Space Vector Modulation for DC-Link Current Ripple Reduction in Back-To-Back Current Source Converters for Microgrid Applications

Xiaoqiang Guo, Senior Member, IEEE, David Xu, Member, IEEE, Josep M. Guerrero, Fellow, IEEE, Bin Wu, Fellow, IEEE

Abstract—Back-to-back converters have been typically used to interconnect the microgrids. For a back-to-back current source converter, the dc-link current ripple is one of the important parameters. A large ripple will cause the electromagnetic interference, undesirable high-frequency losses, and system instability. Conventionally, with a given switching frequency and rated voltage, the current ripple can be reduced by increasing the dc-link inductor, but it leads to bulky size, high cost and slow dynamic response. In order to solve this problem, this paper reveals that the current ripple can be significantly reduced by adjusting the gate patterns of space vector modulation (SVM) between the rectifier and inverter in a back-to-back converter. The experimental results verify the effectiveness of the proposed method.

Index terms—Current source converter, dc-link current ripple, space vector modulation, back-to-back converter

I. INTRODUCTION

Nowadays, microgrids are gaining more and more attentions [1], [2]. Typically, the back-to-back voltage source converters are used to interconnect the microgrids [3]-[6]. However, the voltage source converters require bulky and temperature-limited electrolytic capacitors. The failure in electrolytic capacitors is one of the main causes of breakdowns, and degrades the whole system’s lifetime [7]. Besides, there is a potential risk of overcurrent due to the phase-leg short circuit, which reduces the system reliability. On the other hand, the current source converters have the inherent current limiting capability and thus enhance the reliability [8-11]. Furthermore, they allow forbidden states in the case of voltage source converters that may cause short-circuit, being in case of current source a desirable possibility to achieve soft-switching operation [12].

However, one of their disadvantages is the large dc-link inductor, which increases the system volume and limits the dynamic response. An alternative solution is to use the small inductor, but it suffers from a large current ripple. Therefore, the solution to reduce the current ripple in case of small dc-link inductor value needs further investigation.

The objective of this paper is to reduce the current ripple of back-to-back current source converter by optimizing the gate pattern of space vector modulation (SVM). First, the relationship between dc-link current ripple and different SVM pulse patterns is presented in Section II. It is revealed that the gate pattern arrangement has a significant effect on the dc-link current ripple. By coordinating the SVM gate patterns of both rectifier and inverter, the current ripple can be greatly reduced, thus a small dc-link inductor can be used. In Section IV, the experimental tests on a back-to-back converter are carried out to verify the proposed optimization method. Finally, the conclusions are presented in Section V.

Manuscript received December 23, 2014; revised February 17, 2015 and March 31, 2015; accepted April 2, 2015.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

II. EFFECT OF SVM PATTERN ON DC-LINK CURRENT RIPPLE

The schematic diagram of the back-to-back current source converter illustrated in Fig.1, where two microgrids (MG_1 and MG_2) are connected via the back-to-back converters. The symbol i_L represent the dc-link current. Note that the high-frequency dc-link current ripple is associated with the modulation strategy, and independent on the close-loop control. Therefore, the space vector modulation with open-loop control is discussed in this paper. The closed-loop control associated with the power management of microgrids [13] is out of the scope of this paper. The following will discuss the general effect of the space vector modulation on the DC-link current ripple.

![Fig.1 Schematic diagram back-to-back current source converter](image)

First of all, a brief review of the space vector modulation of current source converter is presented. As shown in Table I, there are six active vectors (1_r-6_r) and three zero vectors (1_l-3_l). The current space vector diagram is illustrated in Fig.2, where the reference i_{ref} can be synthesized by two nearest active vectors and one zero vector [14], [15]. The dwell time for three vectors can be determined by (1), where T_s denotes the sampling period, m_s stands for the modulation index, and θ is the vector angle, $-\pi/6 < \theta < \pi/6$.

$$T_1 = T_s \cdot m_s \cdot \sin(\pi/6 - \theta)$$

$$T_2 = T_s \cdot m_s \cdot \sin(\pi/6 + \theta)$$

$$T_3 = T_1 - T_2$$

![Table I. Switching function, space vectors and DC-link voltage](table)

