

Aalborg Universitet

A Perpetual Code for Network Coding

Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank; Médard, Muriel

Published in:
IEEE Vehicular Technology Conference (VTC) - Wireless Networks and Security Symposium

DOI (link to publication from Publisher):
10.1109/VTCSpring.2014.7022790

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Heide, J., Pedersen, M. V., Fitzek, F., & Médard, M. (2014). A Perpetual Code for Network Coding. In IEEE
Vehicular Technology Conference (VTC) - Wireless Networks and Security Symposium (pp. 1-6). IEEE Press.
https://doi.org/10.1109/VTCSpring.2014.7022790

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2025

https://doi.org/10.1109/VTCSpring.2014.7022790
https://vbn.aau.dk/en/publications/c10c14ec-2256-4748-b640-3336a38046d7
https://doi.org/10.1109/VTCSpring.2014.7022790

A Perpetual Code for Network Coding

Janus Heide, Morten V. Pedersen and Frank H.P. Fitzek

Faculty of Engineering and Science,

Aalborg University, Aalborg, Denmark

Email: [jah|mvp|ff]@es.aau.dk

Muriel Médard

Massachusetts Institute of Technology

Cambridge, Massachusetts, USA

Email: medard@mit.edu

Abstract—Random Linear Network Coding (RLNC) provides
a theoretically efficient method for coding. The drawbacks
associated with it are the complexity of the decoding and the
overhead resulting from the coding vector. This adds to the
overall energy consumption and is problematic for computational
limited and battery driven platforms. In this work we present an
approach to RLNC where the code is sparse and non-uniform.
The sparsity allow for fast encoding and decoding, and the
non-uniform protection of symbols enables recoding where the
produced symbols are indistinguishable from those encoded at
the source. The results show that the approach presented here
provides a better trade-off between coding throughput and code
overhead. In particular it can provide a coding overhead identical
to RLNC but at significantly reduced computational complexity.
It also allow for easy adjustment of this trade-off, which make it
suitable for a broad range of platforms and applications. Finally
it is easy to perform recoding and coding vectors can be efficiently
represented.

I. INTRODUCTION

Network Coding (NC) is a promising paradigm [1] that

have been shown to provide benefits in several of the existing

network layers. NC enables coding at intermediate nodes in a

communication network, and thus is fundamentally different

from the end-to-end approach of channel and source coding.

With NC data packets are no longer treated as atomic entities

as they can be combined and re-combined at any node in the

network. This allow for a less restricted view on the flow of

information in networks, which can be particular helpful when

building distribution systems for less structured networks such

as meshed, peer-2-peer or highly mobile networks.

In this work we only consider random approaches to net-

work coding RLNC [2], and disregard deterministic coding

approaches as well physical layer techniques. The reason is

that our primary focus is cooperative and highly mobile wire-

less networks, which fit perfectly with the highly decentralized

nature of RLNC. In particular RLNC can be utilized to reduce

the signaling overhead and increase robustness towards the

changing channel conditions in the network. At the same

time it allow for the construction of much simpler distribution

systems, which from an engineering point of view is highly

desirable. Unfortunately, RLNC is inherently computational

demanding which have spawned several efforts to produce op-

timized implementations and modify the underlying code [3],

[4]. Even though several solutions and implementations have

been declared to provide sufficient coding throughput contin-

ued efforts are valid as they can enable NC on simpler devices,

and reduce the energy consumption introduced by coding.

To ensure that the performance of RLNC is independent of

the size of the data that is transmitted, the data is typically

divided into generations [5]. This can reduce the computa-

tional complexity to a level that is practical usable and also

reduce the decoding delay which is necessary for streaming

applications. Unfortunately, it also increases the overhead of

the code and introduces the need for additional signaling [6],

[7]. To improve the trade-off between computational work

and overhead it has been suggested to code over several

generations [8] also called a random annex [9]. This reduces

the problem of ensuring that all generations are decoded, and

thus the overhead. At the same time it is less computational

demanding as the decoding is performed in an inner and outer

step. The approach is very useful for file transfers, but less so

for streaming as the final decoding delay is high as generations

are not decoded sequentially. Additional, the problem of how

recoding could be performed has so far not been consid-

ered. In [10], [11] we considered some simplifications of the

coding performed over each generation. Specifically, binary,

systematic, and sparse codes, which can significantly increase

the decoding throughput without introducing a high coding

overhead. Unfortunately, the resulting codes are unsuitable for

recoding, as explained in [11].

