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Abstract—This paper investigates the active damping of LCL-
filter resonance within single-loop grid current control of grid-
connected voltage source converters. First, the basic analysis in 
the continuous s-domain reveals that the grid-current-feedback 
active damping forms a virtual impedance across the grid-side 
inductor, and the use of a high-pass filter with a negative sign 
shapes the virtual impedance by an RL damper paralleled by a 
negative inductance. It is further found that such a negative 
virtual inductance plays a critical role in mitigating the phase 
lag caused by the time delay in a digital control system. The 
instability induced by the negative virtual resistance, which is 
commonly experienced in the feedback-type active damping, 
can thus be avoided. A systematic design method of the high-
pass filter is also proposed by the help of root locus analysis in 
the discrete z-domain. Lastly, experimental tests are presented 
to validate the theoretical analysis.  

I. INTRODUCTION 

LCL resonance has always been an important concern for 
LCL-filtered voltage source converters [1]. A wide variety of 
resonance damping technologies have been reported, among 
which active damping control methods are usually preferred 
over passive dampers in order to avoid extra power losses 
[2]. Generally, the active damping can be attained either by 
introducing a digital filter in cascade with current controller 
[3], or based on the feedback of filter state variables [4]-[16].  

Plugging-in digital filters provides a sensorless damping, 
but it is sensitive to parameter uncertainties [10]. Feedback-
type active damping have therefore attracted more attentions 
with filter capacitor current or voltage feedback being well 
documented [4]-[9]. However, these schemes often require 
an additional sensor or observer-based control [6]. Moreover, 
the performance of the feedback-type active damping may be 
influenced by the transport delay in a digital control system, 
which may insert a negative virtual resistance. This will add 
open-loop Right-Half-Plane (RHP) poles in the control loop, 
resulting in a non-minimum phase behavior in the closed-

loop response [7]. In [8], a High-Pass Filter (HPF) instead of 
a proportional gain is introduced within the capacitor current 
feedback, in order to avoid the non-minimum phase system 
resulting from the synthesis of negative virtual resistance.  

To obtain a robust damping with a minimum number of 
sensors, the single-loop current control has increasingly been 
studied [9]-[16]. It is shown in [11] that a stable grid current 
control can be achieved without damping. This is due to the 
inherent damping effect of transport delay when grid current 
is controlled, which however requires that the LCL resonance 
frequency is above the one-sixth of the system sampling 
frequency [9], [12]. In weak power grids, the LCL resonance 
frequency may shift in a wide range with the variation of 
grid impedance, thus external damping is still needed for 
robust current control. This issue may be more challenging in 
the emerging power-electronics-based power systems, where 
the interactions of multiple converters may lead to harmonic 
instability [13].    

It is therefore of interest to develop active damping with 
grid current feedback control [14]-[16]. Unlike the capacitor 
current feedback through a proportional gain, the s2 term is 
needed for the virtual resistive damping, which is difficult to 
implement in digital or analog controllers. Hence, a second-
order Infinite Impulse Response (IIR) filter [14] or a first-
order HPF with a negative sign [15], [16] has been reported 
to replace the s2 term. Since the HPF is easier to implement 
than the IIR filter, it is becoming more attractive. Parameter 
design of the HPF has been discussed in [15], [16], but how 
the HPF is influenced by the transport delay is not identified. 
Moreover, due to the lack of physical meaning of the HPF, 
the non-minimum phase characteristic of the control system 
caused by the negative virtual resistance is overlooked.    

This paper proposes first an impedance-based analysis in 
the continuous s-domain to generalize the physical property 
of the grid current feedback active damping. It reveals that 
the grid current feedback basically forms a virtual impedance 
in parallel with the grid-side inductor, and the use of HPF 
with a negative sign furnishes a virtual RL damper in parallel 

This work was supported by European Research Council (ERC) under 
the European Union’s Seventh Framework Program (FP/2007-2013)/ERC 
Grant Agreement [321149-Harmony].  

