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Abstract— This paper investigates the harmonic stability 

of small-scale inverter-based power systems. A holistic 

procedure to assess the contribution of each inverter to the 

system stability is proposed by means of using the impedance-

based stability criterion. Multiple unstable modes can be 

identified step-by-step coming from the interactions among 

inverters and passive networks. Compared to the conventional 

system stability analysis, the approach is easy to implement 

and avoids the effect of potential unstable system dynamics on 

the impedance ratio derived for the stability analysis. PSCAD/ 

EMTDC simulations of a Cigre LV network Benchmark 

system with multiple renewable energy sources are carried out. 

The results confirm the validity of the proposed approach.  
 

Keywords— Harmonic stability; Distribution system; Stability;  

I. INTRODUCTION 

The Impedance Based Stability Criterion (IBSC) was 

originally proposed to design input filters for switch-mode 

power supplies with input filters [1]. Later on, it was expanded 

to study the stability of DC distributed power systems [2]. A 

number of stability criteria were proposed thereafter for 

defining the stability margin of interconnected dc-dc converters 

[3]. Recently, as the fast growing of renewable energy sources 

are enabled by power electronics, the IBSC was applied to 

analyze the harmonic stability in AC distributed system [4].  
The impedance-based analysis predicts the system stability 

based on the equivalent impedances of two connected 
subsystems, which consequently simplifies the complex 
impedance connections into two equivalent impedances, 
namely the source impedance and the load impedance [1]. Fig. 
1(a) shows an example for grid-connected inverters, where the 
interaction between the inverter and grid are modeled by  
closed-loop output admittance of inverter YS and an equivalent 
load admittance YL of the grid. The two admittances can be 
represented as a closed loop transfer function, which contains 
stability information about the two interconnected admittances. 
By extending the basic concept of Fig.1 (a) into multiple 
inverter connected network case as shown in Fig. 1 (c), the 
admittance relation of the overall network is simplified and the 

stability information on an arbitrary node A can be analyzed. In 
this case, the load admittance YL contains all network 
admittances except for the source admittance YS. In detail, the 
load admittance contains all other inverter admittances (YSx) on 
the other nodes, it also contains the impedances in the network 
passive components such as resistances, inductances and 
capacitances, which come from the distribution lines and 
transformers. In addition, the grid admittance from the up-
stream network such as medium-voltage network is represented 
as Ygrid. In order to use the Nyquist stability criterion for the 
IBSC, the stability on the current source IS and the stability of 
load the system YL needs to be procured individually. The 
inverter system should be able to operate in stand-alone, so the 
current source IS is stable. Also the load system stability can be 
examined by looking for the right-half-plane poles (RHP) of 
the inverse load admittance 1/YL [5].  However, when each of 
the individually stable inverters only having LHP poles is 
aggregated into a common output admittance YL, the overall 
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Fig. 1. Small-signal admittance representation of:  

(a) a current source and load; (b) closed loop transfer function 

representation; (c) small scale inverter-based power system. 
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result can show up to be unstable, i.e. having RHP. This is due 
to the interaction between them, individually stable inverters 
interacting and creating an unstable system. This complicates 
the use of the IBSC as the information of each of the individual 
inverters transfer function is lost in the aggregated transfer 
function. In other words, even if each of the components in the 
load admittance is designed stable, the combined load 
admittance stability still remains unknown [4],[6]–[9]. Up until 
now, there was no approach to address this uncertainty in the 
load stability for AC systems. This paper proposes the step-by-
step instability elimination procedure. It starts from the secured 
stable admittances of the passive components, and then 
expanded by including the inverters one-by-one. Finally, all of 
the unstable modes are identified and a stable power electronics 
based power system is obtained. PSCAD/EMTDC simulations 
of a Cigre low-voltage (LV) distribution network with multiple 
inverters [10] is carried out to confirm the validity of  this 
method. Experimental result verifies the proposed 
methodology. 

