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Stored Energy Balance for Distributed PV-Based
Active Generators in an AC Microgrid

Nelson L. Diaz, Dan Wu, Tomislav Dragicevic, Juan C. Vasquez, and Josep M. Guerrero

Abstract—In this paper, a decentralized strategy based on
fuzzy logic is proposed for balancing the state of charge of the
energy storage units for distributed PV-based active generators.
The proposed method, weights the action of conventional droop
control loops for privileging the charge of the energy storage unit
with the smallest state of charge or force a faster discharge of the
energy storage system with the biggest state of charge. The units
are self-controlled by using local variables, hence, the microgrid
can operate without relying on communication systems. The
proposed strategy is completely expandable and can be applied
to a several number of power generators interconnected in a
microgrid. Frequency and voltage bus signaling is used in order to
coordinate the control operation mode between units. Simulation
results in a low-voltage, three-phase, islanded AC microgrid show
the feasibility of the proposed method and its applicability even
for several active generators.

Index Terms—Active Generators, Droop Control, Fuzzy sys-
tem, Energy Storage Balance.

I. INTRODUCTION

DURING the last years photovoltaic (PV) generation has
emerged as one of the most used renewable energy

sources (RES) due to current trend at the reduction on its
installation cost [1]. However, the intermittent nature of PV
generators, added together with unpredictable load fluctua-
tions, may cause instantaneous power unbalances that affect
the operation of the system. Hence, Energy storage systems
(ESS) are required to guarantee the operation conditions of
the power grid by smoothing the variations of RES [2], [3].

At this sense, a microgrid appears as an effective solu-
tion for interconnecting RES, ESS and loads as controllable
entities, which may operate in grid-connected or islanded
mode, either in AC or DC configuration. Particularly, iso-
lated microgrids play and important role when economic and
environmental issues do not allow interconnection with the
main power grid [4]. Indeed, isolated microgrids become an
additional challenge since the voltage and frequency are not
imposed for the main grid. Therefore, all the distributed energy
resources (PV and ESS) have to operate in a coordinated way
in order to ensure the reliability, security and power stability
of the local grid [1], [5].

As a matter of fact, there are two ways of integrating ESS,
namely aggregated and distributed [6]. Anyhow, the current
trend is oriented to distributed ESS, where an ESS is associated
to a RES into an entity commonly denoted as active generator
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Figure 1. AC microgrid configuration.

(PV+ESS), in order to ensure constant power production based
on load requirements, [2], [7].

Fig.1 shows a general scheme for an isolated AC microgrid
that is composed by (i) active generators (PV i+ESSi) and
loads. Commonly, droop control loops are used to achieve
good power sharing between units. Droop control enhance
system reliability and expandability, and ensure the robustness
without the use of external communication system [1], [8].

Normally, all the power converters operate in voltage control
mode (VCM) by following conventional droop control strategy
aimed to regulate the bus voltage amplitude and frequency
[9]. This approach works when dispatchable power generators
are used, but it is not effective for intermittent sources such
as PV generators, that are more likely to operate under an
algorithm of maximum power tracking (MPPT). At this case,
PV generators behave as current sources and operate under
current control mode (CCM) [1], [4]. Meanwhile, ESS operate
in VCM, being responsible of regulating the bus voltage. Then,
under VCM the batteries will be charged or discharged in order
to compensate the unbalance between the energy generated by
RES and load consumption [10], [11].

Valve regulated lead-acid (VRLA) batteries are commonly
used in isolated microgrids, since they offer a good commit-
ment between deep-cycle life, transportability, availability and
cost [12], [13]. In that case, the most effective way of charging
a VRLA battery is by means of a two stage procedure [12].
First, the ESS are charged based on the unbalanced of energy
between RES generation and load consumption, then ESS
operate under VCM. Subsequently, when the battery voltage

This document downloaded from www.microgrids.et.aau.dk is the preprint version of the paper:
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2

reach a threshold value known as regulation voltage (Vr), the
battery voltage should be kept constant [12]. At this mode,
the ESS operate on CCM then the RES should assume the
regulation of the common bus by changing their operation
mode to VCM. Given the above points, every RES and ESS
unit is accompanied by a decision-maker strategy in order to
switch between control modes. At this paper, bus-signaling
method, by using different bus voltage amplitude/frequency
thresholds, is used to trigger the changes at the operation
modes for RES and ESS in a coordinated way [1], [10].