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>i_{ref}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>v_{ab}</td>
</tr>
<tr>
<td>I_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>v_{ac}</td>
</tr>
<tr>
<td>I_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>v_{bc}</td>
</tr>
<tr>
<td>I_4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-v_{ab}</td>
</tr>
<tr>
<td>I_5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-v_{ac}</td>
</tr>
<tr>
<td>I_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-v_{bc}</td>
</tr>
<tr>
<td>I_7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I_8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I_9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The dc-link current ripple can be derived from Fig.1 as follows.

\[\Delta I = \frac{V_{rd} - V_{id}}{L} \Delta t \]

where \(V_{rd} \) and \(V_{id} \) are dc-link voltage of rectifier and inverter respectively. The dc voltages can be expressed as the switching functions of rectifier and inverter in Eq. (3) and (4).

\[V_{rd} = (S_1 - S_6)v_{ra} + (S_1 - S_4)v_{rb} + (S_4 - S_6)v_{rc} \]

\[V_{id} = (S'_1 - S'_6)v_{ia} + (S'_1 - S'_4)v_{ib} + (S'_4 - S'_6)v_{ic} \]

where \(S_1 \sim S_6 \) are switching functions of the rectifier, and \(S'_1 \sim S'_6 \) are switching functions of the inverter.

From Eq.(2), it can be observed that the inductor current ripple \(\Delta i \) mainly depends on the voltage difference between the rectifier voltage \(V_{rd} \) and inverter voltage \(V_{id} \).

As for the rectifier voltage \(V_{rd} \) in Eq.(3), it is dependent on the switching functions. The relationship between the switching functions and rectifier voltage \(V_{rd} \) is listed in Table I. The inverter voltage \(V_{id} \) can also be obtained in the same way and not duplicated here for simplicity.

It is a common practice to configure the switching frequency of rectifier the same as that of inverter in a back-to-back converter. In this case, there are many possible pulse patterns of current space vectors in a switching period. Note that three-segment switching sequences are used in this paper [15]. More segments, e.g. separated \(I_0 \) with two or more segments, would be beneficial to the dc-link current ripple reduction, but bring more switching commutations and losses, which is beyond the scope of this paper. Take sector I for example, it is assumed that the corresponding rectifier voltages of \(I_{r1}, I_{r2} \), and \(I_{r0} \) are \(V_{r1} > V_{r2} > V_{r0} \), while the corresponding inverter voltages of \(I_{i1}, I_{i2} \), and \(I_{i0} \) are \(V_{i2} > V_{i1} > V_{i0} \). In this case, take Fig.3 (a) for example, the pulse pattern, voltage difference and current ripple is shown in Fig. 4.

From Fig. 4, it can be observed that there are five segments in a switching period. Therefore, the dc-link inductor current is a piecewise function.

a. During time interval \(0 \sim t_1 \)

The inductor current increases with a positive slope due to the positive voltage difference on dc-link inductor. The inductor current is shown in (7), where \(i_0 \) is the initial current.

\[i(t) = i_0 + \frac{V_{r1} - V_{r0}}{L}t \]

On the other hand, if the inverter pulse pattern is fixed, and then the rectifier pulse patterns also have six possible arrangements. In summary, there are \(6 \times 6 = 36 \) pulse patterns for rectifier and inverter in sector I. It should be noted that there are many possible pulse patterns if we consider the pulse patterns in different six sectors of both rectifier and inverter. For simplicity, the six possible pulse patterns in Fig.3 are firstly discussed. As states above, the dc-link current ripple \(\Delta i \) depends on the voltage difference between the rectifier voltage and inverter voltage.
b. During time interval $t_1 \sim t_2$

$$i_L = (i_0 + \frac{V_{a1} - V_{a2}}{L} T_{a0}) + \frac{V_{a1} - V_{a2}}{L} (t - t_1)$$

(8)

c. During time interval $t_2 \sim t_3$

$$i_L = i_0 + \frac{V_{a1} - V_{a2}}{L} T_{a0} + \frac{V_{a1} - V_{a2}}{L} (T_{a1} - T_{a0}) + \frac{V_{a2} - V_{a1}}{L} (t - t_2)$$

(9)

d. During time interval $t_3 \sim t_4$

$$i_L = i_0 + \frac{V_{a1} - V_{a2}}{L} T_{a0} + \frac{V_{a1} - V_{a2}}{L} (T_{a1} - T_{a0}) + \frac{V_{a2} - V_{a1}}{L} (t - t_3)$$

(10)

e. During time interval $t_4 \sim T_s$

$$i_L = i_0 + \frac{V_{a1} - V_{a2}}{L} T_{a0} + \frac{V_{a1} - V_{a2}}{L} (T_{a1} - T_{a0}) + \frac{V_{a2} - V_{a1}}{L} (t - t_4)$$