II. STABLE PASSIVE NETWORK AND CONCEPT EXPANTION 

In order to use IBSC for network stability anlysis, stable 
load admittance must be ensured [5]. Distribution lines such as 
cables in a small-scale power system are composed of passive 
components such as resistors, inductors and capacitors. Passive 
components do not have negative real parts in the small signal 
modeling, so it does not provide any unstable right half plane 
(RHP) poles and zeros into the Passive Component Network 
(PCN). This passivity in the distribution lines and the passive 
components gives the basis for absolute stable load admittance 
of the network [11]. Assume first that there is only one grid 
inverter connected to PCN and all the other active components 
are disconnected from the network as shown in Fig. 2. The 
current source ISA is a standalone stable unit, and the inverse of 
the load admittance 1/YLA has no RHP pole. Then the IBSC 
prerequisites are satisfied. Stability on node A can be analyzed 
based on the Nyquist stability criterion of the admittance ratio 
TmA in (1). 
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If (1) satisfies the Nyquist stability criterion, the voltage on 
node A is stable with respect to the current source ISA. Once its 
stability is obtained on node A, the PCN will be kept stable at 

all connected terminals where the other inverters can be 
connected further. Hence, the following statements are  made: 

1. The network with only passive components is always 

stable; 

2. The arbitrary node in the PCN is stable when all active 

components connected nodes are stable. 

Statement 2 provides the IBSC to expand its usability to all 
the nodes in the power system. However, the use of IBSC to 
assess the contribution of each active component is not 
straightforward, since the load system seen from one stable 
inverter may be already destabilized by the interactions of the 
other inverters [12]. 

III. SEQUENTIAL STABILIZING PROCEDURE 

The concept of a sequential stabilizing procedure is to 
structure the stable load admittance that contains all the 
inverters in the network. Starting from the absolutely stable 
load admittance of PCN, which is not having any unidentified 
active devices, the load admittance is expanded to include the 
whole network by adding the inverter one by one. In every step,  
the system stability is evaluated by the Nyquist stability 
criterion. If the criterion turns out to be unstable, then the lastly 
adopted inverter’s source admittance should have more 
stabilizing functions such as damping resistors or active 
damping functions. Again, this inverter is reinvestigated 
iteratively until the system becomes stable. When all the 

YSA

ISA YSA

PCN

YLA

A

 
Fig. 2. Passive component network (PCN). 
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Fig. 3. The sequential stabilizing procedure: a) An inverter with passive 

component network; b) the second inverter with a stable admittance 

network; c) The proposed sequential stabilizing procedure. 



TABLE II. GRID INVERTER SPECIFICATIONS AND THEIR PARAMETERS 

 
Inverter name 

Inv. 1 Inv. 2 Inv. 3 Inv. 4 Inv. 5 

Power rating [kVA] 35 25 3 4 5.5 

Base Frequency, f0 [Hz] 50 

Switching Frequency, fs [kHz] 

(Sampling Frequency) 
10 16 

DC-link voltage, vdc [kV] 0.75 

Harmonic regulations 

of LCL filters 
IEEE519-1992 

Filter 

values 

  Lf [mH] 

  Cf [uF]/Rd [Ω] 
  Lg [mH] 

0.87 

22/0 
0.22 

1.2 

15/1 
0.3 

5.1 

2/7 
1.7 

3.8 

3/4.2 
1.3 

2.8 

4/3.5 
0.9 

Parasitics 
values 

  rLf [mΩ] 

  rCf [mΩ] 

  rLg [mΩ] 

11.4 

7.5 

2.9 

15.7 

11 

3.9 

66.8 

21.5 

22.3 

49.7 

14.5 

17 

36.7 

11 

11.8 

Controller  

gain 

      KP 

      KI 

5.6 

1000 

8.05 

1000 

28.8 

1500 

16.6 

1500 

14.4 

1500 

 

 

 

TABLE I. POSITIVE SEQUENCE IMPEDANCE FOR UNDERGROUND CABLE 

Node  

(From-To) 

Length 

[m] 

Resistance 

[mΩ] 

Inductance 

[uH] 

