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Trajectory Analysis and Prediction for improved Pedestrian Safety:
Integrated Framework and Evaluations

Andreas Møgelmose1,2, Mohan M. Trivedi2, and Thomas B. Moeslund1

Abstract— This paper presents a monocular and purely vision
based pedestrian trajectory tracking and prediction framework
with integrated map-based hazard inference. In Advanced
Driver Assistance systems research, a lot of effort has been
put into pedestrian detection over the last decade, and several
pedestrian detection systems are indeed showing impressive
results. Considerably less effort has been put into processing the
detections further. We present a tracking system for pedestrians,
which based on detection bounding boxes tracks pedestrians
and is able to predict their positions in the near future.

The tracking system is combined with a module which,
based on the car’s GPS position acquires a map and uses
the road information in the map to know where the car can
drive. Then the system warns the driver about pedestrians
at risk, by combining the information about hazardous areas
for pedestrians with a probabilistic position prediction for all
observed pedestrians.

I. INTRODUCTION

As technology advances, Advanced Driver Assistance
Systems (ADAS) becomes more and more commonplace
in today’s cars. ADASs can range from parking assistance
to safety systems such as lane departure warning, and all
the way to autonomous driving in stop-and-go traffic. Our
focus is on safety systems related to pedestrians. In 2009
there were 4,000 deaths and 60,000 injuries from pedestrian-
vehicle collisions in the US alone [1]. Since a pedestrian is
much more vulnerable than people in cars, even slow speed
accidents can prove deadly.

There has been a wealth of good work done on pedestrian
detection [2]. There has been comparatively little research
on what to do with these detections. This paper is concerned
with how to use pedestrian detections in a driver assistance
context. While driving, some observations are very impor-
tant: pedestrians in front of the car, traffic signals, other road
users. Some are less important: pedestrians on the sidewalk,
“no parking” signs when the driver is not trying to park,
billboards along the road. Sometimes too much information
is ignored [3], leading to accidents, e.g. from overlooking a
pedestrian. This is where predictive decision support ADASs
can help [4]–[6].

An ADAS which aims to help in preventing pedestrian-
vehicle accidents must prioritize pedestrians and only inform
the driver about those who are in immediate risk of being
hit. Since pedestrians often move around, some predictive
ability is desired for the risk assessment.
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The system presented in this paper is a monocular pedes-
trian tracking system. It has two parts:

1) From input of detection bounding boxes in a monocu-
lar view, it tracks pedestrians in a top-down map-like
view in the area in front of the car. Using the tracks,
the motion of the pedestrians in the immediate future
can be predicted.

2) Based on the position and orientation of the vehicle,
obtained from a highly sensitive GPS module, it re-
trieves a map of the area and uses the information
about road locations from this to infer dangerous areas
for tracked pedestrians.

The remainder of this paper is structured as follows: In
section II, a brief overview of related work is given. Section
II gives an overview of the system, and further details are
explained in section IV and V. Section VI shows system
output, and finally section VII rounds off the paper.

II. RELATED STUDIES

Plenty of work has been done on pedestrian detection in
the past decade. The classic approaches are Haar-cascades [7]
and HOG-SVM [8]. These two works form the foundation
for much of the more recent work, from a combination
of the two methods in [9], to the deformable parts model
championed by Felzenszwalb et. al. [10], and Integral Chan-
nel Features [11], [12]/Aggregated Channel Features [13] by
Dollár et. al. For a comprehensive overview of pedestrian
detection methods, see [14].

What all these methods have in common is that they
find the pedestrians, but do no further analysis. Recently,
pedestrian intent prediction has gained traction, championed
by the group of prof. Dariu Gavrila. There are two basic
approaches: Tracking pedestrians, or looking at pedestrian
orientation and local motion features, such as optical flow,
of the pedestrian.

The papers [15]–[17] look at pedestrian orientation using
different kinds of classifiers on static monocular pedestrian
images. [18]–[20] do the same, but based on RGB-D data,
and [20] even determines the orientation of the head and
the torso separately. In [21], local motion featues dubbed
MCHOG are used to predict whether or not the pedestrian is
about to take a step. The input data, however, is not coming
from a car perspective, but a stationary multi-camera setup
mounted at an intersection. A similar task is carried out in
the very interesting [22], which uses optical flow and stereo
data. This time on data from a real car, though in rather
simplistic scenarios.
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Fig. 1. System flow. Note that Detection is grayed out, since it is outside of the scope of this work.

