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a b s t r a c t

A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice
Boltzmann method extended with a free surface formulation of the evaporation–condensation problem.
The model is validated with the steady liquid film formation on a flat vertical wall. It is shown that the
model is in a good agreement with the classical Nusselt equations for the laminar flow regime.
Comparisons of the present model with other empirical models also demonstrate good agreement
beyond the laminar regime. This allows the film condensation modeling at high film Reynolds numbers
without fitting, tuning or empirical parameters.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Condensation processes play a crucial role in various engineer-
ing and scientific aspects affecting energy conversion, safety and
reliability issues as well as design aspects of devices and construc-
tions. Condensation can be divided into two main types: dropwise
and film condensation [1,2]. Dropwise condensation occurs on
hydrophobic surfaces. Alternatively, condensate can wet the sur-
face and form a film. This case is typical for hydrophilic surfaces.
Since the thermal resistance is low at dropwise condensation the
heat transfer is significantly higher than for the film condensation.
Moreover, in order to consider droplet formation, a number of
parameters need to be taken into account and modeling becomes
rather involved. Therefore, a majority of the models are developed
for the film condensation.

The first model for film condensation was introduced almost a
century ago by Nusselt [3]. Nevertheless, Nusselt’s model remains
very popular and it is often used because in this case the closed-
form analytical solution is available. Nusselt’s model assumes (i)
a linear temperature distribution across the film condensate, (ii)
constant film properties, (iii) the shear stress at the surface and
inertia effects are negligible, (iv) laminar flow in the forming film,
and (v) pure still vapor from which the condensation occurs. In
Fig. 1 an illustration of the system considered by Nusselt is shown.
Nusselt obtained analytical expressions for the velocity profile in
the film, the film thickness, mass flow and the heat transfer coeffi-
cient along a hydrophilic wall.

Nusselt’s model has been found to have a good accuracy but
only for low flow velocities [2]. One of the reasons for low accuracy
at high flow velocities is the neglect of inertia and interface shear
effects. The role of these effects has been intensely studied in the
literature and it has been found that at low Prandtl numbers the
interface shear must be taken into account while at high Prandtl
numbers the effect of shear is small and can be neglected [4,5].
Both effects (inertia and interface shear) lower the mass flow rate.
Also, subcooling effects are discarded in Nusselt’s model which
may alter the condensation flux at the liquid–gas interface. In [2]
it is shown how the above effects can be taken into account.

Nusselt’s model also assumes a laminar film without ripples or
waves at the interface. This assumption has been studied and
found to be valid for film Reynolds numbers Ref K 33 [6]. To clas-
sify different condensation flows the film Reynolds number is
defined as

Ref ¼
4 _mðz ¼ LÞ

ll
; ð1Þ

where _m is the mass flow in the bottom of the film at the length L
and ll is the dynamic viscosity of the film. For Ref J 33 the
condensate film turns wavy-laminar and for 1000 K Ref K 1800
the flow in the film becomes turbulent [2]. These surface wave
and turbulence effects have been suggested to alter the film thick-
ness that leads to a significant change in the heat transfer coeffi-
cient. Therefore, it is normal practice to use empirical correlations
for these regimes [1,2].

On the other hand, the lattice Boltzmann (LB) method has over
the last two decades become a successful numerical approach to
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efficiently simulate various complex flows [7–14]. Different LB
methods for multiphase flows have been suggested [15] and
recently a LB model to predict film and dropwise condensation
was developed [16,17] using the so-called Shan-Chen multiphase
method. It was, however, reported that the model becomes numer-
ically unstable if the Prandtl number deviates from one.
Furthermore, a general issue using the Shan-Chen method is that
the interface between the vapor and the liquid is diffuse [15].

To address tracking of interfaces between the gas and liquid
phases as well as further strengthen the model, a free surface LB
(FSLB) methods have been developed [18–20]. However, to ensure
numerical stability, adaptive time steps [19] or adaptive grids [21]
need to be implemented in the model which causes a significant
complication.