Apart from that, when a microgrid is composed by dis-
tributed ESS, a coordination to ensure stored energy balance
among the units is desired. This coordination aims to avoid
deep-discharge in one of the ESS and over-charge in the others.
Therefore, during the process of charging, it is expected to
prioritize the charge of the unit with the smallest state of
charge (SoC), and similarly, during the process of discharging,
the unit with the highest SoC should provide more power to
the common grid than the others, in order to achieve stored
energy balance. In other words, conventional control loops for
power sharing at each ESS, may be complemented with stored
energy balance strategies [10], [13], [14], [15].

In this paper, a strategy based on a knowledge based fuzzy
inference system (FIS) is applied and evaluated for an isolated
AC microgrid. In this case, the proposed FIS weight the
P−ω droop coefficients of the droop controllers in accordance
with the SoC at each ESS. In Section II the configuration
and operation of the microgrid under isolated operation is
described. Section III shows the design and operations of the
proposed fuzzy strategy for stored energy balance. In section
IV explains the reactive power flow control. Section V shows
simulation results based on a Simulink model of a a low
voltage AC microgrid under islanded operation. The results
show the applicability and advantages of the proposed strategy.

II. DESCRIPTION OF THE ISOLATED AC MICROGRID

In order to ensure regulation of the common AC bus voltage,
all the units connected to the common bus have to operate
in a coordinated way. Due to the inherent power regulation
differences between ESS and PV generators, it is not possible
that all of them operate under the same control mode [9].
To be more precise, it is expected that PV generators work
under a MPPT algorithm in order to obtain the maximum of
the available energy. Then, they are regulated based on CCM
inner loops. On the contrary, ESS have to operate on VCM
inner loop aimed to regulate the bus voltage and frequency.
At this stage, the ESS are charged or discharged based on the
power unbalance between generated and consumed power [1].

During this stage, the current is limited by droop control
loops. However, since a two stage procedure is recommended
for charging VRLA batteries (current-limited followed by a
constant voltage charger), in order to enhance their lifetime,
each ESS should change its operation mode from VCM
to CCM when the voltage at the battery array reaches the
regulation voltage (Vr) (typically 2.45± 0.05 volts/cell) [12].
At this stage, each ESS drains as much power as needed to
keep its battery voltage at (Vr) [13]. When distributed ESS
are used, the ESS with smaller SoC will continue with the
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Figure 2. Control diagram for ESS

bus voltage and frequency regulation until it reach the the
threshold voltage (Vr). Finally, all the ESS will change its
operation mode from VCM to CCM.

At this point, for ensuring bus voltage and frequency regu-
lation, it is necessary that all the RES change their operation
mode from CCM to VCM. Consequently, RES change their
inner control loops from MPPT to droop control in which
the power obtained from RES is limited and equally shared
between RES because of the droop control loops. On the
contrary, when the RES are not able to support the load
consumption ESS change their operation mode from CCM
to VCM and RES start to work under MPPT algorithm once
again. As a consequence, every ESS and RES requires two
inner control loops in order to operate under two different
operation modes [13].

A. ESS Unit Operation

Fig. 2 shows the configuration of a ESS unit, which consists
of a battery bank, a bidirectional converter, and output filter.
The ESS unit is formed by a typical double loop VCM control
and a battery voltage regulation double loop CCM [1]. The
inner loop VCM controller uses a capacitor voltage controller
(VCdq) and an inductor current (ILdq) control loop in a dq
reference frame. The voltage frequency/amplitude references
are calculated by the voltage reference generator, based on the
(P −ω) and (Q−E) droop control loops. Likewise, the inner
loop CCM controller uses a battery voltage controller and the
same inductor current control loop as the former controller. At
this stage, the frequency reference is given by the PLL.

For the transition between operation modes, it is required
a decision-maker strategy. At this case, decentralized finite
state machines whit two states are used at each ESS unit.
The transition between operation modes are triggered by bus
voltage/frequency-signaling and the battery array voltage when
Vbati = Vr for each battery array.

B. PV Unit Operation

Similarly, Fig. 3 shows the configuration of the RES, which
consists of PV array, DC/AC converter, output filter, and local
controllers. Under CCM, the output power is regulated by the
active power reference (P ∗) defined by the MPPT algorithm.
The reactive power reference (Q∗) is established equal to zero
at this case of study. Active and reactive power references
together with the capacitor voltage (VCdq) are used by the
current reference generator to calculate the reference current
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(I∗) for the current control loop. The frequency reference is
given by the PLL.

On the other hand, inner loop VCM controller is composed
by a capacitor voltage controller and the same inner current
control loop. The voltage frequency and amplitude references
are calculated by the voltage reference generator based on
conventional (P − ω) and (Q− E) droop control loops [8].

For the transition between operation modes, it is also
required a decision-maker strategy. Decentralized finite state
machines with two states are used at each RES unit. The transi-
tion between operation modes are triggered by bus frequency-
signaling and power comparison when the MPP power is
smaller than the generated power under VCM operation.

