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ABSTRACT

Extremal Regions of Extremum Levels (EREL) are regions
detected from a set of all extremal regions of an image. Max-
imally Stable Extremal Regions (MSER) which is a novel
affine covariant region detector, detects regions from a same
set of extremal regions as well. Although MSER results in
regions with almost high repeatability, it is heavily depen-
dent on the union-find approach which is a fairly complicated
algorithm, and should be completed sequentially. Further-
more, it detects regions with low repeatability under the blur
transformations. The reason for the latter shortcoming is the
absence of boundaries information in stability criterion. To
tackle these problems we propose to employ prior informa-
tion about boundaries of regions, which results in a novel re-
gion detector algorithm that not only outperforms MSER, but
avoids the MSER’s rather complicated steps of union-finding.
To achieve that, we introduce Maxima of Gradient Magni-
tudes (MGMs) and use them to find handful of Extremum
Levels (ELs). The chosen ELs are then scanned to detect
their Extremal Regions (ER). The proposed algorithm which
is called Extremal Regions of Extremum Levels (EREL) has
been tested on the public benchmark dataset of Mikolajczyk
[1]. Our experimental evaluations illustrate that, in many
cases EREL achieves higher repeatability scores than MSER
even for very low overlap errors.

Index Terms— Maxima of Gradient Magnitude (MGM),
Maximally Stable Extremal Region (MSER), Extremal Re-
gions of Extremum Levels (EREL), Feature Detection

1. INTRODUCTION

Feature extraction is an effective stage used at the outset of
many computer vision applications including image registra-
tion, object recognition, image retrieval, and etc. It consists
of a detection phase which is followed by a description step.
Maximally Stable Extremal Regions (MSER) [2] which is
a well-known region detection approach, detects interest
regions. Given an input image, MSER, which is a level-
set based algorithm, thresholds the image with all possible
threshold values and detects extremal regions that are most

stable. A region is considered stable if its area in a level
changes slighter than its area belonging to other levels.

MSER has been deeply studied and widely employed dur-
ing the last decade. Several authors [3, 4, 5] have proposed
improvements on the implementation of MSER. They have
concentrated on the algorithmic details of MSER and con-
current construction of the union finding forest and the com-
ponents’ (extremal regions) tree. On the other hand, there
are lots of extensions over the original version of MSER, as
those in [6, 7, 8, 9, 10, 11, 12]. In [9], an integrated algo-
rithm, ED-MSER, is proposed which combines MSER [2]
with SIFT [13] and a filtering strategy. The notion of enclosed
regions detected by setting several thresholds was introduced
in [10]. Enclosed regions consist of External Enclosing Re-
gions (EER) and Internal Enclosed Regions (IER). Recently,
MSER has been adapted to work with scale-space theory in
[14, 11, 12]. Forseen and Lowe [14] introduced a multi-
resolution version of MSER and used it to construct a descrip-
tor for detected extremal regions. In [12], MSER is employed
on the Difference of Gaussian (DoG). The stable regions are
selected if the barycenter of a region is surrounded by at least
ten barycenters of other regions in its adjacent scales.

As illustrated in [1], MSER obtained low repeatability
when blur transformations happen. This can be mostly be-
cause of its stability criterion. The stability criterion con-
siders mainly the area of the regions as a crucial parameter.
So, the stable regions are those regions with the least change
during a range of thresholds which considers no information
about the boundaries of the regions during the detection of
stable regions. Particularly, blur transformation manipulate
the boundaries of the regions, so the area-based stability cri-
terion of MSER, when the image transformed by blurring, can
result in low repeatability. To deal with this problem Kimmel
[15] proposed other stability criteria based on the length of
the boundaries. It can be seen that various types of trans-
formations may need different kind of stability criterion to
achieve ideal performance. Another issue with MSER is that
it mostly include a rather complicated step of enumeration
followed by a cleaning up step. The proposed system in this
paper presents a completely novel region detection algorithm
in which the above-mentioned issues are tackled by includ-