 



with a negative inductance. Then, taking the transport delay 
into account, the resistance of the RL damper may turn into 
negative, which will lead to a non-minimum phase behavior 
in the control loop, impairing the system stability robustness. 
On the other hand, it is also found that the negative virtual 
inductance helps to mitigate the negative resistance with a 
proper design of the HPF. Consequently, the frequency 
region for the negative virtual resistance is identified, which 
is dependent on the ratio of the HPF cutoff frequency to the 
sampling frequency. Hence, to obtain a robust damping, a 
systematic design of the HPF is developed by means of root 
locus analysis in the discrete z-domain. Experimental results 
are presented to validate the theoretical analyses. 

II. IMPEDANCE-BASED ANALYSIS 

A. System Description 

Fig. 1 shows a three-phase grid-connected voltage source 
converter with an LCL filter. The DC-link voltage Vdc of the 
converter can be treated as constant for simplicity. Parasitic 
resistances in the circuit are neglected for the worst case of 
stability. The Synchronous Reference Frame-Phase-Locked 
Loop (SRF-PLL) is used to synchronize the converter with 
the Point of Common Coupling (PCC) voltage [17], whose 
bandwidth is designed as smaller than the grid fundamental 
frequency to avoid the undesired low-frequency instability 
[18]. The grid voltage Vg is assumed as three-phase balanced, 
which allows using the per-phase diagram for analysis.  

Fig. 2 depicts the per-phase block diagram of grid current 
control loop, where the grid current i2 is controlled for both 
power flow regulation and active damping of LCL resonance. 
Gc(s) is the current controller, which is implemented with a 
Proportional Resonant (PR) controller in the stationary αβ- 
frame [9]. Gad(s) is the active damping controller.   
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where ω1 is the grid fundamental frequency. Both of them 
are influenced by the time delay in a digital control system 
Gd(s), which can simply be approximated as follow [19]: 
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dG s e (2) 

 
where Ts is the system sampling period.  

B. Impedance-Based Equivalent Circuits 

To illustrate the general physical property of grid current 
feedback active damping, an equivalent block diagram of the 
grid current control is derived in Fig. 3 (a). This is obtained 
by replacing grid current with the grid-side inductor voltage, 
and moving the summing point at the output of PR controller 
to the output of the transfer function of the converter-side 
inductor L1. Thus, it is shown that the grid current feedback 
damping basically forms a virtual impedance Zv(s) in parallel 
with the grid-side inductor L2. This notation is drawn in Fig. 
3 (b) and is expressed in (3). 

Consequently, the required controllers for different forms 

**

Fig. 1. Three-phase grid-connected, LCL-filtered voltage source converter 
with the single-loop grid current control scheme.   

*

Fig. 2. Per-phase block diagram of the grid current control loop.

*

(a) 

 
(b) 

Fig. 3. Equivalent control diagram and the generalized equivalent circuit of 
LCL filter. (a) Control diagram. (b) LCL filter circuit.    
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of virtual impedance Zv(s) can be derived based on (3), and 
the impact of the transport delay Gd(s) can be identified.  

First, the influence of the system delay Gd(s) is nullified 
to generalize the virtual impedances formed by the different 
Gad(s), which are collectively shown in Fig. 4. The s2 term is 
needed in Gad(s) to shape Zv(s) as the resistance shown in 
Fig. 4 (a), which complicates the controller design. Hence, it 
is of interest to form a first-order RL damper as shown in 
Fig. 4 (b) in order to avoid the use of s2 term in Gad(s). As 



 
   

(a) (b) (c) 
   

Fig. 4. Virtual impedance-based equivalent circuits of grid current active damping loop with different controllers Gad(s). (a) Single resistance. (b) Series RL 
damper. (c) Series RL damper in parallel with –L.  

 
derived in (4) and (5), Gad(s) is then composed by a first-
order derivative term and a HPF with the negative sign. 
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where Lv,1 and Rv,1 are the virtual inductance and resistance of 
the virtual RL damper.   