Here we continue this work and present a new code that

is sparse, which allow for fast decoding, and has non-uniform

protection of symbols enables for easy recoding. We introduce

several new types of recoding and describe how these and

encoding and decoding can be performed for the proposed

code. Results obtained from an initial implementation show

that the decoding complexity is low even at code overheads

very close to that of RLNC. Additionally, the approach allow

for easily adjusting this trade-off and hence it is applicable

for a wide range of platforms. Finally it solves the practical

problem of efficient coding vector representation, discussed

in [11]. During our investigation we found an unpublished

work [12] that present a very similar approach, and some more

advanced variations. Therefore we have adopted their term

perpetual code. We note that this approach and random annex

approach are not mutual exclusive and could be combined.

The remainder of this paper is organized as follows. Sec-

tion II introduces the coding operations encoding, decoding

and different approaches to recoding. Section III provides

performance analysis of the decoding complexity and code

overhead, and compares with measurements obtained from our

implementation. Final conclusions are drawn in Section V.

II. CODE OPERATION

This section introduces the code and the three operations,

encoding, decoding and recoding, that can be performed at

nodes in the network. The data to be transmitted from the

source is divided into generations of size g, we denote the

data in such a generation M . Each generation is divided into

packets that are combined as specified by a coding vector

g over a Finite Field (FF) Fq, and thus the code is linear,

see [10], [13] for an introduction.

The elements in g are not drawn at random. Instead an

element with index p is chosen as the pivot, and the following

w elements are drawn at random from Fq . We denote w as

the width of the coding vector. See Fig. 1 for a small example

of the resulting coding vectors.

1
1

1
1

1
1

1
1

α α α
α α α

α α α
α α α

α α α
α αα

αα α
α α α

w

g

g

Fig. 1: All possible coding vectors, when g = 8 and w = 3. The α’s denote
different randomly drawn elements from Fq .

The vectors are represented by an index and w scalars and

the necessary bits for their representation is thus given by

Equation (1). The index can take g values and each of each

of the w elements can take q values.

|g| = log2(g) + w · log2(q) [bits] (1)

A. Encoding

To encode a packet first a coding vector g is constructed.

A randomly drawn index from the generation is used for the

pivot, p ∈ [0, g). This pivot element is set to one in g. For

the subsequent w indices in g an element is drawn at random

from Fq . The remaining elements in g remain zero. To create

a coded symbol the coding vector is multiplied onto the the

data, x = M · g. Together the coding vector g and coded

symbol x form a coded packet.

Encoding vectors can be generated in slightly different

ways depending on how p is drawn and the size of w,

see Table I. Strictly speaking the systematic mode does not

produce coding vectors of the specified form, but we include

it for completeness.

TABLE I: Different encoding modes.

Mode p drawn w

Random at random from [0, g) 0 < w < g

Systematic sequentially from 0− g, 0− g, . . . w = 0
Pseudo-systematic sequentially from 0− g, 0− g, . . . 0 < w < g

B. Decoding

As packets arrives at a node it places coded symbols in

the data matrix M̂ and the coding vectors in the decoding

matrix Ĝ. To decode the original data in M̂ , Ĝ must be

brought onto identity form by performing basic row operations

that is simultaneously performed on M̂ . When it is not

possible to decode a symbol fully upon reception, it is partially

decoded, referred to as on-the-fly decoding, and stored for later

processing. When enough symbols have been received so that

Ĝ has full rank, all received symbols can be fully decoded and

the original data retrieved, we refer to this as final decoding.

1) On-the-fly Decoding: When a new coded packet arrives

it is inserted into the decoding matrix iff. it has a pivot element

that was not previously identified. Otherwise the previously

received packet with the same pivot is subtracted from the new

packet, and the pivot element of the new packet is changed.