In this paper we suggest a free surface entropic LB (FSELB)
model and demonstrate how the model can be used to predict film
condensation. Unlike the previous LB models, the entropic LB
scheme in the free-surface framework demonstrates excellent sta-
bility and accuracy without considering adaptive grid or time
steps. Furthermore, the model is not limited to laminar flows
and, thus, it is applicable to laminar, wavy-laminar and turbulent
film flows. We consider the construction in detail in two dimen-
sions (2D); extension to 3D is straightforward.

It is worth mentioning that a lattice Boltzmann condensation
model with no limitation on model parameters has not been devel-
oped so far. Moreover, the presented model is the first FSELB
model. Finally, adding mass transfer to the liquid–vapor interface
in FSLB methods is an extension which to our best knowledge have
not been reported before. Thus, FSELB allows for modeling of more
complex processes, e.g. evaporation and condensation.

The outline of the paper is as follows: in Section 2.1 the entropic
lattice Boltzmann (ELB) model will be described and in Section 2.2
the modeling of the temperature field is presented. In Section 2.3
the FSLB method developed in [19] is reviewed and in order to val-
idate the FSELB model the key concepts and equations of Nusselt’s
model are presented in Section 2.4. Finally, in Section 2.5 the set-
up of our model will be described showing how it is developed
from the FSLB framework. The results are presented and discussed
in Section 3 while Section 4 concludes the paper.

2. Model descriptions

The 2D FSELB model, presented here, is constructed using the
ELB approach for modeling of the flow in the film. The liquid–gas
interface is treated as a boundary according to the FSLB framework
and the temperature field is treated as a passive scalar described
below in Section 2.2.

2.1. Entropic lattice Boltzmann

The LB method concerns a discrete kinetic equation which
solves for populations f ið~x; tÞ corresponding to discrete velocities
~ci; i ¼ 1; ::;nd. The velocities fit into a regular spatial lattice with
the nodes~x. The ELB method is a generalization of the LB method
and involves restoring the second law of thermodynamics. This
additional step renders excellent non-linearly numerical stability
and drastically reduces the computational demand at high
Reynold numbers [11,22].

The ELB equation with the lattice Bhatnagar–Gross–Krook
(LBGK) collision operator including a body force is given as [11]

f ið~xþ~cidt; t þ dtÞ ¼ f ið~x; tÞ þ abðf eq
i ðq;~uÞ � f ið~x; tÞÞ

þ f eq
i ðq;~uþ D~uÞ � f eq

i ðq;~uÞ; ð2Þ

where b is related to the kinematic viscosity m as follows:

m ¼ c2
s

1
2b
� 1

2

� �
dt: ð3Þ

Here, cs is the speed of sound in the model, dt is the time step, q is
the density, ~u is flow velocity, and a is the non-trivial root of the
entropy estimate which will be described below. The density and
momentum are obtained from the populations as:

q ¼
Xnd

i¼1

f i ð4Þ

and

q~u ¼
Xnd

i¼1

~cif i: ð5Þ

The body force is incorporated using the exact difference method
which provides the expression for the velocity increment D~u as [23]

D~u ¼
~F
q

dt; ð6Þ

where the force ~F ¼~gq with ~g to be the gravitational acceleration.

The actual fluid velocity ~U is obtained by averaging the fluid
momentum before and after the collision:

q~U ¼ q~uþ dt~F
2
: ð7Þ

The equilibrium function f eq
i is the minimizer of the discrete

entropy function H under local conservation laws of mass and
momentum. The entropy function is given as

H ¼
Xnd

i¼1

f i ln
f i

Wi
; ð8Þ

with Wi to be the lattice specific weights. Expanding the minimiza-
tion problem to the order u2 gives rise to

f eq
i ðq;~uÞ ¼ qWi 1þ

~ci �~u
c2

s
þ ð
~ci �~uÞ

2

2c4
s
�
~u �~u
2c2

s

 !
: ð9Þ

The entropy balance is maintained at each node for each time step
through the parameter a. It is obtained as the non-trivial root of the
following equation:

Fig. 1. Film condensation on a vertical surface according to Nusselt’s model. To is
the wall temperature and Td is the temperature at the interface between the gas
and liquid phase.