(11)

From (7) ~ (11) and Fig. 4, it can be observed that the dc-link current increases during $0 \sim t_3$ and decreases during $t_3 \sim T_s$. Therefore, the current ripple can be calculated as

$$\Delta i = \frac{V_{a1} - V_{a2}}{L} (T_{a1} - T_{a0}) + \frac{V_{a1} - V_{a2}}{L} (T_{a0} - T_{a1}) + \frac{V_{a2} - V_{a1}}{L} (T_{a2} - T_{a1})$$

(12)

For a specified current space vector, the dwell times of T_{a0}, T_{a1}, T_{a2} are constant, which are defined by (5) and (6). Therefore, the current ripple in (12) mainly depends on the voltage difference between rectifier and inverter. It is clear that the pulse pattern arrangement in Fig. 4 leads to a large current ripple, due to high voltage difference at the start and the end of the switching period.

III. OPTIMIZED SVM PULSE PATTERN

In order to reduce the dc-link current ripple, the voltage difference should be controlled as small as possible. Fig. 5 illustrates the other five pulse pattern arrangements and corresponding dc-link currents. The current vectors ($I_{a1}, I_{a2}, I_{a0}, I_{i1}, I_{i2}, I_{i0}$) of both rectifier and inverter are re-classified as Large (L), Middle (M), Small (S) vectors according to the corresponding instantaneous voltage amplitude.

Take Fig. 5(a) for example, the current vectors of I_{a1}, I_{a2}, I_{a0} are re-classified as Large (L), Middle (M), Small (S) vectors due to their corresponding rectifier voltage amplitude $V_{a1} > V_{a2} > V_{a0}$. And this pulse pattern is defined as L-M-S type in this paper. On the other hand, the current vectors of I_{i0}, I_{i2}, I_{i1} are re-classified as Small (S), Large (L), Middle (M) vectors due to their corresponding inverter voltage amplitude $V_{i0} < V_{i2} < V_{i1}$. And this pulse pattern is defined as S-L-M type.

As mentioned above, the voltage difference should be limited as small as possible to reduce the dc-link current ripple. From five pulse patterns and corresponding voltage differences in Fig. 5. It can be observed that the best pulse pattern arrange is (L-M-S) ---- (L-M-S), as shown in Fig. 5(e). In this case, the dc-link current ripple is minimum due to the minimized voltage difference, compared with other pulse pattern arrangements.

Note that the proposed method doesn’t cause any additional commutations at all. Take Fig. 5 (e) for example, the optimized pulse pattern of inverter is (I_{i2} [S1,S2], I_{i1} [S1,S6], and I_{i0} [S1,S4]), which leads to 2 commutations. It has the same commutations as that of the conventional fixed pulse pattern (I_{i2} [S1,S2], I_{i1} [S1,S2], and I_{i0} [S1,S4]). Therefore, the switching loss remains the same as that of the conventional method.
IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to verify the effectiveness of the proposed method, the experimental tests are carried out on a back-to-back current source converter. The switching frequency of back-to-back converter is 10 kHz, and the rated dc-link current is 6A. The system control is implemented on a DSP (TMS320F28335) and FPGA (EP4CE10E22C8). The experimental parameters are listed in Table II.

Fig. 7(a) shows the rectifier/inverter voltage and corresponding dc-link current ripple with un-optimized pulse patterns. It can be observed that, during the time interval of a switching period (100µs), the SVM pulse pattern of rectifier is arranged as L-M-S type, while the S-M-L type is arranged for inverter. That is to say, the pulse patterns of rectifier and inverter are not coordinately configured, and consequently the dc-link current ripple is large due to high voltage difference.

![Fig. 7 Rectifier/inverter voltage and corresponding dc-link current ripple. (a) Non-optimized pulse pattern, (b) Proposed optimized pulse pattern](image)

On the other hand, the current ripple is significantly reduced with the optimized pulse pattern. The dc-link current ripple factor, which is defined as $\Delta I_{\text{rms}} / I_{\text{rms0}}$, is about 0.285. The dominant switching frequency ripple component is about 15.2 dB, and the current ripple RMS is 1.71A.