This is repeated until an new pivot element is identified for

the received packet. If the packet is reduced to the zero vector,

decoding terminates. It is possible to end in a dead-look

where a sequence of rows is repeatedly subtracted from the

new packet. To avoid this the decoding should be terminated

after some attempts and the packet discarded. Our experiments

show that by terminating after 2g-3g reductions most packets

that can be decoded are decoded. To avoid wasting operations

on such cases, row operations can first be performed on the

coding vector and then repeated on the coded symbol.

1 α α α
1 α α α

1α α α

1 α α α
α α α

α α α 1 α α
0

0

2.
4.
6.

1.
3.
5.

Fig. 2: On-the-fly decoding of a received coded packet. The right hand side

matrix is the decoding matrix Ĝ. The left hand side matrix show the incoming
packet as it is decoded. α denotes a random field element. The filled circle
and arrow indicate the original incoming coded packet. The straight arrows
indicate what rows are substituted into the received packet. The arching arrows
indicate the step of the decoding of the received packet.

In Fig. 2, three coded packets have been received and

inserted into the decoding matrix, the received packets have

pivot element 0, 1, and 7 respectively. Subsequently a coded

packet with pivot element 0 is received. This is denoted with

a filled circle and arrow pointing to the packet in the left hand

side matrix. A row has already been identified with the same

pivot element as the incoming packet. Therefore the existing

row 0 is subtracted from the incoming packet. This is denoted

with the arrow pointing left into the right hand side matrix. The

element that initially was the pivot element is now zero and an

element to the right has now become the pivot element. This

step is repeated for the new pivot and thus row 1 is subtracted

from the incoming packet and element 2 becomes the pivot.

As this pivot was previously not identified the row is inserted

into the decoding matrix, which is marked with orange.

A special case is when the on-the-fly phase causes the pivot

element to wrap around to the start of the coding vector. If the

last element in the coding vector is reduced the first element in

the vector is considered next and becomes the pivot element.

1 α α α
1 α α α

1 α α

1α α α1α α α

α α α
α α α

α α α
α α 1 α

0
0

0
0

2.

4.
6.
8.

10.

1.

3.

5.
7.
9.

Fig. 3: Partial forward substitution into a received coded packet.

This is illustrated in Fig. 3. The incoming packet has

pivot element 7 for which a pivot element have already been

identified in Ĝ. Thus row 7 in Ĝ is subtracted from the

incoming packet. The resulting coding vector has a zero in

index 7 and thus the pivot element is now index 0. The packet

is then further reduced similar to the example in Fig. 2.

2) Final Decoding: When a pivot packet has been identified

for all rows, final decoding is performed. This can be done

using standard Gaussian elimination, we perform this in three

simple steps, forward substitution, inversion and backwards

substitution.

1
1

1
1

1
1

1
1

α α α
α α α

α α α
α α α

α α α
α αα

αα α
α α α

(a) The initial decoding ma-
trix

1
1

1
1

1

α α α
α α α

α α α
α α α

α α α
α α α
α α α
α α α

(b) Decoding matrix after
partial forward substitution

1
1

1
1

1
1

1
1

α α α
α α α

α α α
α α α

α α α
α α

α

(c) Decoding matrix after in-
version

1
1

1
1

1
1

1
1

(d) Decoding matrix after
backwards substitution

Fig. 4: The decoding matrix Ĝ at various states of the final decoding.

Initially the decoding matrix has a form similar to that

shown in Fig. 4a. But the length of the vectors in all rows

are not necessarily uniform and in that case the last element

will not be monotonically increasing down through the rows. It

should be noted that the inversion between Fig. 4b and Fig. 4c

is not guaranteed to succeed in which case additional packets

are needed.

C. Recoding

During recoding non-decoded symbols are combined to

create a new recoded symbol x̃. This symbol is described by

a coding vector g̃. In classical RLNC this is performed as a

separate operation and can result in a significant computational

complexity, we denote this type of recoding active recoding.

As explained in [11] this form of recoding is not suitable when

the code is sparse, as the recoded symbol will be more dense

with high probability. To combat these problems we introduce

a new type of recoding and denote it passive recoding.

1) Active Recoding: When two or more coded or non-

coded symbols have been received they can be combined by

recoding. This is done by generating a local recoding vector

h of length g′, where g′ is the number of received symbols.