M.A. Hygum et al. / International Journal of Heat and Mass Transfer 87 (2015) 576–582 577



Hðf Þ ¼ Hðf þ aðf eq � f ÞÞ: ð10Þ

In order to ensure an efficient simulation the following asymptotic
expansion for a is used for the condition jðf eq

i � f iÞ=f ij < 10�2 [24]:

a ¼ 2� 4a2

a1
þ 16a2

2

a2
1

� 8a3

a1
þ 80a3a2

a2
1

� 80a3
2

a3
1

� 16a4

a1
; ð11Þ

with the coefficients an obtained from

an ¼
ð�1Þn�1

nðnþ 1Þ
Xnd

i¼1

ðf eq
i � f iÞ

nþ1

f n
i

; n P 1: ð12Þ

If jðf eq
i � f iÞ=f ij > 10�2 then a is found using the bi-section method.

The D2Q9 lattice [8] is chosen for the model. For that lattice

cx ¼ ð0;1;0;�1;0;1;�1;�1;1Þ;
cy ¼ ð0;0;1;0;�1;1;1;�1;�1Þ;
W ¼ ð4=9;1=9;1=9;1=9;1=9;1=36;1=36;1=36;1=36Þ; ð13Þ

and cs ¼ 1=
ffiffiffi
3
p

.
ELBM was originally developed to stabilize simulations of high

Reynolds number, with large velocity gradients. The film flows,
considered here, are not such systems. However, ELBM can still
be adapted to ensure better stability of free surface simulations.
As shown later, in Section 3, the source of numerical instability
for the free surface simulations carried out in this paper is found
to be the surface itself. Utilizing the ELBM approach, thus, allows
for better stability for a wider range of input parameters.

2.2. Temperature field

One of the simplest LB realizations for modeling the tempera-
ture T is to treat it as a passive scalar. As suggested in [25] the tem-
perature field can, thus, be solved using a second lattice. Here, the
D2Q9 lattice is also considered. More advanced models do exist
which e.g. include viscous heating [26]. However, while neglecting
these effects the kinetic equation for the second population, repre-
senting T, is given as [25]

gið~xþ~cidt; t þ dtÞ ¼ gið~x; tÞ þ 2bTðgeq
i ðT;~uÞ � gið~x; tÞÞ; ð14Þ

where the thermal diffusivity

DT ¼ c2
s

1
2bT
� 1

2

� �
dt: ð15Þ

The temperature is obtained from T ¼
Pnd

i¼1gi and the equilibrium
function geq

i is

geq
i ðT;~uÞ ¼ TWi 1þ

~ci �~u
c2

s

� �
: ð16Þ

Eq. (14) is acceptable for the use in our model. As mentioned, the
source of numerical instability does not originate from the temper-
ature field which is why the LBGK relaxation is sufficient.

2.3. Free surface modeling

The free surface modeling is based on the approach described in
[19] and for the sake of completeness the key points are presented
here.

In the free surface model the gas phase is assumed to have a
negligible effect on the fluid flow in the film. Therefore, surface
tension and shear stress at the liquid–vapor interface are dis-
carded. Moreover, the contact angle at the top of the film is found
to have a negligible effect when considering film condensation [16]
which justifies the simplification. As in any numerical realization
the domain is discretized with a suitable set of nodes. Every node
has one of the following flags: fluid/filled node, interface node, or

an gas/empty node, where the complication lies within the treat-
ment of the interface nodes. An overview of the surface handling
is shown in Fig. 2.