Tracking of moving pedestrians is done from a surveil-
lance perspective in [23], [24], and from a car perspective
on stereo data in [25], [26] using Interacting Multiple Model
Kalman Filters and SLDS tracking, respectively. Finally, long
term path prediction from a stationary camera is done in [27].

The work presented in this paper also belongs to the class
of tracking-based prediction systems. Its main differences to
the state of the art are:

1) The system works on a monocular camera from a car
perspective, where most others use RGB-D data.

2) Maps are integrated in the system and used to infer
hazardous areas.

3) The analyzed scenes are complex, natural, and uncon-
strained with real pedestrians.

4) Particle filters are used for tracking.

III. SYSTEM OVERVIEW

The structure of the system presented here is shown
in fig. 1. Two parallel processes run. In the upper row:
Pedestrian bounding boxes are supplied from some kind of
detector. Detection itself is outside the scope of this work,
and throughout the project, hand-annotated bounding boxes
have been used in place of a detector. Each detectionis
assigned to a track. A new track is initiated if no existing
track fits. Using the dynamics captured by the particle filter
tracker, the pedestrian’s position can be predicted into the
near future. The lower row shows the mapping part. The
position and orientation of the ego-vehicle is determined
with a GPS and an electronic compass. A corresponding
map is retrieved from OpenStreetMap and rotated to fit. A
top view of the car’s surroundings is generated via Inverse
Perspective Mapping (IPM), and the tracks and street map
are superimposed to this. By using pre-acquired mapping, we
do not need to rely on road segmentation in the input images.
Instead we know where the car will drive in the future.

In hazard inference, the projected position of any pedes-
trian is compared to the road position, and if the pedestrian
enters with sufficient certainty, the driver can be warned. The
UI for warning the driver is not covered in this paper.

IV. TRAJECTORY GENERATION AND TRACKING

The trajectory generation consists of two tasks: Assign-
ment and tracking. In assignment all detections are assigned

Fig. 2. Example of assignment between pedestrians. Two boxes are shown
per person: the current bounding box and the previous bounding box from
the pedestrian’s track. Some boxes are very close to each other, and thus
hard to distinguish on the picture.

to an existing track, or a new track is created for them.
In tracking, each track is updated. Assignment takes places
in the native camera coordinate system, whereas tracking
is done on the top-down map of the vehicle generated
using IPM. Fig. 6 shows both views. The input image is a
1280x960 RGB image captured with a networked PointGrey
camera.

A. Assignment

Assignment is done with the Munkres algorithm between
bounding boxes in the current input image and the previous
bounding box for each track. A cost matrix is populated
with the cost for associating a bounding box with any given
previous bounding box. The cost is the Euclidean distance
between the box centers plus the size change of the box (a
bounding box is expected to be roughly the same size in two
consecutive frames). Since boxes move and change size in
bigger increments when pedestrians are close to the camera,
the cost is weighted by the inverse of the box size, so large
costs are lowered when the bounding box is large:

D(a, b) =

(√
|ax − bx|2 + |ay − by|2

+
√
|aw − bw|2 + |ah − bh|2

)
· 1

aw + ah

(1)

where D(a, b) is the distance between boxes a and b,
and subscripts x, y, w, h means center x-coordinate, center
y-coordinate, width, and height, respectively.

n bounding boxes gives an n × n matrix. The Munkres
algorithm allows for unequal numbers of input and output
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Fig. 3. All 1000 particles for a single track (the green observation) plotted
with position and orientation. (a) shows the distribution before convergence
and (b) shows the distribution after.

by padding the cost matrix with “infinity” until it is square.
This, however, finds a global optimum, and will often lead to
all boxes shifting. Imagine a case where one track ends, and
another begins simultaneously. There will still be an equal
number of boxes on the in- and output side, so all boxes will
be reassigned, when in reality one box should have been
assigned to nothing and one should have prompted a new
track. To accommodate these scenarios, we add another n
columns of close-costs. The close-cost is simply a threshold
over which we decide that it is better to close a track than
to reassign it. As a result, in the n × n case, the cost
matrix will now be n × 2n, with the left half containing
reassignment costs, and the entire right half containing
indentical close-costs in all entries. After the assignment in
done, any unassigned detection will be assigned a new track.
An assignment example is shown in fig. 2.

