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Abstract—This paper presents a comparative study of the
influence of different aggregated electrical circuit battery models
in the sizing process of a hybrid energy storage system (ESS),
composed by Li-ion batteries and supercapacitors (SCs). The
aim is to find the number of cells required to propel a certain
vehicle over a predefined driving cycle. During this process, three
battery models will be considered. The first consists in a linear
static zeroeth order battery model over a restricted operating
window. The second is a non-linear static model, while the third
takes into account first-order dynamics of the battery. Simulation
results demonstrate that the adoption of a more accurate battery
model in the sizing of hybrid ESSs prevents over-sizing, leading
to a reduction in the number of cells of up to 29%, and a cost
decrease of up to 10%.

I. INTRODUCTION

Due to well-known limitations of ESS’s for electric vehicles
(EVs) - such as high cost, modest power and energy densities-
, in recent years, there has been an increased interest in
developing storage systems with multiple storage technologies
(batteries, fuel cells and SCs) [1]–[3]. From the several possi-
ble combinations, our interest will lie on the hybridization of
batteries and SCs. Previous research on this topic concluded
that, by a careful selection of batteries and SCs, such hybrid
ESS can provide, not only lower installation costs when com-
pared to the use of a single-source ESS, but also lower energy
consumption and stress reduction in the main source [3].

In the literature we can easily find sizing or energy man-
agement strategies based on simple heuristics [8] or machine
learning [5] techniques, while others use optimal control meth-
ods [6], [9]. This latter approach considers problems that can
provide the global optimal solution. However, frequently, sim-
plifications are required and certain characteristics assumed,
such as linear voltage dependency or constant inner resistance,
which leads to models that may not describe very accurately
the ESS. These simplifications are generally justified at early
stages of the system design process or whenever low compu-
tational complexity or low configuration effort is required [6],
[9]. Nonetheless, it is important to have in mind that these
simplifications carry with them approximation errors. One of
the main goals of this work is to investigate the effect of such
approximations is the sizing of hybrid ESS, which, to the best
of our knowledge, was not investigated in previous research.

Nowadays an abstract approach is commonly used in lit-
erature for sizing problem of hybrid e-mobility applications:
aggregated battery pack Equivalent Circuit Models (ECMs)
are proposed, based on a linear static zeroeth order single
cell ECM, over a restricted operating window (e.g. 5-95%
SoC), without taking into account statistical data on cell-to-
cell variation [1], [2], [7].

In this paper, the obtained results using the aforementioned
modelling approach are compared with two other battery mod-
els, non-linear static zeroeth order model and non-linear dy-
namic first order model, in order to evaluate from a qualitative
point of view the influence of the battery model complexity
into the sizing problem. Additionally, we also propose an
algorithm that relies on low/high pass filters for the power
allocation and consequently the sizing problem of the ESS,
which represents a realistic allocation strategy [2], [4], [7].
The main advantage of this strategy is the ability to handle
the different ESS models, without requiring significant model
simplifications.

II. ESS MODEL

A. Mathematical Model

The models of the ESS’s cells considered in this work are
represented through Equivalent Circuit Models (ECMs) [3],
[10]–[12], see Fig. 1. These ECMs are mathematically char-
acterized as:

vj(t) = OCVj(qj(t)) − Δvj(t), j ∈ M (1a)

qj(t) =
1

Qj

∫ t

0

ij(δ)dδ + qj(0) (1b)

where vj is the output voltage of the cell, OCVj the cell’s
open-circuit voltage, and Δvj the voltage drop in the cell’s
internal impedance. The state of charge (SoC) is given by qj ,
the maximum charge of the cell by Qj , and the cell’s current
by ij(∈ R). Normally, the current, the SoC and the terminal
voltage of the cell are constrained by physical limits:

imin
j ≤ ij(t) ≤ imax

j (2a)

qmin
j ≤ qj(t) ≤ qmax

j (2b)

vmin
j ≤ vj(t) ≤ vmax

j (2c)



(a) Linear Static Model

(b) Non-linear Static Model

(c) Non-linear Dynamic Model

Fig. 1: ESS’s Equivalent Circuit Models

which are presented in Table I and Table II for both sources.
In the sequel, four sets of cell’s models M = B ∪ {SC} =
{LS,NLS,NLD,SC} will be considered. The first three are
battery models, while the last one is related with SCs.

Linear Static Model (j = LS) The first battery model
assumes linear OCV and a constant internal resistance of the
cell. It is defined as:

OCV (t) = a + b.q(t) (3)

Δv(t) = Rbati(t) (4)

where (a, b,Rbat) are parameters of the LS model. Notice
that, in order to simplify the notation, the sub-indexes of the
variables (OCV, q,Δv, i) were omitted.