2.3.1. Interface movement
The movement of the interface is modeled by keeping track of

the mass m and the fluid fraction � in each node. The fluid fraction
� ¼ m=q is one ð� ¼ 1Þ for a filled node, zero for an empty node
ð� ¼ 0Þ, and 0 < � < 1 for an interface node. Mass fluxes between
the nodes are directly computed through the streaming step,
which for an interface node at~x and a fluid node at~xþ~ci becomes

DmF
i ð~x; t þ dtÞ ¼ f~ið~xþ~ci; tÞ � f ið~xþ~ci; tÞ; ð17Þ

where ~i is the opposite direction of i :~c~i ¼ �~ci. The notation F

denotes that the neighbor is a fluid node.
The mass exchange between two interface nodes must account

for the area between the nodes. This is approximated by the aver-
age of the fluid fractions of the two nodes as follows:

DmI
ið~x; t þ dtÞ ¼ f~ið~xþ~ci; tÞ � f ið~xþ~ci; tÞ

� � �ð~xþ~ci; tÞ þ �ð~x; tÞ
2

;

ð18Þ

where I denotes that the neighbor is an interface node. Thus, the
mass of the interface node at ~x at the next time step is given as

mð~x; t þ dtÞ ¼ mð~x; tÞ þ
Xnd

i¼1

Dmk
i ð~x; t þ dtÞ; ð19Þ

with k ¼ fF; Ig.

2.3.2. Surface reconstruction
At the interface nodes the populations which would have

streamed from the empty nodes are lacking and must therefore
be reconstructed. It is assumed that the pressure at the interface
gives rise to a density qA ¼ 1 and that the vapor does not affect
the film flow. This allows for

f 0~ið~x; t þ dtÞ ¼ f eq
i ðqA;~uÞ þ f eq

~i
ðqA;~uÞ � f ið~x; tÞ; ð20Þ

with f 0~i to be the post-streaming populations. Note that the surface
tension can be included by modifying Eq. (20), see [27,28]. Using Eq.
(20) we get a full set of populations. However, in order to balance

Fig. 2. Overview of the steps that have to be executed for the interface handling.
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the force at each side of the interface, Eq. (20) is used for streaming
along the direction of the normal vector ~n to the surface. Thus, if

~n �~c~i > 0; ~n ¼ 1
2

�ð~xj�1;kÞ þ �ð~xjþ1;kÞ
�ð~xj;k�1Þ þ �ð~xj;kþ1Þ

 !
; ð21Þ

with j being the x-coordinate and k being the y-coordinate, Eq. (20)
is also used for the streaming.

2.3.3. Surface re-initialization
After the density and the momentum have been calculated it

must be investigated whether the interface nodes have been filled
or emptied during the time step. This is done according to:

mð~x; t þ dtÞ > ð1þ jÞqð~x; t þ dtÞ ! node filled
mð~x; t þ dtÞ < �jqð~x; t þ dtÞ ! node emptied ð22Þ

where j ¼ 10�4 is a threshold to prevent a re-initialization of the
given node at the next time step. For implementation reasons the
coordinate of the node of interest is stored in a separate list and
the conversion is done when the main loop is executed for all nodes.

An empty node must have a mass equal to zero and a filled node
must have a mass equal to the density times the volume. As in
standard LB units we set dx ¼ dy ¼ 1 and q ¼ 1. Therefore, the
use of Eq. (22) inevitably leads to an excess mass mex which must
be distributed to the neighboring interface nodes. The excess mass
is given as following:

mex ¼ m ! emptied node
mex ¼ m� qdxdy ! filled node: ð23Þ

It can be noticed, that if the emptied node has a numerically nega-
tive mass, the interface has moved beyond the current node.
Similarly, if the mass of a filled node gives rise to a density larger
than one the interface has moved past the node.