Fig. 1: The block diagram of the proposed system.

ing the information of the region boundaries. To do so, we
introduce a kind of interest points, Maxima of Gradient Mag-
nitudes (MGMs), which are mostly concentrated around the
edges (region boundaries). Therefore, they are used as prior
information for detecting invariant regions in our region de-
tection algorithm. The experimental results on a challeng-
ing benchmark dataset show superiority of the proposed al-
gorithm over the state-of-the-art region detection algorithms.
The rest of the paper is as follows. The details of the proposed
algorithm and the introduced MGM points are explained in
the next section. The experimental results are given in Sec-
tion 3, and finally the paper is concluded in Section 4.

2. THE PROPOSED METHOD

The block diagram of our novel proposed algorithm is shown
in Fig. 1. We first detect MGM points (Fig. 1a). Then, we
binarize the image by applying all possible thresholds on it
and obtain a Global Criterion (GC) based on the information
provided by both white pixels of the thresholded image and
the MGMs (Fig. 1b). After that, we select a number of Ex-
tremum Levels (ELs) based on the GC vector (Fig. 1c). In the
last step (Fig. 1d) we detect extremal regions in only those
selected ELs that intersect with at least one MGM. The above
steps are explained in the following subsections, respectively.

2.1. Maxima of Gradient Magnitude (MGM)

Given an input image, I , we first obtain its gradient,∇I , by a
simple gradient filter like Soble. An MGM is a point p(x, y)
in ∇I that has two conditions: first, it has a maximum value
of the gradient magnitudes among their local neighborhood
points with radius r, as:

‖∇I(p)‖ > ‖∇I(P )‖,∀P ∈ N(p, r) (1)
where N(p, r) = {P |∀P ∈ I, ‖P − p‖ < r} is the neighbor
function. Second, the mean of the gradient magnitudes of its
neighbor points, should be larger than a threshold:

E[‖∇I(N(p, r))‖] ≥ α.E[‖∇I‖] (2)
where E() is a mean function, and α is an arbitrary coeffi-
cient which controls the number of resulted points. The cho-
sen threshold, α.E[‖∇I‖] , is a function of the mean of the
gradient magnitudes image, because according to [16], such
a function can keep a fair amount of high informative points
along edges. Checking the above two conditions for all the
pixels of the input image, a binary image, M , can be gen-
erated in which the positions of the MGMs are highlighted.

Fig. 2: MGM+s and MGM−s, shown by + and -, respec-
tively, for a part of the “bikes” images of [1].

2.1.1. MGM+ and MGM−

Two sets of regions, Q+ and Q−, can be detected from an
input image when any type of level set methods, like the one
used in this paper, is employed:

• The first set, Q+, contains regions that evolve from
brighter surfaces to darker boundaries. These regions
can be detected from the original image by threshold-
ing at different levels. Each of these thresholds result
in a binary image, T+

ϑ (x, y), as:

T+
ϑ (x, y) =

{
1 if I(x, y) ≥ ϑ
0 otherwise (3)

where ϑ is the current threshold. The range of the
thresholds obviously depends on the number of the bits
used per pixel.

• The second set, Q−, contains those regions that evolve
from darker surfaces to brighter boundaries. To detect
these regions we use:

T−
ϑ (x, y) =

{
1 if I(x, y) ≤ ϑ
0 otherwise (4)

Since region boundaries of each of the above two sets
have different characteristics, we divide the image contain-
ing the detected MGMs of the previous step (section 2.1), M ,
into two sets, namely MGM+ and MGM−, each of which
contains points that can be used in its corresponding evolving
technique. To achieve this, an extremum level (ϑx) needs to
be found as a division criterion.