Non-Linear Static Model (j = NLS) The second model
takes into account SoC-related nonlinearities in the OCV and
in the internal resistance. These nonlinearities are approxi-
mated using piecewise linear (PWL) functions. In order to
formulate the PWL approximation, let us divide the q range
in Np sub-intervals, [q

k
, qk], k ∈ [1, Np] where q

k
and qk are

the interval limits. Then,

OCV (t) =
Np∑
k=1

(u0k + u1kq(t))B(k, q(t)) (5)

Δv(t) = Rbat(q(t))i(t) (6)

Rbat(q(t)) =

⎧⎨
⎩

∑Np

k=1(d0k + d1kq(t))B(.) if i(t) ≥ 0∑Np

k=1(c0k + c1kq(t))B(.) if i(t) < 0
(7)

where u0k, u1k, d0k, d1k, c0k and c1k are parameters and
B(k, q) is an indicator function that returns 1 if q ∈ [q

k
, qk]

and 0 otherwise.
Non-linear Dynamic Model (j = NLD) The third model,

besides SoC-related nonlinearities, also takes into account

Fig. 2: Charging and discharging cycles for a single battery
cell.

first-order dynamics in the ESS’s cells

OCV (t) =
Np∑
k=1

(u0k + u1kq(t))B(k, q(t)) (8)

Δv(t) = Rs(q(t))i(t) + Δvc(t) (9)
dΔvc(t)

dt
=

1
C1(q(t))

(
i(t) − Δvc(t)

R1(q(t))

)
(10)

In the above representation, the variables Rs(q(t)), C1(q(t)),
R1(q(t)) are approximated by PWL function similar to (7).
Yet, C1 and R1 will assume discharging values when
Δvc(t) > 0 and charging values otherwise.

Supercapacitors (j = SC) The supercapacitors are mod-
elled using a similar structure to the LS representation of the
battery:

OCV (t) =
QSC

C
q(t) (11)

Δv(t) = RSCi(t) (12)

where QSC represents the nominal charge of the SC, C the
capacitance of the SC, and RSC the internal resistance.

B. Parametric Identification

The parameterization of the Li-ion battery ECMs was based
on capacity check and step response tests conducted on an
unused and relatively new Kokam SPLB 120216216 Li-ion
pouch cell. All tests were conducted at 0.5C (26.5A) and 25◦C.
First of all a full charge and discharge cycle was conducted in
order to estimate charging and discharging capacity. Using this
information, the battery tester was programmed to fully charge
and discharge the cell in consecutive steps of 5% SoC, con-
sidering a 2h relaxation period between pulses. Thus the OCV
vs SoC charging and discharging characteristics are obtained.
Since an insignificant hysteresis effect is observed (Fig. 2), the
average OCV vs SoC characteristic is considered for linear and
non-linear fitting. Then, using the same experimental data, the
charging and discharging resistances are calculated for every
5% SoC step depending on the ECM. Either an average value



TABLE I: BATTERY PARAMETERS [per cell]

Kokam SLPB 120216216
Variable Symbol Value Unit

Pouch Cell Mass mPC,bat 1.2 kg
Total Cell Mass mbat 1.83 kg
Nominal voltage vbat 3.7 V
Nominal capacity Qbat 53 A.h

Initial capacity qbat(0) 0.95 -
SoC limits [qmin

bat , qmax
bat ] [0.05,0.95] -

Current limits [imin
bat , imax

bat ] [-106,265] A
Voltage limits [vmin

bat , vmax
bat ] [2.7,4.2] V

Cell Cost cbat 136 $
Search step - 3 -

TABLE II: SUPERCAPACITOR PARAMETERS [per cell]

Maxwell BCAP0310 P270 T10
Variable Symbol Value Unit

Mass msc 0.06 kg
Nominal voltage vsc 2.7 V

Capacitance Csc 310 F
Nominal capacity QSC 0.2325 A.h

Initial capacity qsc(0) 1 -
SoC limits [qmin

SC , qmax
SC ] [0.5,1] -

Current limits [imin
SC , imax

SC ] [-250,250] A
Internal resistance Rsc 0.0022 mΩ

Cell Cost cSC 8.3 $
Search step - 5 -

is calculated (LS) according to Ohm’s law or a non-linear
fitting is conducted (NLS and NLD) [10]–[12].