It is important to say that smooth transitions between control
loops, is achieved by means of enforcing initial conditions of
inactive PI controller to the value of the output of the active
one [13].

III. FUZZY ADJUSTMENT FOR ESS BALANCE

When batteries are in the process of charge or discharge,
the power balance is managed by P − ω droop control loops
[8]. Therefore, the frequency at the common AC bus given by
the following equation,

ω =

{
ω∗ −m · PBati, If ESS are in V CM ;

ω∗ −m · PResi, If RES are in V CM.
(1)

where m is the droop coefficient, ω is the angular frequency
at the common bus, ω∗ is the reference of the angular
frequency, and PBati is the power driven at each ESS. If we
consider differences in the droop coefficients m at each ESS,
the battery with the lowest m will inject/extract more power
to/from the grid in order to keep the power balance in the
microgrid. For that reason, the ESS with the lowest m will be
charged or discharged faster than the others.

In light of the above, it is desired that the battery with the
lowest SoC is charged faster than all the others for ensuring
stored energy balance. Then, a smaller (m) should be assigned
to that battery. Likewise, when batteries are supplying power
to the common bus, it is desired that a bigger (m) is assigned
to the battery with the lowest SoC, in order to prevent a deep
discharge and balance the stored energy.

In particular, a FIS can easily summarize all the qualitative
knowledge, expressed above. It can cluster the experience
and the knowledge of an expert about the expected behavior
of the system in order to weight the droop coefficient at
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Figure 4. Control curves of the FIS.

each ESS based on its SoC [10]. Therefore, a fuzzy weight
factor W (SoCBati), based on a (max-min) Mamdani FIS,
is proposed in order to weight the droop coefficient at each
ESS, in accordance to its SoC, and considering whether the
ESS is being charged or discharged. Particularly, a Mamdani
FIS are computationally simple to implement since it is based
on basic algebraic and relational operations, or it can even be
implemented as a lookup table [16]. Finally, equation (1) is
replaced by equation (2) where the fuzzy factor is applied.

ω =

{
ω∗ −m ·W (SoCBati) · PBati, If ESS are in V CM ;

ω∗ −m · PResi, If RES are in V CM.
(2)

The FIS uses the SoC and the sign of the frequency
deviation (equation (3)) as the inputs, and the weight factor
W (SoC) is defined as the output. The SoC is estimated by
standard ampere-hour (Ah) counting method as in [1], [13].

sgn(ω) =

{
1, If ω − ω∗ > 0;

−1, If ω − ω∗ < 0.
(3)

To be more precise, the FIS is only active when the ESS
are operating in VCM, and it weighs the droop coefficients
between 0.1 to 0.9 of their nominal value (Fig. 4). Since the
FIS is not based on particular characteristics of a microgrid,
it could be applied to microgrids with different power ratings.

IV. REACTIVE POWER SHARING

Conventional Q−E droop controllers are used in order to
share the reactive power flow between units in a microgrid.
Only the units that are working under VCM will be responsible
of the reactive power flow, and it will be equally shared based
on equation (4), where (QBati) and (QResi) represent the
reactive power flow at each ESS and RES respectively [8].
In other words, when the ESS are operating in VCM, they are
the responsible of reactive power flow and it is equally shared
between the ESS units that are under VCM. On the other hand,
when all the ESS are operating under constant voltage charge
(CCM), all the RES become responsible of the reactive power
flow in the microgrid, and the reactive power flow is equally
shared between RES units.

E =

{
E∗ − n ·QBati, If ESS are in V CM ;

E∗ + n ·QResi, If RES are in V CM.
(4)

Since bus voltage-signaling is used for triggering the
changes at the decision-makers, a positive droop coefficient
(n) is used for ESS and a negative droop coefficient (n) is
used for RES. In this way it is possible to identify at each
unit, which ones are responsible of the voltage bus regulation
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Table I
PARAMETERS OF THE MICROGRID

Parameter Symbol Value
Power Stage

Nominal Bus Voltage E∗ 230 ∗
√
2V

Nominal Bus Frequency ω∗ 2 ∗ π ∗ 50rad/s
Inverter inductors L 1.8mH
Filter Capacitor C 27µf
Nominal Load PLoad 1600 W

Battery Array
Nominal Voltage V bat 672V
Regulation Voltage Vr 756V
Nominal Battery Capacity Cbat 0.02(Ah)

Power flow Control
(P − ω) Droop Coefficient m 1.25 ∗ 10−5 rd/s/(W)
(Q− E) Droop Coefficient n 5 ∗ 10−4 V/(VAr))
Reactive power Reference Q∗ 0VAr
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Figure 5. Trace of eigenvalues when SoCBat1 approaches to SoCBat2

(ESS or RES). Droop coefficients are calculated for a voltage
deviation smaller than 5% at the common bus.

