architecture. This
allows for the processing of extremely large data sets, which we have illustrated
by evaluating and comparing the algorithm based on the Yahoo 700M data set.
The algorithms have also been evaluated on a collection of other publicly avail-
able collaborative filtering data sets and compared with well-known straw-men
methods. The empirical results demonstrate that not only do the algorithms
significantly outperform the straw-men methods, but we also observe a very
favorable performance in cold-start scenarios. We observe only minor differ-
ences between the two algorithms wrt. prediction quality, and therefore do not
find support for selecting the computationally more complex algorithm (GMF)
over its simplified counterpart (MF) in our analysis. In particular, the simpler
version is recommended for use in big data situations.

As part of our future work, we are currently exploring methods for extend-
ing the model and the learning algorithm to also include content information
about users and items. We expect that this type of information will be encoded
using discrete variables, thus producing a particular type of hybrid probabilistic
collaborative filtering model.

Appendix A. Developments of variational Bayes inference

Appendix A.1. Model definition

In this appendix we will derive the updating rules for the variational Bayes
learning and inference algorithms.

The specification of the full generative model over (R,U,M) given the pa-
rameters ρ = (φ,ψ,v,w, θ) can be expressed as

f(r,u,m|ρ) = f(r|m,u,ρ)f(m|ρ)f(u|ρ),
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where

f(r|m,u,ρ) =

#U
∏

p=1

∏

i∈I(p)

√

θ

2π
exp

(

−
θ

2
(r (p, i)− (vT

pmi +w
T

i up + φp + ψi))
2

)

f(mi|ρ) = N (0s, Is×s)

f(up|ρ) = N (0t, It×t).

Further, in a Bayesian formulation of the problem, we give the following prior
distributions to our parameters

f(θ) = Gamma(a, b), f(ψi) = N (µψ , 1/κψ) , f(φp) = N (µφ , 1/κφ)

f(wi) = N (0s, 1/τ · Is×s) , f(vp) = N (0t, 1/τ · It×t) .

This allows us to, in principle, calculate f(u,m,ρ|r). Note that we have kept
µφ = 0 fixed in the experiments reported in this paper.

Appendix A.2. The generalized mean-field model

We will first assume a full variational joint distribution of the form

q (u,m,ρ) = q (θ)

#U
∏

p=1

q (φp) q (up) q (vp)

#M
∏

i=1

q (ψi) q (mi) q (wi) ,

i.e., the distribution factors into terms so that, e.g., Mi⊥⊥Up|R. On the other
hand, note that Mi,k 6⊥⊥Mi,l|R, etc.

Based on Equation (3), we get the following for Mi, where i ∈ {1, . . . ,#M}
is fixed:

log q (mi) =

∫

u,m
−i,ρ

q (u,m−i,ρ) log f(r,m,u,ρ)du dm−i dρ+ const.,

(A.1)
where m−i is used as a shorthand for the collection of all mj with j 6= i and u
denotes the collection of all up, p = 1, . . . ,#U .

The integral can be expanded as:

∫

u,m
−i,ρ

q (u,m−i,ρ) log f(r,m,u,ρ)du dm−i dρ

=

∫

u,m
−i,ρ

q (u,m−i,ρ)

#M
∑

j=1

∑

p∈P(j)

log f(r (p, j) |mj ,vp,up,wj , φp, ψj , θ)du dm−i dρ

+ log f(mi) + const.

=

∫

u,m
−i,ρ

q (u,m−i,ρ)
∑

p∈P(i)

log f(r (p, i) |mi,vp,up,wi, φp, ψi, θ)du dm−i dρ

+ log f(mi) + const.,
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where the constant is used to continuously collect all terms that do not depend
on mi. Next, log f(r (p, i) |mi,vp,up,wi, φp, ψi, θ) can be written as follows
(when all terms not involvingmi are continuously collected into the constant):

log f(r (p, i) |mi,vp,up,wi, φp, ψi, θ)

= −
θ

2

(

r (p, i)− (mT

i vp + u
T

pwi + φp + ψi)
)2

+ const.

= −
θ

2
mT

i vpv
T

pmi + θ ·mT

i vp
(

r (p, i)− uT

pwi − φp − ψi)
)

+ const.

(A.2)

Consider now an r-dimensional Gaussian variable X ∼ N
(

µ,Q−1
)

, where
µ is the expected value and Q is the inverse variance, or precision. By simple
calculation, and letting all terms that are not depending on x continuously
disappear into the constant, we find that

log f(x|µ,Q) = log

(

(2π)r/2 |Q|1/2 exp

(

−
1

2
(x− µ)TQ (x− µ)

))

= −
1

2
(x− µ)TQ (x− µ) + const.

= −
1

2
xTQx+ xTQµ+ const. (A.3)

Since Mi ∼ N (0s, Is×s), it follows that log f(mi) = − 1
2m

T

imi + const. Uti-
lizing Equation (A.2), the integral in Equation (A.1) can therefore be written
as

log q (mi)

= −
1

2
mT

i



I+ E [Θ]
∑

p∈P(i)

E
[

VpV
T

p

]



mi

+ E [Θ]mT

i





∑

p∈P(i)

E [Vp]
(

r (p, i)− E [Up]
T

E [Wi]− E [Φp]− E [Ψi]
)





+ const.