From Fig. 2 it is evident that with higher model complexity,
more accurate results are obtained. LS model not only presents
a higher overall error, but also presents significant differences
for certain SoC values, e.g. terminal voltages v(t) in the
charging process between 55% and 65% of SoC. The NLS
and NLD models present more similar results, but the battery
presents a dynamic effect not captured by the NLS model. In
that sense, for the same required power different currents will
be required leading to a performance of the system different
from the real dynamic.

III. SIZING OF THE HYBRID ESS

The hybrid ESS, under consideration here, is composed by
a battery pack and a SC pack. These packs are made up of a
series of nSC and nbat cells (each cell weights mj and costs
cj); it is also assumed that the two packs are connected to the
DC-bus through two DC/DC converters, operating in parallel.
The mass of the battery considers not only the mass of the
pouch cell mPC,bat, but also other elements such as cables,
switch box, cooling system, etc. Due the simplicity and low
weight of a singular SC cell that extra mass was neglected. The
main goal of the hybrid ESS’s sizing task consists in finding
the number of cells of the two packs, nj , that minimize a
given cost function (to be introduced shortly), while fulfilling
a set of technical constraints and requirements.

A. Output Power and Losses

With respect to the sizing requirements, we will consider
that the hybrid ESS should be designed having in mind a pre-
defined, deterministic, driving cycle, characterized by a speed

profile V (t), t ∈ [0, TDC ] and duration TDC . Based on this
information, together with the Newton’s law, we can determine
the vehicle’s output power throughout the driving cycle:

Pveh(t) =
(

1
2
ρaCdAfV (t)2 + M

(
gfr +

dV (t)
dt

))
V (t) (13)

where g is the gravity acceleration constant, Af is the vehicle
frontal area, ρa is the air density, Cd is the aerodynamic drag
coefficient and fr is the rolling resistor coefficient. The first
term is the power caused by the aerodynamic drag, and the
second one depends on the rolling and inertial (respectively)
resistance forces.

The vehicle mass M can be decomposed in two parcels:

M = m0 +
∑
j∈J

mjnj (14)

the first is associated with the vehicle mass without storage
unit (m0), while the second represents the contribution of the
hybrid ESS (notice that J represents the storage units’ sub-
indexes employed in the hybrid ESS).

On top of the vehicle’s output power Pveh, the sizing
task should also take into account the losses in the vehicle’s
powertrain. In this work, it is assumed that the powertrain
is composed by the following components: a mechanical
transmission, an electric motor, two DC/DC converters and
two ESS packs. To model the losses in these components, we
adopted a similar approach to the one described in [3], which
relies on the following considerations:

• The efficiency of the mechanical transmission is approx-
imately constant.

• The electric motor losses can be approximated by poly-
nomials dependent on the vehicle speed V (t) and output
torque;

• The DC/DC converter losses can be approximated by
a quadratic polynomial dependent on the converter’s
current ij .

• ESS’s losses are dominated by the Ohmic losses in the
ECMs.

These powertrain’s losses can be compactly described by the
non-linear function

Pl(t) = gl(Pveh(t), V (t), ij(t), nj) (15)

For the sake of brevity, the exact characterization of this
function are omitted here (the interested reader is referred to
[3] for additional details). For very high braking peak powers,
mechanical brakes will dissipate the excess power Pbrk(t) that
can not be absorbed by the ESS. The braking power is given
by

Pbrk(t) =

⎧⎨
⎩

0 if Pveh ≥ Pmax
reg

Pveh − Pmax
reg otherwise

(16)

where Pmax
reg is the maximum regenerative power of the ESS

which depends on the ESS’s state and size. Furthermore, the
power losses caused by the radio, lights, HVAC and other
loads, were considered constant during the driving cycle, such



that Pa = 1kW. Finally, the power provided by the hybrid ESS
must be able to provide all the power needs of the vehicle:

Pout(t) = Pveh(t) + Pl(t) + Pa(t) − Pbrk(t) =∑
j∈J

njOCVj(qj(t))ij(t) =
∑
j∈J

Pj(t) (17)

B. Cost Functions

Two type of costs will be considered in the sizing process.
The first is the installation cost of the cells:

Jins =
∑
j∈J

cjnj (18)

The second cost is related with charging costs of the ESS:

Jrun = γ

∫ Tdc

0

Pout(t)dt (19)

with γ = Ncycles ∗Ce, where Ncycles is the number of cycles
expected that the battery accomplish and Ce is the energy cost
[$/Ws].

C. Problem Formulation

By combining the costs and the technical constrains pre-
sented above, we are now in conditions to pose the sizing
problem:

min
ij ,nj

Jins + Jrun

(1), (2), (13), (14), (15), (17) (20a)

j ∈ J ⊂ M (20b)

In the above representation, there are two important points that
are worth discussing.