V. SIMULATION RESULTS

A Simulink model of the microgrid has been used in order
to test and compare the performance of the microgrid with and
without the weight factor W (SoC). The system is designed
to supply a nominal resistive load in a balanced three phase
system. Table I summarizes the main characteristics of the
microgrid. In order to understand the behavior of the microgrid
shown in Fig.1, a microgrid with two active power generators
(PV+ESS) (i = 2) will be considered at the beginning. Even
so, the analysis can be extended to more active generators.
Detailed models of the VRLA batteries are used as shown in
[13], for simulating the batteries.

A small signal model of the microgrid as proposed in
[17] has been used for evaluating the stability of the system.
Fig. 5 shows the behavior of the eigenvalues when SoCBat1
approaches to SoCBat2 in accordance to the FIS. A nominal
value of m = 1.25 ∗ 10−5rd/s/(W ) has been established in
order to obtain a maximum damping factor (ζ = 0.7). It is
possible to see that the system remains stable over the entire
range of W (SoCBati) while the ESS are equalized.

Fig.6 summarizes some results under changes at the power
generated by RES. It is assume that the energy generated by
both RES is the same and it changes from 500W to 1500W at
Time = 10s and from 1500W to 500W at Time = 30s. An
initial SoC of 75% for battery 1 (Bat1) and 85% for battery
2 (Bat2) has been established. At the top part of Fig.6 (No
Fuzzy Factor) it is possible to see the voltage at the DC bus
at each ESS VBat1 and VBat2 when the fuzzy factor is not
used. In the middle of Fig.6 it is possible to see the SoC with
(continuous line) and without the fuzzy weight factor (dashed
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fuzzy factor

Table II
CHANGES AT THE OPERATION CONTROL MODE FOR RES AND ESS

T1 T2 T3 T4 T5
RES1 CCM CCM CCM VCM CCM
RES2 CCM CCM CCM VCM CCM
ESS1 VCM VCM CCM CCM VCM
ESS2 VCM VCM VCM CCM VCM

line). Finally, at the bottom of Fig.6 (With Fuzzy Factor) it is
possible to see the voltage at the DC bus at each ESS VBat1
and VBat2, when the fuzzy factor is used.

The simulation time is split into 5 stages in order to indicate
the changes at the operation mode of each RES and ESS. Table
II summarizes the changes on the operation mode for each ESS
and RES in accordance with times T1 to T5. It is possible
to see from Fig.6 how the SoC of both ESS approaches
asymptotically one to the other. Additionally, it is possible
to see that the system with fuzzy weight factors reduce the
depth of discharge of battery 1 and both batteries are charged
faster taking into account that T1+ T2+ T3 is smaller when
the fuzzy factor is used. Additionally, an undesirable situation
is avoided when the fuzzy factor is used as can be seen at the
beginning of T5. At this point, due to the difference at the
instantaneous battery voltage, when the ESS start to provide
power to the microgrid, a circulating current appears between
the ESS. This fact may cause an excessive peak current for
the battery array that may damage it.

Fig.7 shows the reactive and reactive power flow at each
ESS and RES as well as the power in the load when the
fuzzy factor is used. It is possible to see how the power flow
regulation is exchanged between RES and ESS in accordance
to the control operation mode summarized in Table II. At
T3 battery 1 (Bat1) become the only responsible of reactive
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Figure 8. Simulation results for 4 active generators in a AC microgrid

power flow, until it reach the regulation voltage. At this
moment, all RES assume the reactive power flow regulation
in a shared way. A power curtailment of the PV generation
can be seen at T4, this curtailment is governed by the (P −ω)
control loop in order to assure power sharing between RES.

Finally, Fig.8 shows the response of the microgrid (SoC, P
and Q) when four active generators (PV+ESS) are used (i =
4). The results show that the proposed approach is completely
expansible to several active power generators.

VI. CONCLUSION

The proposed adjustment of the droop coefficient by using a
FIS, assures good storage energy balance for distributed ESS.

Additionally, this strategy is absolutely modular, expandable,
and there is not required a centralized control. As a matter of
fact, it can be used directly when a new active generator has
to be added to the microgrid. Likewise, the proposed method
shows additional advantages compared to traditional methods
such as asymptotic approximation of the SoC for several ESS,
faster charge in the total of distributed ESS and reduction
of the deep of discharge for the ESS with the smallest SoC,
among others. On top of that, the microgrid can operate in a
stable and coordinated way under different scenarios without
using communications.
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