Comparing the terms of Equation (A.4) with those of Equation (A.3), we find
that q (mi) must be a Gaussian with precision

Q
mi

= I+ E [Θ]
∑

p∈P(i)

E
[

VpV
T

p

]

and expectation

Q−1
mi

E [Θ]
∑

p∈P(i)

E [Vp]
(

r (p, i)− E [Up]
T

E [Wi]− E [Φp]− E [Ψi]
)

.

Using the same procedure as above we find that q (vp) also has the form of

a multivariate Gaussian distribution, q (vp) = N
(

µvp
,Q−1

vp

)

, where
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Q
vp

= τI + E [Θ]
∑

i∈I(p)

E [MiM
T

i ] ;

µvp
= Q−1

vp
E [Θ]

∑

i∈I(p)

E [Mi]

(

r (p, i)− E [Up]
T

E [Wi]− E [Φp]− E [Ψi]

)

.

Similar update rules are obtained for q(up) and q(wi).
Next, we move on to Ψi, which can be interpreted as the a priori rating

for item i. In our Bayesian formulation, Ψi ∼ N
(

µψ , κ
−1
ψ

)

, where µψ and κψ

are the hyper-parameters, denoting the expectation and precision, respectively.
Starting again from Equation (3) we have that

log q (ψi) =

∫

u,m,θ,φ,ψ
−i

q
(

u,m, θ,φ,ψ−i

)

log f(r,m,u,ρ) du dm dθ dφ dψ−i

+ const.

As before we expand the integral, and simplify by continuously moving all terms
not depending on ψi into the constant:

∫

u,m,θ,φ,ψ
−i

q
(

u,m, θ,φ,ψ−i

)

log [f(m,u,ρ)f(r|m,u,ρ)] du dm dθ dφ dψ−i

= log f(ψi) +

∫

u,m,θ,φ,ψ
−i

q (u) q (m) q (θ) q (φ) q
(

ψ−i

)

·

θ

2

∑

p∈P(i)

(r (p, i)− (mT

i vp + u
T

pwi + φp + ψi))
2 du dm dθ dφ dψ−i + const.

= log f(ψi)−
E [Θ]

2

∑

p∈P(i)

[

2ψiE [Mi]
T

E [Vp] + 2ψiE [Up]
T

E [Wi] +

2ψiE [φp] + ψ2
i − 2r (p, i)ψi

]

+ const.

Thus, we get

log q (ψi) =−
1

2
ψ2
i (κψ + |P(i)|E [Θ])

+ ψi E [Θ]
∑

p∈P(i)

(r (p, i)− E [Mi]
T

E [Vp]− E [Up]
T

E [Wi]− E [φp])

+ ψi κψµψ + const.

(A.4)

Comparing Equation (A.4) to Equation (A.3), we recognize that q (ψi) is a

22



Gaussian with mean µψi
and variance σ2

ψi
, where:

σ2
ψi

= 1/(κψ + |P(i)|E [Θ]);

µψi
= σ2

ψi

(

κψµψ + E [Θ]
∑

p∈P(i)

(r (p, i)− E [Mi]
T

E [Vp]− E [Up]
T

E [Wi]− E [Φp])

)

.

Using the same procedure, we also find that q (φp) is a Gaussian distribution.
We utilize that φp has a priori mean µφ = 0 to simplify the results slightly, and
obtain that

σ2
φp

= 1/(κφ + |I(p)|E [Θ]);

µφp
= σ2

φp
E [Θ]

∑

i∈I(p)

(

r (p, i)− E [Mi]
T

E [Vp]− E [Up]
T

E [Wi]− E [Ψi]

)

.

Lastly, the distribution for the precision, q (θ) is to be calculated. The prior
distribution of Θ is assumed to be a Gamma distribution with hyper-parameters
a and b:

f(θ) =
ba

Γ(a)
θa−1 exp(−bθ).

As usual, we start from Equation (3) and obtain that

log q (θ)

=

∫

u,m,φ,ψ
q (u,m,φ,ψ, θ) log f(r,m,u,φ,ψ, θ) du dm dφ dψ + const.

= log f(θ) +

∫

u,m,φ,ψ
q (u) q (m) q (φ) q (ψ) ·

#M
∑

i=1

∑

p∈P(i)

log f(r (p, i) |mi,vp,up,wi, φp, ψi, θ) du dm dφ dψ + const.