The first point is related with the fact that, besides sizing, the
above problem also addresses the energy management of the
hybrid ESS. In other words, we will need to find the optimal
set of nj (i.e., the sizing problem) and the current ij of the
two sources (i.e., the energy management problem).

The second noteworthy fact is the subset J . As already
mentioned, our interest here is related with the study of
different battery models. Consequently, in the next section,
three different J will be investigated: J1 = {LS, SC},
J2 = {NLS, SC} and J3 = {NLD,SC}.

D. Pragmatic Solution

The main challenge in solving (20) lies in non-linearities
present in the problem’s constraints. In this article, we will
follow a pragmatic approach to handle this problem. Our ap-
proach relies on two main steps. The first step is the discretiza-
tion of the number of cells: nj ∈ {n0

j , n
1
j , . . . , n

N
j } = Nj . The

second step consists in the adoption of a realistic, although
non-optimal, energy-management strategy for the power split
between batteries and supercapacitors. The idea is to employ a
filter-based allocation policy. The motivation for this allocation
policy is related to the complementary capabilities of the
ESS’s under consideration here. On one hand, the high peak
power capability of the SCs makes this source ideal to handle
the fast power transients. On the other hand, the batteries,

with much higher energy density than SCs, are more suitable
to provide the slower power variations, associated with the
average energy needs for the vehicle motion. It is based on this
line of reasoning that the frequency-based power allocation
emerged in recent years as one of the simplest and most
appealing strategies for the real-time managing of a hybrid
ESS [2], [4], [7]. The implementation of this allocation policy
is normally carried out with low/high pass filters, and uses the
filter’s time-constant τ as the main tuning parameter:

τ
d(Pbat − P bat

l )
dt

+ Pbat − P bat
l = Pout − PSC

l (21)

where P j
l represent the losses in the ESS pack and in its

power converter. Given that the ideal value for the filter’s time
constant is unknown, we will treat τ as an additional decision
variable in our combined sizing+energy management problem.
This time constant lies in the space τ ∈ T = {τ0, . . . , τM},
where τ0, ..., τM represent the set of admissible time constants.

Based on these considerations, the combined sizing and
energy-management can be reformulated as:

(n∗
bat, n

∗
sc, τ

∗) = argmin
nj∈Nj ,τ∈T

Jins + Jrun

s.t. (20), (21)

Notice that, by fixing nj and τ all the variables in the
previous problem (powers, currents, voltages, etc.) can be pre-
calculated. Thus, with this pragmatic approach, the search
space for the problem is reduced to a 3-dimension domain
Nbat ×NSC × T .

Remark 1: The original sizing problem (20) is an infinite-
dimensional optimization problem, e.g., we must find the
ESS’s currents ij(t) throughout the driving cycle. On the
other hand, the pragmatic approach proposed here reduces the
sizing task to a finite-dimensional optimization problem, i.e.,
the decision variables are defined by a 3-dimension vector
(nbat, nsc, τ). The decrease in computational times needed for
extracting the optimal solution is the main advantage in this
finite-dimensional optimization problem. As result, complex
powertrain and ESS models can be easily integrated in the
sizing task. However, it is also important to have in mind
that, due to the assumption of a filter-based power split, this
pragmatic approach only provides sub-optimal results.

IV. COMPARATIVE RESULTS

The aforementioned sizing methodology was applied to
design a hybrid ESS for the uCar vehicle, detailed in [3].
In order to investigate the effect of the vehicle’s range in the
ESS, the US06 cycle was repeated up to 6 times. Additionally,
besides sizing the hybrid ESS, we also designed an ESS using
only batteries cells, named battery-only solution hereafter. In
both cases, the sizing task was carried out using all types of
battery models. It was assumed Ncycles = 1500 trips with an
energy cost of Ce = 0.18 [$/kWh]. The characteristics of the
cells can be extracted from Tables I and II.



Fig. 4: Performance comparison between different ESS: i) battery only, ii) hybrid ESS, using the filter based strategy. The
sub-index j ∈ {LS;LS, SC;NLS;NLS, SC;NLD;NLD,SC}.

Fig. 3: Total cost comparison between different ESS: i) battery
only, ii) hybrid ESS, using the filter based strategy.