B. Tracking

In this system tracking is done by a particle filter for
each track. Each track has 1000 particles that are modeled
using the unicycle model: a particle has a certain speed
and orientation. Each update is done by applying a certain
amount of Gaussian noise to each of these parameters. Each
measurement is also applied Gaussian measurement noise.
The particles are weighted by distance to the measurement
using a bivariate Gaussian:

P (p,m) = exp

(
(px −mx)

2

2 · vx
− (py −my)

2

2 · vy

)
(2)

where P (p,m) is the probability of a particle p given the
measurement m and v is the variance in two dimensions.
Example pictures of the particle filter tracking are shown in
fig. 3

V. BEHAVIOR PREDICTION AND HAZARD INFERENCE

The prediction is carried out by the particle filter. When
the prediction has been computed for the desired prediction
horizon, a bivariate Gaussian is fitted over the particles.

(a) (b)

Fig. 4. Example position predictions of the green observation (a) one
time step ahead and (b) five steps ahead. The one-step prediction is behind
the actual observation because of measurement-noise, which makes the
observation unreliable and the filter smooths the movement out. This is
exacerbated by the inverse perspective mapping, which is very sensitive to
even small changes in bounding box position, especially at a distance. As
the prediction is done further into the future, the uncertainty rises, which
can be seen by the expanding heatmap.

Fig. 5. The road in front of the car is extracted from OpenStreetMap. It
is then rotated and scaled appropriately and overlaid on the IPM-generated
map.

Particle filters support multimodal hypotheses, but they are
not relevant with a relatively direct measurement setup as in
this system. Thus fitting a single bivariate Gaussian does not
lead to a significant loss of information. The fitted Gaussian
is then used to describe the probability of positions the
pedestrian might be at in the near future. Fig. 4a visualizes
the probability map one step ahead and fig. 4b shows the
prediction 5 steps ahead.

A central step in the hazard inference process is using a
map to determine where the road is. A map is obtained from
OpenStreetMap, which can be installed on a server locally
in the car. Then the map is rotated according to the car’s
orientation and scaled appropriately. Fig. 5 illustrates this
process.

To estimate whether a pedestrian is about to enter a
hazardous zone, a combination of the predicted position –
as visualized by the heatmaps in fig. 4 – and the known
road area is used. Each pixel of the heatmap has a value,
depending on the probability of the pedestrian being there.
The values of the pixels overlapping with the road are
summed, and if the sum is above some threshold, a warning
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Fig. 7. Two of the just four wrong assignments in the 1022 detections of
the test sequence. Each row is an example with the before and after frame
shown. See text for further discussion.

is emitted:

W (p) =

(x,y)∈H∑
H(x, y) ·R(x, y) (3)

where W (p) is the warning-value (subject to a threshold) of
particle p, H is the position probability map of p and R is
the mask of the road, expressed as 1 where road is present
and 0 otherwise.

VI. EVALUATION AND DISCUSSION

Figure 6 shows output examples of the full system. The
left side show the native view with detection bounding boxes,
while the right side shows the map view with circles for
pedestrians. Heatmaps on the map view show the predicted
position of the pedestrians, and the color of both bounding
boxes and circles show whether the pedestrian is about to
enter a hazardous area.

Assignment: The system consists of several blocks, and
in this section we discuss the performance of each. The
assignment part performs very well. On a test sequence with
1022 individual detections over 106 frames, only 4 wrong
assignments happen. Two of these instances are shown in fig.
7. In the top row, the person of track 13 is exiting the frame.
In 7b, after 13 having exited, the person previously assigned
to track 12 steps to the exact position that 13 had before,
and the algorithm determines that the lowest global cost is
achieved by closing track 12. This issue might be solved by
having a stronger prediction input to the assignment.