How can such a ϑx be almost pointed out? We propose to
use the median of the distribution of MGMs for this purpose.
This is because such a value (median of the distribution) can
divide the function into two parts. The total summation of the
probability values of one part (+) is sufficiently close to the
total summation of the other part (−). So, it can fairly divide
MGMs. To calculate the median, we first need the intensity
value of the MGM points, which can be obtained by element-
wise multiplication of M and the input image, I . Then Pϑ

which is the normalized histogram of MGMs at level ϑ can
be easily calculated. The median of the distribution (ϑx) is

a level where
∑ϑx

j=0 Pj >=
1

2
and

∑ϑx−1
j=0 Pj <

1

2
. This

obtained median, ϑx, is then used to threshold the image M
containing the MGMs and separate the appropriate interest



Fig. 3: Regions and MGMs intersections in the levels evo-
lution of the image, on x and y axis are N+ and the levels,
respectively.

point for each types of extremal regions (+ and −), as:

M+(x, y) =

{
1 if M(x, y) · I(x, y) ≥ ϑx
0 otherwise (5)

A similar equation can be considered for obtaining M− as:

M−(x, y) =

{
1 if M(x, y) · I(x, y) ≥ Θ− ϑx
0 otherwise (6)

where Θ is the maximum number of thresholds (gray-levels).
Fig. 2 shows two types of MGMs extracted from a same

part of the “bikes” image. It can be seen that detected
M+(x, y) are located in the regions with a brighter sur-
face and a darker boundary and M−(x, y) are located in the
regions with a darker surface and a brighter boundary.

2.2. Global Criterion (GC)

Following the block diagram of the algorithm in Fig. 1, having
found the MGMs, the next step is to obtain a GC. To do so,
the number of intersection points between the binary image
of level ϑ and M+, is obtained, which is denoted by N+

ϑ :

N+
ϑ =

X∑
x=1

Y∑
y=1

T+
ϑ (x, y) ·M+(x, y) (7)

For each type of regions (+ and −) we should perform the
following similar steps, however we only explain the steps
belong to + type. The reader can do the same process for the
− type of regions.

To find levels of significant variations, firstly vectors V +

should be calculated. Each vector is defined as a ratio of con-
current change of the total number of the white pixels in the
thresholded image and N+

ϑ (see Fig. 3). To do so, we define
V + using N+

ϑ as:

V +
ϑ =

N+
ϑ

1 +
∑X

x=1

∑Y
y=1 T

+
ϑ (x, y)

, 0 ≤ ϑ ≤ Θ (8)

The underlying variations of V + are suitable clues for indicat-
ing levels in which regions change remarkably. Finally, using
central difference, the GC, Ψ, which is the weighted second
order derivative of vector V , is defined as:

Ψ+
ϑ =

d

dϑ
V +
ϑ−1 −

d

dϑ
V +
ϑ+1

1 +
d

dϑ
V +
ϑ

(9)

Fig. 4: Repeatability scores achieved by 20% overlap errors
for image sets of dataset [1].

2.3. Extremum Levels (ELs) Selection

Following the block diagram of the algorithm in Fig. 1, hav-
ing obtained the Ψ+

ϑ , we need to find ELs+. A level like ϑ
belongs to the set of EL+ if its Ψ+

ϑ , is a local minimum or
maximum. To select EL+, each cell of Ψ+

ϑ is hence compared
with its δ previous cells and δ subsequent cells. δ shows the
radius of the neighborhood window and represents the num-
ber of adjacent levels which are involved in the process of
local minima selection (Fig. 1).