To create a recoded packet the collected coding vectors and

coded symbols are combined as defined by h. Thus x̃ = M̂ ·h
and g̃ = Ĝ · h together form a recoded packet.

The elements in the resulting coding vector that can be non-

zero is defined by the pivot elements and width w of the

rows used to recode. If packets with similar pivot elements

are picked the resulting coded packet will in the worst case

only have slightly more non-zero elements w′ than that of

the original coding vectors. This decreases the freedom in

recoding but allow us to maintain the sparsity in recoded

packets. Furthermore, when such a recoded packet is decoded

on-the-fly its width w′ will decrease back towards w.

2) Passive Recoding: When on-the-fly decoding has been

performed, the received symbols which have been inserted as

rows in Ĝ, are subtracted from the incoming symbol. This is

done to decode the symbol but the operations can be reused

for recoding and thereby reduce the computational complexity

of recoding. If the operations performed on the symbols in Ĝ

are tracked, a symbol where a sufficient number of operations

have been performed can be used as a recoded symbol.

It is necessary to track the progress to ensure that the

recoded symbol is a combination of enough received symbols.

One way is to keep a list for each received symbol, in which

it is recorded what symbols are substituted into the symbol.

However, if g is high this could become unfeasible. It is

simpler to hold an integer for each symbol that is used to

count the number of other symbols that have been substituted

into the symbol. During decoding we attempt to decode the

symbols, therefore symbols that have been reduced too much

should not be used as recoded symbols directly. We note that

this passive approach can also be used for other codes.

3) Active plus Passive Recoding: To combine the two types

of recoding we can monitor the passive recoding. If some

neighboring set of packets combined meet our criteria for row

operations, we can combine these by actively recoding them

and thus obtain a recoded symbol. With this hybrid approach

we can recode symbols whenever we need them and still

reduce the computation work associated with recoding.

4) Re-encoding: When a receiver havs decoded a gener-

ation it can encode packets the same way as the original

source. This is not recoding, and we call this re-encoding to

distinguish this from encoding at the original source.

III. EXPERIMENTS AND ANALYSIS

In this section we present analytic and experimental results.

All experimental data has been obtained with an initial imple-

mentation written in Python. For each setting 1000 runs was

performed where coded packets from the encoder was fed to

the decoder until it successfully decoded.

We are interested in exploring the overhead and decoding

complexity. The overhead is the expected ratio of extra packets

that must be received by the decoder to obtain full rank

and thus successfully decode. The decoding complexity is

evaluated as the number of row operations performed by the

decoder in order to complete the decoding procedure. We

express the computational complexity in the compound metric

row multiplication-addition, where a multiplication-addition is

multiplying a row with a scalar and adding or subtracting it to

or from another row. Here we only consider the binary field

therefore the multiplication scalar is always one, and a row

multiplication-addition is simply adding or subtracting a row

to or from another row.

A. Coding Complexity

To encode a single packet, the expected number of row

operations is given by Equation (2). We start with an empty

vector and first add the chosen pivot row to it. For each of

the following w rows that row is multiplied with a random

element from Fq and added to the new row. The probability

that a randomly drawn element from Fq with size q is non-zero

is 1− 1
q

.

1 + w · (1−
1

q
) (2)

From our experiments we have determined an empirical

expression for the number of row operations performed during

the on-the-fly phase of decoding for a whole generation

denoted δfly, see Equation (3). This was obtained under

the condition that w is sufficiently high, meaning that the

code overhead is approaching that of traditional RLNC, see

Section III-B.

δfly ≈ elog2(g) · (1− q−1) (3)

To obtain an upper bound for the final decoding we consider

the worst case, where most scalars are non-zero, see Fig. 4a.

First we bring the bottom w rows on pivot form. Therefore the

top g − w rows is substituted into the w bottom rows which

brings the decoding matrix to the form in Fig. 4b. The upper

bound on the total number of operations is therefore defined

by Equation (4). Then the bottom w rows are brought onto

echelon form, see Fig. 4c. The (g −w)’th rows is substituted

into the below (w−1) rows, the (g−w+1)’th row is substituted

into the below (w− 2) rows and so on, which is equal to the

sum in Equation (5).