R1-R2 35 10.045 18.6052 

R2-R3 35 10.045 18.6052 

R3-R4 35 10.045 18.6052 

R4-R6 70 20.09 37.2104 

R6-R9 105 30.135 55.8156 

R9-R10 35 10.045 18.6052 

R4-R15 135 155.52 196.811 

R6-R16 30 34.56 43.7358 

R9-R17 30 34.56 43.7358 

R10-R18 30 34.56 43.7358 

Transformer  3.2 40.7437 
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Fig. 4. Benchmark of European LV distribution network 

(Inv.1 ~ Inv.5 are five voltage source inverters) 

 

 inverters are evaluated and stable results are obtained from the 
Nyquist stability criterion, then the procedure ends. 

Sequential procedure in a flow chart 

Fig. 3 (c) shows the details of the sequential stabilizing 

procedure for the multiple inverter connected to the power 

system. The Nyquist stability criteria can start from the initial 

combination of unknown inverter output admittance YS1 and 

the PCN admittance YL1 seen from the node A, as shown in Fig. 

3 (a). One thing to note is that the equivalent admittance YPCN 

depends on the point, where it is measured. In other words, 

YPCN has different values for each of the nodes A, B and so on.  

Once the stability between the connected system YS1 and YL1 is 

ensured on node A, according to the statement 2, then it can be 

expanded to the next node B as shown in Fig. 3 (b). The new 

stable load admittance YL2 seen from the node B contains YPCN 

and YS1. The Nyquist stability criterion evaluates the stability 

on node B for unidentified source admittance YS2 with respect 

to the new stable load admittance YL2 obtained from the 

previous step. If the analysis turns out to be unstable, the 

newly connected inverter YS2 can be the reason for the 

instability. In this case, the new inverter can have more 

damping capabilities, which can stabilize the network so the 

criterion shows stable result. In this way, the inverters are 

added one by one. This procedure obtains stable load 

admittance step by step and finally, it is able to have all 

inverters to operate in a stable network. 

IV. TEST SYSTEM AND INVERTER MODEL 

This section describes a benchmark system for small-scale 

power distribution system, which is used as a test bed for the 

proposed stabilizing procedure. The model inherently contains 

passive components such as line impedances and a 

transformer. Therefore, the overall stability is determined by 

how the inverters are designed and connected individually. 

Firstly, it shows detailed data of a benchmark model and also 

its specification. Secondly, the inverter information in the 

benchmark network is specified. Lastly, the Norton equivalent 

model of the inverter for the proposed analysis is shown. 

A. Test system 

To verify the proposed method, the Cigre benchmark of 

European LV distribution network [10] is chosen and used as 

a verification model which is shown in Fig. 4. The LV 

network voltage is three-phase line-to-line rms 400 V with 50 

Hz. The distribution system is tied to 20 kV medium voltage 

grid with a 400 kVA transformer. Unbalanced passive loads 

are removed for the simplicity. Each node is connected with 

underground cable which provides passive components to the 

grid. In addition, this distribution system is small in size and 

the maximum distance between the nearby nodes do not 

exceed 35 meters. The parasitic capacitors in the underground 

cable become small enough to be neglected. Therefore, only 

the positive sequence resistance and the inductive reactance 

are used for the analysis and the parameter values are shown 

in the Table I.  

B. Inverter design and time domain model 

Five LCL-filtered grid inverters are connected to the 

network. Each inverter filter is designed based on the IEEE 

519-1992 and the filter parameters and their parasitic values 

are given in the Table II. Also the meaning of the values are 

depicted in Fig. 5.  All the inverters are operated in a grid 

connected mode, and a sinusoidal PWM method is used for 
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Fig. 6. Norton equivalent model for the grid-inverter with balanced load 
condition. 
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Fig. 7. Step 1: Unstable system with its initial condition (blue); Stabilized 

system with the additional damping resistor Rd in Inv.1 (green). 

the inverters. Also, the connected distribution energy sources 

are assumed to have constant DC voltage sources.  Fig. 5 

shows the time domain model of the grid-inverters, which 

contains a grid current control loop in a stationary reference 

frame and the parameters given in Table II. This model is used 

for implementing the PSCAD time domain simulation.  