2.4. Extremal Regions Detection

Extremal regions can finally be detected from each elements
of EL+ and EL− by any arbitrary connected component anal-
ysis algorithms or a labeling strategy. Note that for each vec-
tor (EL+ and EL−), we run the algorithm separately. So,
the following explanation should also be considered for EL−.
The algorithm starts from the first indicated EL+, extracts
the extremal regions of that level and chooses only those ex-
tremal regions that intersect with at least one MGM. After
that, the MGMs belonging to the selected extremal regions
will be ignored in the next ELs+. This process continues till
all elements of ELs+ be processed. If a region does not inter-
sect with MGMs, we can imply that the region is not stable
enough. On the other hand, an MGM might intersect with no
region. This shows that the point has been detected wrongly
because of the presence of noise. So, both of these conditions
complement each others. In addition, MGMs actually help
both selecting regions and cleaning up the unwanted extremal
regions. However, it should be noted that no direct cleaning
up nor clustering and enumeration is performed by EREL.
Since, our proposed method detects extremal regions belong-
ing to both ELs+ and ELs−, we call it: Extremal Regions of
Extremum Levels (EREL).

3. EXPERIMENTAL EVALUATION

To demonstrate the superiority of the proposed method
against the competing state-of-the-art method of MSER, a
common criterion has been used, namely repeatability [1].



Fig. 5: Comparing the Repeatability scores of EREL with
MSER and two very recent methods of TBMR [17] and En-
closed region [10] (Overlap error is 40%). Please note that
some of the plots are overlapping.

Using this criterion, we have evaluated the proposed algo-
rithm on the image sequences of the widely known bench-
mark dataset of Mikolajczyk, affine covariant dataset [1].
The images in this dataset have gone through different image
degradations, including blur (by “tress” sequences), view-
point (by “graf” and “wall” sequences), scaling and rotation
(by “boat” sequence). The repeatability score provides a
quantity value of performance including the accuracy of lo-
calization and is defined as the ratio between the number
of region-to-region correspondences and the smaller number
of regions detected in one of the images [1]. The perfor-
mance of the EREL, its repeatability scores of four image
sets of the dataset are shown in Fig. 4 with an overlap error
of 20%. It can be seen that in several cases, especially in
the textured sequence with blur transformation (“trees”), the
proposed system outperforms MSER. However, the degree of
the improvement changes from one image to another, since
the contents of the images in the dataset are very different.
For example, for the “trees” and “wall” images, the EREL
results in much higher repeatable regions, compared to the
other images. This is because, these images represent tex-
tured type of scenes producing greater number of MGMs. On
the other hand, the structure type scenes contains very strong
edges. This means that the MGMs can be better detected on
the boundaries of shapes, which at the end results in better
performance of the system.

Moreover, we compare the repeatability scores of the pro-
posed EREL method against the very recent extensions of
MSER which have reported their results on the benchmark
dataset of [1]. These systems are TBMR [17] and Enclosed
region [10]. The results of the comparison (for an overlap er-
ror of 40% ) are shown in Fig. 5. It can be seen from this
figure that for both structure type scenes (“graf” and “bark”)
and texture like images (“wall” and “trees”) EREL outper-

Fig. 6: The corresponding regions found by the proposed
EREL method in three pairs of images from [1] dataset. In
each row (pair) the left image is the reference image and the
right image is the transformed image (Overlap error = 10%).

forms the other methods.

Finally, Fig. 6 shows the output of the system for three
image pairs from the Mikolajczyk dataset of [1].

4. CONCLUSION

In this paper, we have proposed a novel method for extremal
region detection. The most notable Maximally Stable Ex-
tremal Regions (MSER) was the inspiration of our proposed
algorithms. It detects stable repeatable regions by using a
union find structure. Although MSER is efficient, it detects
low repeatable regions when image is transformed by blur-
ring. This is a cause of not using any information about the
boundaries of the regions. We have shown in this paper that
including such information in the process of finding the max-
imally stable regions not only removes the need for the cum-
bersome step of regions enumerations and the cleaning up
step of MSER, but also results in a region detector that out-
performs MSER. This has been proven through experimental
results on the popular benchmark dataset of Mikolajczyks in
[1] which imposes different image degradations, such as blur,
viewpoint change, and etc, to its image sequences. The exper-
imental results show that the proposed algorithm outperforms
MSER in detecting more accurate repeatable regions. We are
planning to extend the proposed algorithm to video sequences
and utilize temporal information in our future work.
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