δsub ≤ (g − w) · w (4)

δinv ≤

w−1
∑

i=1

i =
w · (w − 1)

2
(5)

To finalize the decoding a similar procedure is performed,

but this time upwards. Thus the number of operations is

exactly the same as in Equation (4) and Equation (5). We

divide by g as δ is defined as the expected operations per

packet. To include the probability that an element in Fq is

equal to zero, we multiply (1 − q−1) onto the on-the-fly,

substitution, and inversion phases and obtain Equation (6).

δ ≤ (δfly + 2δsub + 2δinv) /g

=

(

1

g

)(

1−
1

q

)

(

elog2(g) + w · (2g − w − 1)
)

(6)

In Fig. 5 the number of row multiplication-additions per-

formed to decode one generation, both during the on-the-fly

and final decoding phase, is plotted for different values of g
and w. The generation size and width is noted on the x-axis,

and the number of row operations per decoded packet is on

the y-axis. The operations during on-the-fly and final decoding

is stacked to also show the total number of row operations.

32 128 512 2048
Generation size and width

0

25

50

75

100

125

150

175

200

M
ea

n
ro

w
 o

pe
ra

tio
ns

 p
er

 s
ym

bo
l

6 8 12 16 24 12 16 24 32 48 24 32 48 64 96 48 64 96 12
8

19
2

w=
g=

δfinal,measured

δfinal,calculated

δinitial,measured

δinitial,calculated

Fig. 5: Mean row operations per decoded symbol

Both the expression for the on-the-fly and final decoding

fit the measurements, especially when w is sufficiently high.

For low values of w the bound is less tight, but such settings

should not be used when the code overhead is considered.

We compare the obtained results with traditional RLNC

where the expected operations used to decode a packet is

approximately g/2 for the binary case [14]. The factor between

total operations used to decode for RLNC and the perpetual

approach is calculated as δRLNC/δPerpetual, see Table II. In

the best case g = 2048 and w = 96, RLNC is almost ten times

more computational demanding than the proposed approach.

TABLE II: Factor of complexity compared to RLNC

g 32 128 512 2048
w 12 16 24 24 32 48 48 64 96 96 128 192

Factor 1.5 1.2 1.0 2.6 2.1 1.5 4.9 3.9 2.7 9.6 7.5 5.2

B. Code Overhead

The code overhead specifies the amount of additional data

must be transmitted in addition to the original data and

depends on the field size, density, generation size but also

on the entropy of the coding. Hence a structured code where

symbols are not just combined at random will have a higher

overhead compared to a completely random with the same

coding parameters. From standard RLNC we know the lower

bound for the code overhead as defined in Equation (7),

see [11]. The same lower bound holds here, as the lowest

overhead is obtained when w is as high as possible, in which

case the perpetual code becomes identical to RLNC.

The lower bound in Equation (7) evaluate the expected

overhead based on the probability that the rank is increased

at the receiver when a new coded symbol is received. This

is a function of the generation size, g, the field size q, and

the rank at the receiver, g′. For each of the indices where the

decoder have already identified a pivot element, the index in

the incoming packet is reduced to zero by the decoder. Hence

the remaining g − g′ can in the best case be considered as

elements drawn at random from Fq . Hence the probability

that these are all zero and the packet is linear dependent is

1/qg−g′

. The mean overhead is then calculated as the sum

of the expected amount of overhead for the decoding of each

packet, for all possible ranks of the decoder. Note that the

overhead is primarily due to the last packets, and that it

become negligible for high values of q.

α ≥

g−1
∑

g′=0

(

(

1−
1

qg−g′

)

−1

− 1

)

=

g−1
∑

g′=0

(

1

qg−g′ − 1

)

(7)

For a symbol to be independent, either its pivot or one of

the w coefficient must hit a new pivot element. The pivot

of the symbol is independent and hence the probability is 1
g

,

but the w elements depend on the pivot. The probability that

one of these w elements hits an uncovered pivot is r′

g
where

r′ = [1, g− 1]. The expected number of tries to hit an unseen

pivot is thus.

1
∑

r′=g

(

r′

g

)

−1

= g ·

g−1
∑

r=0

1

g − r
(8)

Hence the probability that one of the w elements hits an

unseen pivot can be expressed as w/
(

g ·
∑g−1

r=0
1

g−r

)

. Then

the probability that a symbol is covered when x coded symbols

have been received can be found as the probability that none

of the x coded symbols covers the symbol. In the worst case,

decoding is possible when all g pivots are covered.