C. Norton equivalent model for the grid inverter 

In order to perform the IBSC according to the proposed 

method, the equivalent output admittance of the inverter is 

required. The output admittance model includes the transfer 

function of the LCL filter and its control loops. However, the 

bandwidth of the outer power control and synchronization 

loops are much slower than the current control loop, so the 

low frequency oscillations caused by the outer control loops 

can be neglected. Therefore, the current control loop 

dominates overall stability of the system and the control loops 

are simplified into a single current control loop [6]. Fig. 6. 

shows the Norton equivalent model for the grid inverter. GC 

denotes the transfer function of the P+R controller for the 

fundamental frequency and Gd is the time delay from the 

digital implementation. YO and YM denote the open loop output 

admittance and the control to the output transfer function, 

respectively.  

2 2

0

I
C P

K s
G K
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1.5 ST s

dG e


                                (3) 

where  KP and KI are the controller gains and ω0 is grid 

frequency. Also, TS is the sampling time and the inverse of the 

switching frequency fS :   

0 02 f   , 1/S ST f  

0PCC

g Cf

M

M Cf Lf Lg Lf Cf Lgv

i Z
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v Z Z Z Z Z Z
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Where the impedances ZCf, ZLf and ZLg are as follows; 

1
Cf Cf d

f

Z r R
sC

   , 
Lf Lf fZ r sL  , 

Lg Lg gZ r sL    

The loop gain of the negative feedback loop in Fig. 5 is as 

follows. 

 
OL C D MT G G Y                              (6) 

Finally, the closed loop output admittance of x’th inverter YSx 

is obtained according to the parameters given in Table. II. 
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V. EXAMPLE OF PROPOSED METHOD  

This section gives an example of a sequential stabilizing 

procedure for a given small scale distribution system shown in 

Fig. 4. By following the sequence given in Fig. 3 (c), the 

stabilizing procedure is performed as follows.  

Step 1: Firstly, the source admittance YS1 at node R6, which 

is the output admittance of Inv.1 is obtained from (7) and 

Table II. The load admittance YL1 at the same node  is obtained 

by calculating the equivalent admittance seen from the node 

R6, which contains the only passive component network and 

there is no inverter connected. So the minor loop gain for node 

R6 is derived as follows. 

 1
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S
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Y
                              (8) 

Fig. 7 shows the IBSC result from (8). It shows that the 
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Fig. 8. Step 2 : Unstable system with the initial condition (blue); 

Stabilized system with the damping resistor in Rd Inv.2 (green). 
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network with Inv.1 is unstable (blue) as it encircles (-1,0j). 

However, YL1 has always been stable from statement 1, so YS1 

could be modified instead. In order to add stabilizing function 

to the YS1, the damping resistor Rd is inserted to the Inv.1, 

which can reshape the output admittance YS1. As it can be seen 

in Fig.7, the result satisfies the Nyquist criterion (green) so the 

passive component system becomes stable with Inv.1.  Fig. 10 

(a) and Fig. 10 (b) are representing the analyzed results of the 

unstable and stable case respectively.  

Step 2:  Once the stability is obtained from the previous 

step, the new stabilizing procedure can start with other nodes 

based on statement 2. In this case, Inv.2 at node R10 is added 

to the stable network obtained from the previous step. 

Therefore, the YL2 contains YL1 and YS1 
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 Fig. 10. Time domain simulation of R4 node voltages (upper) and the inverter currents (lower): a) Step 1 unstable case; b) Step1 stabilized case; c) Step 2 unstable 

case; d) Step 2 stabilized case; e) Step 3 stable case; f) Step 4~5 stable case. 
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Vdc

 
 VGrid  : 3-phase, 400V rms line to line, grid simulator 

 LGrid : 150uH, RGrid : 0.1 Ohm 

Fig. 11. Experimental setup for the two paralleled inverters to validate the 
method. 