In 7c and 7d, the previous track 3 is occluded by a person
in front of him at the exact same time as a pedestrian which
was previously hidden emerges in the same line-of-sight of
the camera.

Tracking: Tracking has two jobs. Smooth out the trajectory
of the tracked pedestrians and allow for prediction of their
position. The smoothing is especially necessary in a monoc-
ular setup, such as ours, where the distance to pedestrians is
detemined via IPM.If a bounding box position differs by even

Fig. 8. Example of how the tracking (orange lines) is smoothing the original
input (blue lines).

just a pixel in the y-axis, the estimated position on the map
can jump several meters. The tracking should compensate
for this effect.Setting up exact metrics for this is difficult at
best, when the ground truth position of the pedestrians is not
known.

An example of this is shown in fig. 8. Here, the original
input is shown in blue, and the particle filter output in orange.
The smoothing can be adjusted via the system noise until
a satisfying combination of smoothness and reaction time
is reached. From a visual inspection it is clear that the
orange tracks provide a much better approximation to the
real world than the very jagged input data, even at relatively
long distances. This is especially clear in the tracks to the
left.

Hazard inference: Hazard inference which combines the
predictive power of the tracking with the map based road
localization. Examples are shown in fig. 9. 9a shows a
successful - but easy - prediction, where a crossing cyclist
is in the middle of the road and is not predicted to leave
the road in the next 2 seconds. 9b shows the situation
a few frames later, as the cyclist is just about to leave
the road, and is thus predicted to be out of danger soon.
9c shows another use for the system. Here, there is no
prediction of impending hazards, but there is clearly a large
concentration of pedestrian activity in the lower right corner.
This knowledge in itself might be useful in a driver assistance
context. Finally, 9d shows a faulty prediction. In this case
a pedestrian steps onto the bike lane to overtake slower
pedestrians on the sidewalk. The system predicts her to enter
the roadway, but in fact she never does. Technically, this
makes it a false prediction, but it could be argued that it is
beneficial to warn the driver about this still, since she is in
very close proximity to the road.

VII. CONCLUDING REMARKS

This work presented a pedestrian intent prediction system
for use in driver assistance. It uses monocular a monocular
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Fig. 6. Hazard warnings at different times. Green boxes/circles are pedestrians who are not about to enter the road. Red indicates pedestrians who either
are on the road already, or are about to enter it. (a) is very early in the sequence, so the tracks are still uncertain, and the heatmaps are large. The remaining
examples are taken later, when the tracks are more reliable. (c) has a faulty warning at track 12, due to a very short track with great uncertainty (the
previous tracks were cut when a car passed). It also has a missing warning all the way in the background at track 14. This is due to that pedestrian being
so far away that he is outside of the map, and thus not considered for the risk analysis.

view of the road, in which detected pedestrians are mapped
to a top view computed using Inverse Perspective Mapping.
For tracking, pedestrians are assigned to a track based on
their bounding box in the native camera view, and tracking
takes place in the map view using particle filters. To deter-
mine which areas in view are potential hazardous zones for
pedestrian, external mapping is used. A map of the nearby
area is acquired from OpenStreetMap and superimposed onto
the IPM view. Using the knowledge of road positions in the
map, hazardous areas in the camera view are obtained. Based
on the overlap of the trackers’ predictions for all observed

pedestrians with the road area, the driver can be informed
about wayward pedestrians.

In the future, ego-motion compensation should be added
to the system, so it works for moving vehicles. Furthermore,
the orientation of the pedestrians – based on appearance,
not dynamics – should be included in the tracking measure-
ments, since pedestrians are capable of very rapid orientation
changes, which are hard to capture in a purely dynamics-
based system such as this. It is also possible that local motion
cues from e.g. the pedestrians’ legs can be used in improving
performance.
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Fig. 9. Hazard inference in 4 situations. The hazardous area - the road - is
marked with a translucent red color. For clarity, only a few tracks are shown
in each. (a) and (b) are just a few frames apart, and the hazard indicator for
the subject crossing the road goes from red to green when he is predicted
to leave the road. (c) shows an example of heavy pedestrian activity, and
(d) shows a mistaken prediction.