FX(x) ≥

(

1−

(

1−

(

1

g
+ w/

(

g ·

g−1
∑

r=0

1

g − r

)))x)g

(9)

The resulting cdf can be used to calculate an upper bound

for the code overhead by evaluating the corresponding survival

function (sf), which defines the probability that there is an

uncovered symbol after x transmissions and thus additional

transmissions are necessary.

β ≤

∞
∑

x=g

SX(x) =

∞
∑

x=g

1− FX(x) (10)

α ≤ O ≤ α+ β

In Fig. 6 the overhead for different generation sizes is

plotted as a function of the width. The width of the used code

is shown on the x-axis. On the y-axis is the resulting overhead

given in percent. The dotted lines denote the bounds.

6 8 12 16 24 32 48 64 96 128 192
Width

10-2

10-1

100

101

102

Ov
er

he
ad

 [%
]

Generation size
32
128
512
2048

Fig. 6: Code overhead in percent as a function of g and w. The dotted lines
corresponds to the bounds for the overhead for a given generation size.

For each generation size, the overhead decreases as the

width increases until the width is sufficiently high and the

overhead becomes indistinguishable from the lower bound. If

the width is decreased below the sufficient level, the overhead

increases significantly. Therefore, values of w below this point

should generally not be used. The bounds are loose for low

values of w, but become tighter as w increases. Thus the

provided bounds are useful for identifying a value of w that

is sufficiently high.

To make a comparison with RLNC we must consider Fig. 5

and Fig. 6 at the same time, as the performance of the codes

are a trade-off between code complexity and code overhead.

As the lower bounds are the same as for RLNC we can

never hope to achieve a lower code overhead. However, we

can achieve the same overhead but at lower computational

complexity, see Fig. 5. The values of w chosen in Table II

corresponds to the cases where the code overhead of RLNC

and the perpetual code are similar. Thus this approach can

deliver a similar code overhead as RLNC at significantly

decreased decoding complexity. For the reported settings this

gain is up to a factor of ten.

IV. DISCUSSION

We have only considered the random encoding mode, thus

the pivot element is always drawn at random and indepen-

dently of the previous pivots, see Table I. This corresponds

to the worst-case, where the channel is extremely lossy and

thus systematic approaches are of no benefit. In cases where

the erasure probability is low or moderate, a systematic or

pseudo-systematic mode could be used which would decrease

the code overhead and in particular the decoding complexity.

Ideally all decoding should be performed on-the-fly as

this decreases the final decoding delay and distributes the

processing load evenly. At the same time decoding should be

performed in such a way that fill-in [15] does not occur, as

this reduces the amount of work necessary to decode. In our

presented results the ratio of operations performed in the on-

the-fly phase is low, see Fig. 5. Fortunately the structure of

the code makes it possible to perform what that can best be

described as opportunistic backwards substitution. Our tests

with this approach show that most of the decoding operations

can be performed when symbols are received. However, this

algorithm is sufficiently more complicated to analyze and due

to space constraint we have omitted it.

The approach presented here is similar to what is called

a smooth perpetual code in [12], but with two significant

differences, we do not use zero padding nor a precode. Since

zero padding is not used the overhead of the code is reduced

as all original symbols are represented with equal probability.

However, it also complicates the final decoding step. By not

using a precode the code becomes simpler to analyze and

implement, but it also increases the overhead of the code. As

our interest is towards practical implementation we believe that

our choice is sound and that it is reasonable to first consider

the simpler case and add complexity later. Especially as we are

interested in very computational constrained platforms where

it might not be possible to use the more complex features.

Finally we note that perpetual codes are not a substitution

but a supplement to RLNC. Specifically we believe that RLNC

is a good choice for low generation sizes, but perpetual codes

are more suitable at medium sized generations and possible

generations sizes similar to those of fountain codes [16].