The conversion of the newly filled or emptied node must first
be done. For a newly filled node the surrounding empty nodes
are converted to interface nodes. For each of these nodes the
average density qavg and momentum qavg~uavg are calculated
considering the neighboring fluid and interface nodes. The
newly converted interface nodes are then initialized with equi-
librium functions f eq

i ðqavg ;~uavgÞ. Similarly, the fluid neighbors
to the newly emptied nodes are converted to interface nodes.
The former nodes population is used for each corresponding
new interface node.

The last step is to distribute the excess mass to the neighboring
interface nodes. The excess mass is weighted according to ~n. Thus,
the distribution of excess mass is calculated according to

mð~c þ~ciÞ ¼ mð~c þ~ciÞ þmex gi

gtotal
; ð24Þ

with gtotal to be the sum of all the weights gi, which are obtained
according to

gi ¼
~n �~ci if ~n �~ci > 0
0 otherwise

�
filled nodes

gi ¼
�~n �~ci if ~n �~ci < 0
0 otherwise

�
emptied nodes:

ð25Þ

With the excess mass distributed, the re-initialization is completed
and the simulation can continue to the next time step. It can, how-
ever, happen that single interface nodes are left behind the flow or
interface nodes get trapped inside the fluid. These are artifacts but
they do not perturb the flow. In order to remove these artifacts the
procedure described in [19] is applied.

2.4. The Nusselt model

With the LB framework of the model described we proceed with
its validation. For that we need to introduce a few key equation of
the Nusselt model described in [2] and refer once again to the con-
densation process illustrated in Fig. 1. The Nusselt formulas can be
derived by considering the Navier–Stokes equation at steady-state
combined with the enthalpy balance. The flow is due to gravity and
the film thickness arises from the condensing mass flux at the
liquid–vapor interface. The film thickness is obtained as

dðzÞ ¼ 4klllðTd � T0Þz
Dhvapqlðql � qgÞg

" #1=4

; ð26Þ

with kl to be the thermal conductivity of the liquid, T0 to be the wall
temperature, Td to be the temperature at the interface between the
gas and liquid phases, Dhvap to be the latent heat of condensation, ql

to be the density of the liquid, qg to be the density of the gas, and g to
be the acceleration due to gravity. The velocity profile v is given as

v ¼
ðql � qgÞg

ll
yd� y2

2

� 	
ð27Þ

and the mass flow rate _m is, according to Nusselt, given as

_m ¼ ql

ðql � qgÞg
3ll

d3: ð28Þ

The local heat transfer coefficient h is given as h ¼ kl=d which leads
to the average heat transfer coefficient as follows:

�h¼4
3

1

41=4

k3
l Dhvapqlðql�qgÞg

llðTd�T0ÞL

" #1=4

�0:943
k3

l Dhvapqlðql�qgÞg
llðTd�T0ÞL

" #1=4

;

ð29Þ

where L is the length of the film. This allows for the non-dimen-
sional Nusselt formula of the averaged heat flux:

Hf ¼
�h
kl

l2
l

qlðql � qgÞg

" #1=3

¼ 1:47Re�1=3
f : ð30Þ

With the theoretical foundation in place the set-up of our model
will be presented below. The model is developed in the way that
it can be compared with the Nusselt formulas as a benchmark.

2.5. Simulation set-up

Similar to the Nusselt formulation the surface tension is consid-
ered to be negligible and the pressure of the vapor is assumed to be
constant and saturated in our model.

A computation domain of Nx � Ny ¼ 300� 300 is proven to
yield grid independent results. At the wall boundary the no-slip
condition and the temperature T0 are applied. The no-slip condi-
tion is realized with the bounce-back method. The temperature
at the interface is set to T0using the approach presented in [29]
and at the bottom the extrapolation boundaries is applied accord-
ing to the procedure suggested in the same reference. The top
nodes are fixed as vapor nodes and therefore never addressed. At
the interface the temperature Td is enforced.

The condensation flux couples the energy equation to the mass
flux at the interface. The energy conservation at the surface implies

kl
~rTjinterface ¼ kg

~rTjinterface �~JDhvap; ð31Þ

with~J to be the condensation flux and kg to be the thermal conduc-
tivity of the gas.