Next, observe that when #Obs is defined as the total number of observed rat-
ings,

logf(r|m,u,ρ)

= log





#U
∏

p=1

∏

i∈I(p)

√

θ

2π
exp

(

−
θ

2
(r (p, i)− (vT

pmi +w
T

i up + φp + ψi))
2

)





=
#Obs

2
log (θ)−

θ

2

(

r (p, i)− (mT

i vp + u
T

pwi + φp + ψi)
)2

+ const.,

where the constant includes all terms not involving θ. Similarly, observe that

log f(θ) = a log(b)− log(Γ(a)) + (a− 1) log(θ)− bθ

= (a− 1) log(θ) − bθ + const.
(A.5)
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It follows that

log q (θ) = log(θ)

(

a− 1 +
#Obs

2

)

− θ



b+
1

2

#U
∑

p=1

∑

i∈I(p)

E

[

(

r (p, i)−UT

pWi −MT

iVp − Φp −Ψi
)2
]



+ const.,

and by comparing this expression with the Gamma distribution (Equation (A.5))
we find that q (θ) is a Gamma distribution with parameters:

a∗ = a+
#Obs

2

b∗ = b+
1

2

#U
∑

p=1

∑

i∈I(p)

E

[

(

r (p, i)−UT

pWi −MT

iVp − Φp −Ψi
)2
]

.

The convergence of the iterative learning scheme is controlled by monitoring
the lower-bound of the marginal likelihood of the data, defined by F(q) = H(q)+
Eq [log f(r,m,u,ρ)], where H(q) is the entropy of the variational distribution.
The calculation of this lower-bound is straightforward given the developments
above.

Appendix A.3. Standard mean-field

The developments of the previous subsection were based on the assumption
that the variational approximation factorizes according to

q (u,m,ρ) = q (θ)

#U
∏

p=1

q (φp) q (up) q (vp)

#M
∏

i=1

q (ψi) q (mi) q (wi) .

We now take this one step further, assuming that the full joint q (u,m,ρ) has
the form

q (u,m,ρ) = q (θ)

#U
∏

p=1



q (φp)

|Up|
∏

j=1

q (up,j) q (vp,j)



×

#M
∏

i=1



q (ψi)

|Mi|
∏

j=1

q (mi,j) q (wi,j)



 ,

which introduces the set of additional assumptions that Mi,k⊥⊥Mi,l|R and
Up,k⊥⊥Up,l|R in addition to those previously discussed. It turns out that these
additional assumptions simplify the calculations of the approximate posteriors
for Mi, Up, Wi, and Vp even further, while the developments for Φp, Ψi, and
Θ remain unchanged.
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Let us consider how to calculate q (mi,k), i.e., the distribution of the k’th
element of the latent vector describing item i. Starting from Equation (3), we
need to calculate the expectation of log f(r,u,m,ρ) wrt. all random variables
exceptMi,k. Continuously collecting all terms that are independent ofmi,k into
the constant, and using the shorthandm−ik for the collection of allm-variables
except mi,k, we obtain

log q (mi,k)

=

∫

u,m
−ik,ρ

q (u,m−ik,ρ) log f(r,m,u,ρ)du dm−ik dρ+ const.

=

∫

u,m
−ik,ρ

q (u,m−ik,ρ)
∑

p∈P(i)

log f(r (p, i) |m,u,ρ)du dm−ik dρ

+ log f(mi,k) + const.

= −
1

2
m2
i,k



1 + E [Θ]
∑

p∈P(i)

E
[

V2
p,j

]





+mi,kE [Θ]
∑

p∈P(i)

E [Vp,j ]

(

r (p, i)−

E [Up]
T

E [Wi]−
∑

ℓ 6=k

E [Mi,ℓ]E [Vp,ℓ]− E [Φp]− E [Ψi]

)

+ const.

Again, we find that q (mi,k) must be a Gaussian, this time with parameters

σ2
mi,k

=



1 + E [Θ]
∑

p∈P(i)

E
[

V2
p,k

]





−1

;

µmi,k
= σ2

mi,k
E [Θ]

∑

p∈P(i)

E [Vp,k]

(

r (p, i)− E [Up]
T

E [Wi]−

∑

ℓ 6=k

E [Mi,ℓ]E [Vp,ℓ]− E [Φp]− E [Ψi]

)

.

In the previous sub-section we found that the variance of q (mi) was given by
(

I+ E [Θ]
∑

p∈P(i) E [Vp]E [Vp]
T

)−1

, hence the inversion of one s × s matrix

(per item) was required to calculate the variational approximation. The ma-
trixes are not diagonal in general, so if #M is large, the computational savings
of the present result can be noteworthy, even for small values of s.

Using the same procedure as above we find that q (vp,k) also has the form of a

multivariate Gaussian distribution, q (vp,k) = N
(

µvp,k
, Q−1

vp,k

)

, where Qvp,k
=

τ + E [Θ]
∑

i∈I(p) E
[

M2
i,k

]

and µvp,k
= Q−1

vp,k
E [Θ]

∑

i∈I(p) E [Mi,k] (r (p, i) −

E [Up]
T

E [Wi]−
∑

ℓ 6=k E [Mi,ℓ]E [Vp,ℓ]− E [Φp]− E [Ψi]).
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Finally, q(up,k) and q(wi,k) can be found using the same set-up.
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