V. CONCLUSION

In this paper we presented our initial findings on perpet-

ual codes which is a new take on the fundamental RLNC

approach. We described how encoding, decoding, and recod-

ing can be performed and provided initial analysis of the

codes performance in terms of code overhead, and coding

complexity. This is compared with measurements obtained

with an initial Python implementation. The results show that

the proposed approach can significantly improve the trade-

off between computational complexity and code overhead.

Specifically the a coding overhead is similar to RLNC but at a

much lower computational complexity, a complexity reduction

of up to a factor of ten was measured. Additionally the

approach provides an easily adjustable parameter that allow the

trade-off to be tweaked to the used platform and application.

For the future we hope that a better understanding of the

on-the-fly phase can help to provide a thorough analysis of

the code. This knowledge is also a necessary condition for

understanding the impact of the additions proposed in [12].

Currently we are working on an optimized C++ implemen-

tation which is needed to determine the throughput rate. As

the algorithms are simple we are confident that our implemen-

tation will be fast. Additionally, we are considering advanced

decoding algorithms in order to reduce the final decoding delay

even further.

ACKNOWLEDGMENT

This work was partially financed by the CONE project

(Grant No. 09-066549/FTP) granted by the Danish Ministry

of Science, Technology and Innovation.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, 2000.

[2] T. Ho, R. Koetter, M. Médard, D. Karger, and M. ros, “The benefits
of coding over routing in a randomized setting,” in Proceedings of the

IEEE International Symposium on Information Theory, ISIT ’03, June 29
- July 4 2003. [Online]. Available: citeseer.ist.psu.edu/ho03benefits.html

[3] S. Yang and R. W. Yeung, “Large file transmission in network-
coded networks with packet loss: a performance perspective,” in
Proceedings of the 4th International Symposium on Applied Sciences

in Biomedical and Communication Technologies, ser. ISABEL ’11.
Barcelona, Spain: ACM, 2011, pp. 117:1–117:5. [Online]. Available:
http://doi.acm.org/10.1145/2093698.2093815

[4] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, Network Coding

in the Real World. Academic Press, October 2011, ch. 4, pp. 87–114.
[5] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” Proceed-

ings of the annual Allerton conference on communication control and

computing, vol. 4, pp. 40–49, 2003.
[6] P. Maymounkov, N. J. A. Harvey, and D. S. Lun, “Methods for Efficient

Network Coding,” 44th Allerton Annual Conference, 2006.
[7] Y. Li, E. Soljanin, and P. Spasojevic and, “Collecting coded coupons

over overlapping generations,” in Network Coding (NetCod), 2010 IEEE

International Symposium on, june 2010, pp. 1 –6.
[8] D. Silva, W. Zeng, and F. Kschischang, “Sparse network coding with

overlapping classes,” in Network Coding, Theory, and Applications,

2009. NetCod ’09. Workshop on, june 2009, pp. 74 –79.
[9] Y. Li, E. Soljanin, and P. Spasojevic, “Effects of the generation size and

overlap on throughput and complexity in randomized linear network
coding,” CoRR, vol. abs/1011.3498, 2010.

[10] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Network coding
for mobile devices - systematic binary random rateless codes,” in The

IEEE International Conference on Communications (ICC), Dresden,
Germany, 14-18 June 2009.

[11] J. Heide, M. V. Pedersen, F. H. Fitzek, and M. Médard, “On code
parameters and coding vector representation for practical rlnc,” in IEEE

International Conference on Communications (ICC) - Communication

Theory Symposium, Kyoto, Japan, jun 2011.
[12] P. Maymounkov. (2009) Perpetual codes: cache-friendly coding.

Unpublished draft, retieved 2nd of September 2011. [Online]. Available:
http://pdos.csail.mit.edu/∼petar/papers/maymounkov-perpetual.ps

[13] C. Fragouli, J. Boudec, and J. Widmer, “Network coding: an instant
primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68,
2006.

[14] J. Heide, M. V. Pedersen, and F. H. Fitzek, “Decoding algorithms for
random linear network codes,” in IFIP International Conferences on

Networking - Workshop on Network Coding Applications and Protocols

(NC-Pro), ser. Lecture Notes in Computer Science, vol. 6827, Valencia,
Spain, may 2011, pp. 129–137.

[15] S. Ingram. (2006) Minimum degree reordering algorithms: A tutorial.
Retrieved March 2010.

[16] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information

Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.