A. Influence of Driving Cycle’s Length

Fig. 3 and 4 presents the sizing results for different ranges
of US06 cycle. To facilitate the comparison between different
ESS’s, the results were normalized relatively to the battery-
only solution obtained with the LS model (the plotting of the

number of cells is the only exception to this normalization).
From these results, one can find a general trend, which is
independent of the battery model employed in the sizing.
More specifically, if the vehicle’s range is not very high, the
hybrid ESS is able to provide considerable cost reductions,
e.g. between 15 to 25% for a range demand of 12.9km (see
Fig. 3). On the other hand, as the vehicle’s ranges increases,
the economic benefit vanishes; in fact, for ranges higher than
80km, the hybrid ESS converges to the battery only solution
(see nSC and nBat depicted in Fig. 4). The reason for this
trend can be explained by the following: with the increase
of the vehicle’s autonomy, the energy demands will increase
to a point (77.3km in our case) where the batteries will be
the only necessary source to accomplish both energy and
peak power requirements. Furthermore, NLD model presents
smaller battery solutions, for every range, compared to the
other models, which demonstrates that the simpler models
have underrated power capabilities.

Another aspect worth highlighting is the total energy con-
sumption of the vehicle. From the results depicted in Fig. 4
one can observe that the energy consumption and losses of
the hybrid ESS increase in comparison with the battery-only
solution. There are two reasons for this energy increase. First,
the battery-only solution employs a higher number of cells,
which contributes to a reduction in the Joule losses (of the



equivalent cell model). The second reason is related with the
power allocation strategy, i.e., the filter-based approach used
to split the power in the hybrid ESS does not provide globally
optimal solutions (see also Remark 1). In any case, these
results suggest that, while offering a reduction in the total
costs (installation + running), the hybrid ESS may reduce the
energy-efficiency of the storage unit.

B. Influence of Battery Models

As already mentioned, one of the main goals of this paper is
to evaluate the effect of battery models in the sizing of ESS’s.
With this goal in mind, let us analyse in more detail the sizing
of the battery-only solution. From Fig. 4, it can be observed
that increasing the model complexity the required number of
cells is reduced. However, the difference between the models
is not uniform; in fact, the results are affected by the range
requirements of the vehicles. For example, for a range of
12.9km, the battery-only (LS) requires 60 cells, while the
NLS uses 57 and NLD uses 51, i.e. 6% and 18% reduction in
the number of cells, respectively (and approximately 5% and
14% in the total cost). On the other hand, for a ranges above
60km there are no differences between LS and NLS. These
results suggest that the use of a simple LS models and even
NLS may generated, in some cases, oversized (battery-only)
storage units. The main reason for these results is the dynamic
effect of the batteries. For example, in a discharge step, the
battery’s terminal voltage of the NLD model, decays with a
time constant given by R1(q(t))C1(q(t)), while the LS and
NLS models have an instantaneous voltage drop. This means
that, for the same required (discharge) power, the peak currents
in the NLD model are inferior to the LS and NLS models,
leading to a lower amount of cells.

Interestingly, the same behaviour is observed in the sizing
of the hybrid ESS, i.e., the LS and NLS models generally
produce over-sized storage units. This claim is particularly
visible for ranges demands above 25km. As an example for
39km with LS model we need nBat = 45, nSC = 155,
JCost = 90.3%, while the NLS model generates nBat = 48
(more 7%), nSC = 65 (less 58%) and JCost = 89.6% (less
1%) and the NLD model generates nBat = 36 (less 20%),
nSC = 195 (more 26%) and JCost = 82.6% (less 8%). This
observation is further supported by the sizing cost depicted in
Fig. 3, i.e., the hybrid ESS with NLD model requires lower
costs than the the LS and NLS.

V. CONCLUSION

This paper presented a comparative study of the influence
of different aggregated electrical circuit battery models in
the sizing process of a hybrid energy storage system (ESS).
Toward that goal a sizing methodology based in low/high
pass filters for the power allocation in the ESS was proposed.
It was shown that, independently of the battery model, the
introduction of SCs in the ESS can provide a significant
costs reduction, in some cases higher than 25%. However, this
reduction is obtained at the expenses of having higher energy

losses, which emphasizes the need to have an optimal power
split strategy in the hybrid ESS.

Additionally, the obtained results indicate that, in compari-
son with the static (linear and nonlinear) battery models, the
use of dynamic models in the sizing of hybrid ESS, prevents
over-sizing, leading to a decrease in the number of cells (of
up to 16% and 29%) and total costs (up to 10% and 9%).
According to the study case presented in this paper hybridiza-
tion of batteries and SCs presents advantages for short driving
cycles with high power requirements. Nevertheless, in this
sizing strategy, the installation costs only assumed the costs
of the cells and the running costs are only based on power
losses of the system.

Due to limited space, in this paper, the thermal and ageing
aspects of ESSs models, as well the influence of different
optimization and power split methods have not been discussed,
but will be tackled in future publications.
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