The contribution of the condensation flux is added to the right
side of Eq. (19) for the mass at the interface, thus, converting it to
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mð~x; t þ dtÞ ¼ mð~x; tÞ þ
Xnd

i¼1

Dmk
i ð~x; t þ dtÞ þ AJdt; ð32Þ

with A to be the area of the surface at the given node. This area,
which for 2D simulations correspond to a line, is found by assuming
that the area of the interface can be approximated by a right-angled
triangle. Note, that this additional mass flux is our extension to the
FSLB framework to be able to address condensation-evaporation
problems.

The fluid flow and heat transfer of steady film condensation on
hydrophilic surfaces can be characterized by the following two
dimensionless numbers:

Pr ¼ m
DT
¼ cpll

kl
; Ja ¼ cpðTd � T0Þ

Dhvap
; ð33Þ

which are the Prandtl and Jakob numbers, respectively, and cp is the
specific heat at constant pressure. The Prandtl number is a material
constant and the Jakob number is the ratio of the sensible heat of
the film and the latent heat of the vapor. Thus, for a fixed Pr the film
thickness will increase with the Jakob number since the energy flux
at the interface increases.

3. Results and discussion

3.1. Comparisons of FSELB with the Nusselt model

In Fig. 3 film thickness modeled by the developed FSELB method
and the classic Nusselt model are compared for two pairs of Prandtl
and Jakob numbers, Pr = 7 and Ja = 0.185, and Pr = 0.8 and Ja = 0.4.
These parameters were chosen, in order to demonstrate that the
model works well within some range of input parameters. For all
the simulations L ¼ 1 mm; g ¼ 9:81 m=s; q ¼ 103 kg=m3; DHvap ¼
2260 kJ=kg; ll ¼ 1:002 � 10�3 Pa � s. kl and ðTd � T0Þ is calculated
from Pr and Ja, respectively. As in normal LB practice, the velocity
is set so that it does not exceed 0.05 in lattice units. It is seen that
our simulations agree well with those carried out using the analyt-
ical Nusselt formula.

Comparisons of z-components of the velocities between the two
models are shown in Fig. 4 along with the film Reynolds numbers.
The mass flow in the FSELB model is calculated by the following
formula:

_m ¼
Xyf

y¼1

uyqydy; ð34Þ

where yf is the y-coordinate of the interface node at L. It can be seen
that both models agree well for low length values. However, the

velocities predicted by the FSELB model are found to be smaller
than those calculated by Nusselt model’s and this difference
increases with the velocity rise. Actually, this is expected behavior
because the FSELB method takes into consideration the effects of
inertia forces which lowers the velocity.

The same tendencies were found in [4,16] where the deviation
was found to be the highest for high Jakob numbers and low
Prandtl numbers. According to [4,16] inertia, shearing stress and
viscous effects become increasingly important at high Jakob num-
bers and low Prandtl numbers which is where the present FSELB
model also deviates from the Nusselt model.

The dimensionless temperature h ¼ T�T0
T0�Td

profile at L and mean

heat transfer coefficient for the two models are compared in
Fig. 5. It is seen that the linear approximation of the temperature
is a quite suitable approach for predicting the mean heat transfer
coefficient in the laminar regime.

In Fig. 6 the contours of T and v are shown for simulations with
Pr = 7 and Ja = 0.185. The contours of T and v for simulations with
Pr = 0.8 and Ja = 0.4 are presented in Fig. 7. Good agreement
between the profiles modeled with FSELB and the Nusselt formulas
can be seen.

3.2. Beyond the laminar regime

As mentioned in the introduction, the Nusselt model has exper-
imentally been proven to be true only for Ref < 30. Beyond this
regime empirical expressions were developed. In this paper we
use two expressions proposed by Kutateladze [30] and Chen et.
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Fig. 4. Comparisons of z-components of the velocities predicted by FSELB simula-
tion and Nusselt formula.
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Fig. 3. Comparisons of film thicknesses predicted by FSELB simulation and Nusselt
formula.
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al [31] for comparisons with our model. Since the presented model
is in 2D, only comparisons for the wavy-laminar regime is carried
out.