In contrast, using the HPF with the negative sign only, 
which has earlier been used in [15], [16], will add a negative 
virtual inductance (−L) in parallel with the RL damper, as 
shown in Fig. 4 (c). Consequently, Gad(s) can be given by  
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where ωad and kad are the cutoff frequency and gain of the 
HPF, respectively. Lv,2 and Rv,2 are the virtual inductance and 
resistance furnished by the HPF. It is interesting to note that 
if the virtual inductance is chosen as the grid-side inductor 
L2, the equivalent circuit in Fig. 4 (c) will be simplified as a 
Rv,2 in series with L2, and kad will be equal to ωadL1. 

Then, with the delay included, the virtual impedance in 
(4) and (6) are changed as follows 
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From (9) and (11), it is seen that both the imaginary and 
real terms of the virtual impedance can become negative due 
to the effect of transport delay. The negative imaginary term 
reduces the actual LCL resonance frequency ωres, while the 
negative real term adds open-loop RHP poles to the current 
control loop and results in a non-minimum phase response. 
Moreover, comparing the real terms in (10) and (12), it can 
be found that the negative virtual inductance (−Lv,2)  in Fig. 4 
(c) lessens the likelihood of Re{Zv,2} being negative than the 
RL damper given in Fig. 4 (b). This is a prominent feature of 
the negative virtual inductance furnished by the HPF, which 
is however overlooked in [15], [16].  

It is therefore important to identify the critical frequency 
ωv, above which Re{Zv,2d} turns into negative. This can be 
derived by replacing the RL constants in (12) with the HPF 
parameters, which are given in the following  
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where ωs = 2πfs, fs is the sampling frequency. Consequently, 
a relationship between the critical frequency ωv and the HPF 
cutoff frequency ωad can be obtained.  

Fig. 5 plots the critical frequency ωv in terms of the HPF 
cutoff frequency ωad. At ωad = 0, Gad,2(s) turns as a negative  
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Fig. 5. Relationship between critical frequency ωv and the cutoff frequency 
of the HPF ωad. 



proportional gain, ωv = ωs/6, which implies that the positive 
proportional gain is needed for the LCL resonance frequency 
ωres>ωs/6. It agrees with the stability analysis of the grid 
current control [9], [12]. Above ωad = 0, ωv increases with 
ωad, and saturates at ωs/3, since the sin(3πωv/ωs) term in (13) 
is equal to zero at ωv = ωs/3. Hence, for ωs/6< ωres<ωs/3, the 
insertion of the negative virtual resistance can be avoided by 
selecting ωad that gives a good margin between ωres and ωv, 
whereas for ωres>ωs/3, the synthesis of the negative virtual 
resistance is inevitable. This is an inherent limit in this HPF-
based active damping scheme. On the other hand, in order to 
avoid the noise amplification with the HPF or the digital 
sampling error, ωad is generally chosen as lower than the 
Nyquist frequency of the digital control system. Hence, the 
ωv corresponding to ωad = 0.5ωs is normally the upper limit 
of ωres in order to avoid the non-minimum phase dynamic.  

  

III. DISCRETE Z-DOMAIN ANALYSIS 

To confirm the impedance-based analysis and to illustrate 
the design of controller parameters, the root locus analysis in 
the discrete z-domain is presented in the following. Table I 
lists the main circuit parameters adopted in this work, where 
three filter capacitor values corresponding to three different 
filter resonance frequencies are considered.    

A. Discrete z-Domain Model 

Fig. 6 illustrates the grid current control diagram in the 
discrete z-domain, where Lt = L2 + Lg. The Zero-Order Hold 
(ZOH) is used to model the delay induced by the Digital 
Pulse Width Modulation (DPWM). The one sampling period 
of computation delay is included as z-1 [19]. Hence, the 
transfer function Yg(s) in (14), which relates the converter 
output voltage Vo to the grid current i2, is discretized by the 
ZOH transformation in (15). 
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The PR controller is discretized by the Tustin transformation 
with the pre-warping at the grid fundamental frequency [20], 
and the HPF is discretized by the Tustin transformation only. 
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Consequently, the open-loop gain of the grid current control 
loop, denoted as Tol (z), and the resulting closed-loop transfer 
function Tcl (z) can be derived based on (15) to (17), which 
are given in (18) and (19).  