TABLE III. GRID INVERTER PARAMETERS 

 
Power 

Rating 

Switching 

Frequency 

DC 

Link 

Filter 

Topology 

Filter 

Value 

Controller 

Gain 

Inv. 1 5 kVA 10 kHz 750 V LCL 

 Lf = 1.8 mH 

 Cf = 9.4 uF 

 Lg = 1.8 mH 

 KP =  6 

 KI  = 1000 

Inv. 2 5 kVA 10 kHz 750 V LCL 

 Lf = 3 mH 

 Cf = 4.7 uF 

 Lg = 3 mH 

 KP = 15.5 
 KI  = 1000 
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Fig. 13. Sequential stabilizing procedure of designing the damping 

resistor Rd to obtain stable two-inverter system in Fig. 11. 

Fig. 8 shows the IBSC result by (9) representing the 

unstable network (blue). In the same manner as the previous 

step, a damping resistor Rd in the Inv.2 is changed from the 

initial value 1.2 to 1.4 [Ω]. In that case the system becomes 

stable again (green). It is verified in Fig. 10 (c) and (d) 

respectively in the time domain. 

Step 3 ~ 5:  The same as the previous steps, inverters are 

added to the stable network step by step. In these cases, the 

initial conditions are enough to make the system stable. 

Finally, by summing up the all inverters step by step, the 

stable system with the five inverters is obtained. The related 

time domain simulations are shown in Fig.10 (e) and (f). One 

thing to note is that this example is just one of many different 

sequential stabilizing pathways and it may not be the optimal 

solution. However, it demonstrates that the method to obtain a 

stable network by using the IBSC is valid.  Most important is 

that the inverter has to be checked once as a source admittance, 

 

Time [10ms/div]

Inv. 1 Voltage [500V/div]

Inv. 1 Current [20A/div]
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                                                                 (a)                                                                                                                          (b)  

   

Inv. 2 Voltage [500V/div]
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Inv. 1 Voltage [500V/div]

Inv. 1 Current [10A/div] Time [20ms/div]     
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Inv. 2 Current [10A/div]

Inv. 1 Voltage [500V/div]

Inv. 1 Current [10A/div] Time [20ms/div]  

                                                              (c)                                                                                                                         (d) 

Fig. 13. Experimental waveforms using two paralleled inverters: a) Step 1 unstable case voltage and current;  

b) stabilized with passive damping of Inv.1 with Rd1 = 1 Ω; c) Step 2 unstable with the two inverters; d) stabilized with passive damping of Inv.2 Rd2 = 3 Ω 



and the load admittance must be expanded step by step. 

VI. EXPERIMENTAL RESULTS 

In order to verify the proposed method, two paralleled 

inverter systems are organized as shown in Fig.11 and step by 

step stabilizing procedure is performed. The grid-inverter filter 

values and controller gains are given in Table III.  In Fig. 12, 

the Nyquist stabilility analysis results obtained from the 

proposed procedure. When Inv. 1 is connected to the grid 

simulator without having a damping resistor Rd1, the system is 

unstable as shown in Fig. 12 (a). So the damping resistor is 

added to the Inv. 1 and the system becomes stable. Afterwards, 

the Inv. 2 is connected to the stable system made by step 1 as 

shown in Fig.12 (b). It is also unstable without having a 

damping resistor. So the damping resistor Rd2 is added to Inv. 

2 and the system becomes stable. Fig. 13 shows the 

experimental stability result of each case and demonstrates. 

VII. CONCLUSIONS 

This paper proposes a method to address the harmonic 

instability problems in a small-scale power electronics based 

power system. The limitation in using the conventional IBSC 

is the presence of unidentified lumped load admittance. A 

holistic procedure to assess the contribution of each inverter to 

the system stability is proposed by means of the step by step 

stabilizing procedure. This can eliminate the multiple unstable 

conditions resulting from interactions among inverters in a 

passive network. However, this method can have many 

degrees of freedoms to obtain the stable network by changing 

the stabilizing sequence. It can make a stable system with all 

inverters, but it may not be able to provide an optimal solution. 

Simulation results and experimental results support the 

validity of the method. 
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