In Fig. 8 the non-dimensional averaged heat flux is compared to
the Nusselt formula and the empirical models proposed by
Kutateladze [30] and Chen et. al [31]. It can be seen, that the sim-
ulations using FSELB model show a reasonable agreement with the
two empirical models for the range of used film Reynolds numbers
while the Nusselt calculations significantly underestimate the flux
especially for high Reynolds numbers.

It is worth mentioning that wave-like behavior of the film can
be simulated by the presented FSELB approach with high enough
resolution. To illustrate this, two simulations were conducted with
same input parameters and initial conditions but with different
resolutions, namely 600� 600 and 3000� 3000 grids. The simula-
tions are carried out with Pr ¼ 0:5; Ja ¼ 2:5 and L ¼ 200 mm. A
snapshot of both simulations where Ref ¼ 94:65 can be found in
Fig. 9. It is seen that the film becomes wave-like when simulated
with high resolution. This indicates that the present approach
can be used beyond the laminar flow regime. A detailed study of

the corresponding effects require a three-dimensional extension
of the model which is beyond the scope of the present paper.

Finally, a comment on the use of the entropic LB scheme instead
of the conventional LBGK is in order. As mentioned earlier, the
source of numerical instability in the free surface flows is the sur-
face itself. To prove this a snapshot of the a-profile of a condensa-
tion film flow where L ¼ 1:5 mm;Pr ¼ 0:8 and Ja ¼ 2:4 is shown in
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Fig. 6. Comparisons of temperature and velocity contour profiles predicted by
FSELB simulation and Nusselt formula with Pr ¼ 7 and Ja ¼ 0:185.
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Fig. 7. Comparisons of temperature and velocity contour profiles predicted by
FSELB simulation and Nusselt formula with Pr ¼ 0:8 and Ja ¼ 0:4.

Fig. 9. Comparison of fluid fraction � profiles at a snapshot where Ref ¼ 94:65. The
simulations are carried out with two different resolutions shown in the panels.

Fig. 10. A snapshot of the fluid fraction � and a-profile of a condensation film flow
where L ¼ 1:5 mm;Pr ¼ 0:8 and Ja ¼ 2:4.
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Fig. 8. Comparison of non-dimensional averaged heat fluxes predicted by the
various models for the given range of film Reynolds numbers.
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Fig. 10. To visualize the film the fluid fraction � is also shown in
Fig. 10. This simulation was proven to be unstable with the stan-
dard LBGK but it is stable using the ELB model. In Fig. 10 it is seen
that the entropic estimations are activated, at this snapshot,
mainly in two places at the surface. Furthermore, the a values
cover a range of 1.8 to 2.05. We remind that the conventional
LBGK corresponds to the fixed value a ¼ 2. The need for the entro-
pic stabilization is therefore clear.

4. Conclusion

A free surface entropic lattice Boltzmann approach has been
introduced and the model is applied to predict steady laminar film
condensation on a flat vertical hydrophilic surface. The model
framework enables to reach Prandtl and Jakob numbers not
reported before for lattice Boltzmann simulations of film
condensation. Furthermore, the model allows film condensation
modeling beyond the laminar regime and it shows good agreement
with earlier developed empirical models in a relatively wide range
of film Reynolds numbers.

The presented model is developed for simulations of saturated
vapor. However, adjustment of the mass balance equation at the
interface can allow to model condensation of non-uniformly
saturated vapor, thus, extending use of the model. Furthermore,
evaporation can be introduced in the model as further develop-
ment of the approach.

Since the model displays good agreement with empirical mod-
els for film condensation beyond the laminar flow the next
improvement would be to develop accurate simulations of turbu-
lent film flows in three dimensions.
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