ACKNOWLEDGMENT

The authors would like to thank their colleagues at the
LISA lab for valuable discussions throughout the project.

REFERENCES

[1] J. Cinnamon, N. Schuurman, and S. M. Hameed, “Pedestrian injury
and human behaviour: observing road-rule violations at high-incident
intersections,” PloS one, vol. 6, no. 6, p. e21063, 2011.

[2] T. Gandhi and M. M. Trivedi, “Pedestrian protection systems: Issues,
survey, and challenges,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 8, no. 3, pp. 413–430, 2007.

[3] A. Tawari, A. Møgelmose, S. Martin, T. B. Moeslund, and M. M.
Trivedi, “Attention Estimation by Simultaneous Analysis of Viewer
and View,” in Intelligent Transportation Systems (ITSC), 2014 17th
International IEEE Conference on, Oct 2014.

[4] A. Doshi and M. Trivedi, “Tactical Driver Behavior Prediction and
Intent Inference: A Review,” in 14th IEEE International Conference
on Intelligent Transportation Systems. IEEE, 2011.

[5] A. Doshi, B. Morris, and M. M. Trivedi, “On-road prediction of
driver’s intent with multimodal sensory cues,” IEEE Pervasive Com-
puting, vol. 10, no. 3, pp. 22–34, 2011.

[6] E. Ohn-Bar, A. Tawari, S. Martin, and M. M. Trivedi, “On surveillance
for safety critical events: In-vehicle video networks for predictive
driver assistance systems,” Computer Vision and Image Understand-
ing, vol. 134, no. 0, pp. 130–140, 2015, image Understanding for
Real-world Distributed Video Networks.

[7] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, vol. 1, pp. I–511–I–518 vol.1, 2001.

[8] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in CVPR, 2005.

[9] A. Prioletti, A. Mogelmose, P. Grisleri, M. M. Trivedi, A. Broggi, and
T. B. Moeslund, “Part-Based Pedestrian Detection and Feature-Based
Tracking for Driver Assistance: Real-Time, Robust Algorithms, and
Evaluation.” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 3, pp. 1346–1359, 2013.

[10] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part-Based Models.”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645,
2010.

[11] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral Channel
Features,” in BMVC, vol. 2, no. 3, 2009, p. 5.

[12] P. Dollár, S. Belongie, and P. Perona, “The Fastest Pedestrian Detector
in the West,” in BMVC, vol. 2, no. 3. Citeseer, 2010, p. 7.

[13] P. Dollar, R. Appel, S. Belongie, and P. Perona, “Fast Feature Pyramids
for Object Detection,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 36, no. 8, pp. 1532–1545, Aug 2014.

[14] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection:
An Evaluation of the State of the Art,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 4, pp. 743–761, 2012.

[15] M. Enzweiler and D. Gavrila, “Integrated pedestrian classification and
orientation estimation,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, June 2010, pp. 982–989.

[16] T. Gandhi and M. Trivedi, “Image based estimation of pedestrian
orientation for improving path prediction,” in Intelligent Vehicles
Symposium, 2008 IEEE, June 2008, pp. 506–511.

[17] J. Tao and R. Klette, “Integrated Pedestrian and Direction Classifi-
cation Using a Random Decision Forest,” in The IEEE International
Conference on Computer Vision (ICCV) Workshops, December 2013.

[18] M. C. Liem and D. M. Gavrila, “Person appearance modeling and
orientation estimation using Spherical Harmonics,” 2013 10th IEEE
International Conference and Workshops on Automatic Face and
Gesture Recognition (FG), vol. 0, pp. 1–6, 2013.

[19] W. Liu, Y. Zhang, S. Tang, J. Tang, R. Hong, and J. Li, “Accurate
Estimation of Human Body Orientation From RGB-D Sensors,” Cy-
bernetics, IEEE Transactions on, vol. 43, no. 5, pp. 1442–1452, Oct
2013.

[20] F. Flohr, M. Dumitru-Guzu, J. F. P. Kooij, and D. M. Gavrila, “Joint
probabilistic pedestrian head and body orientation estimation,” in
Intelligent Vehicles Symposium (IV), 2014 IEEE, june 2014, pp. 617–
622.
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