In addition, the amplitude and THD of inverter output currents are 4.7A, 2.1% and 4.9A, 2.3%, which mean that the proposed optimized pulse pattern does not affect the waveform quality of the inverter output current.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Experimental Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid voltage (L-L rms)</td>
<td>208 V base value</td>
</tr>
<tr>
<td>Nominal power</td>
<td>10 kVA base value</td>
</tr>
<tr>
<td>Grid frequency</td>
<td>60 Hz base value</td>
</tr>
<tr>
<td>DC link inductance</td>
<td>2mH 0.17 p.u.</td>
</tr>
<tr>
<td>CSR input capacitance</td>
<td>66μF 0.1 p.u.</td>
</tr>
<tr>
<td>CSI output capacitance</td>
<td>66μF 0.1 p.u.</td>
</tr>
</tbody>
</table>

![Fig.6 Optimized pulse pattern for current ripple reduction in sector I. (a) Optimized pulse pattern arrangement of rectifier, (b) Optimized pulse pattern arrangement of inverter](image)
This paper mainly focuses on the microgrid applications, where the voltages on both sides are generally controlled within a safe range for critical loads [1]. Additionally, in contrast to the voltage source converter, the modulation index is generally controlled high to reduce the converter loss for the current source converter [11]. In this way, the proposed method is very effective because the voltage difference between rectifier and inverter sides can be minimized. For other applications, where the voltage on one ac side is much lower than the other side (e.g. for the motor drive system, the motor operates at low speed), are out of scope of this paper.

V. CONCLUSION

Back-to-back current source converters are attractive for the microgrid applications. One of the most important issues is how to reduce the dc-link current ripple. This paper has presented the effect of different SVM pulse patterns on the dc-link current ripple of the back-to-back current source converter. Our findings indicate that the large current ripple will arise if the SVM pulse pattern is not well designed. On the other hand, the dc-link current ripple can be significantly reduced with the proposed optimized SVM gating pattern. Finally, the proposed method has been verified by experimental results on a back-to-back current source converter.

REFERENCES

X. Guo (M’10–SM’14) received the B.S. and Ph.D. degrees in electrical engineering from Yanshan University, Qinhuangdao, China, in 2003 and 2009, respectively. He has been a Postdoctoral Fellow with the Laboratory for Electrical Drive Applications and Research (LEDAR), Ryerson University, Toronto, ON, Canada. He is currently an Associate Professor with the Department of Electrical Engineering, Yanshan University, China. He has authored/coauthored more than fifty technical papers, in addition to nine patents. His current research interests include high-power converters and ac drives, electric vehicle charging station, and renewable energy power conversion systems.

Josep M. Guerrero (S’01–M’04–SM’08–F’15) received the B.S. degree in telecommunications engineering, the M.S. degree in electronics engineering, and the Ph.D. degree in power electronics from the Technical University of Catalonia, Barcelona, in 1997, 2000 and 2003, respectively. Since 2011, he has been a Full Professor with the Department of Energy Technology, Aalborg University, Denmark, where he is responsible for the Microgrid Research Program. From 2012 he is a guest Professor at the Chinese Academy of Science and the Nanjing University of Aeronautics and Astronautics; from 2014 he is chair Professor in Shandong University; and from 2015 he is a distinguished guest Professor in Hunan University.

His research interests are oriented to different microgrid aspects, including...
Bin Wu (S’89–M’92–SM’99–F’08) received the Ph.D. degree in electrical and computer engineering from the University of Toronto, Toronto, ON, Canada, in 1993. After being with Rockwell Automation Canada, he joined Ryerson University, Toronto, Canada, where he is currently a Professor and NSERC/Rockwell Industrial Research Chair in Power Electronics and Electric Drives. Dr. Wu has published more than 300 technical papers; authored/coauthored two Wiley-IEEE Press books, and holds more than 25 issued/pending patents in the area of power conversion, medium-voltage drives, and renewable energy systems. Dr. Wu received the Gold Medal of the Governor General of Canada in 1993, Premier’s Research Excellence Award in 2001, NSERC Synergy Award for Innovation in 2002, Ryerson Distinguished Scholar Award in 2003, YSGS Outstanding Contribution to Graduate Education Award and Professional Engineers Ontario (PEO) Engineering Excellence Medal in 2014. He is a fellow of Engineering Institute of Canada (EIC) and Canadian Academy of Engineering (CAE). Dr. Wu was an Associate Editor of IEEE Transactions on Power Electronics from 2005 to 2013, and currently serves as an Associate Editor of IEEE Transactions on Industrial Electronics and IEEE Canadian Review.