TABLE I.  MAIN CIRCUIT PARAMETERS 

Symbol Electrical Constant Value 

Vg Grid voltage 400 V 

f1 Grid fundamental frequency 50 Hz 

fsw Switching frequency  10 kHz 

fs Sampling frequency  10 kHz 

Vdc DC-link voltage  750 V 

L1 Converter-side filter inductor  1.8 mH 

L2 Grid-side filter inductor 1 mH 

Cf Filter capacitor 4.7/9.4/13.5 μF 

Lg Grid inductance 0.8 mH 

 
 

*

Fig. 6. Block diagram of grid current control loop in the discrete z-domain. 
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B. Negative Virtual Resistance – Unstable Active Damping  

From Fig. 6, it is seen that Gad,2(z) forms an inner active 
damping control loop to reshape the LCL filter, and the open-
loop gain is given by 
 

1
, ,2( ) ( ) ( )ol ad ad gT z z G z Y z  (20) 

The insertion of the negative virtual resistance will result in 
an unstable active damping control loop. Hence, the presence 
of the negative virtual resistance can be identified by the root 
locus analysis of the inner control loop.  

Fig. 7 shows the root loci of the inner control loop based 
on the open-loop gain given in (20). Notice that these root 
loci are also the open-loop poles trajectories of the outer grid 
current control loop. The unstable active damping indicates a 
non-minimum phase behavior of the current control loop. 
Two different LCL resonance frequencies are compared, 
which are corresponding to Cf = 4.7 μF, ωres = 0.24ωs in Fig. 
7 (a), and Cf = 9.4 μF, ωres = 0.17ωs in Fig. 7 (b). The HPF 
cutoff frequency ωad is swept from 0 to 0.5ωs with a step of 
0.05ωs. It can be seen that the root loci initially track outside 
the unit circle, and are then forced to move inside the unit 
circle as the increase of the HPF cutoff frequency ωad.  

Fig. 7 (a) shows that the root loci are kept outside the unit  
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Fig. 7. Root loci of the active damping control loop without the PR current controller. (a) Cf = 4.7 μF, ωres = 0.24ωs. (b) Cf = 9.4 μF, ωres = 0.17ωs. 

 
circle before ωad > 0.3ωs, while for the low ωres case in Fig. 
7 (b), the root loci move into the unit circle since ωad > 
0.5ωs. Such phenomena indicate that the ωres needs to be 
below the critical frequency ωv, which is determined by ωad, 
to avoid unstable active damping. Compared to the critical 
frequency identified by the impedance-based models in Fig. 
5, a good match with the root loci analysis is obtained.    

C. Co-Design of Active Damping and Current Controllers 

Traditionally, the grid current controller is first designed 
based on the total inductance (L1+Lt) and the desired phase 
margin θm, which are given as follows [21] 
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where ωc is the crossover frequency of the current control 
loop. Then,  the active damping controller is designed based 
on the system with the current controller by using either root 
locus analysis or analytical equations [8], [9], [15]. Such a 
design flow is easy to implement, but overlooks the effect of 
active damping controller on the filter shaping. 

Figs. 8 to 10 show the closed-loop pole trajectory under 
the different LCL resonance frequencies, where three cutoff 
frequencies (ωad = 0.15ωs, 0.25ωs, 0.35ωs) and four gains 
(kad = 0, 5, 15, 35) of the HPF are shown. Beginning with 
Fig. 8 for Cf = 4.7 μF, ωres = 0.24ωs, it is seen that the closed-
loop poles track inside the unit circle for kad = 0, where no 
damping is added. This is due to the inherent damping effect 
of the transport delay for ωres>ωs/6. As for kad ≠ 0, the root 
loci are moving inside the unit circle as the increase of ωad, 
which implies that the use of active damping can improve 
the transient performance of the control system, even if there 
is no need for resonance damping. However, the increase of 
kad forces a pair of open-loop poles to move even far from 
the unit circle, and pushes the root loci outwards the unit 
circle. As shown in Fig. 8 (a), the system becomes unstable 
for kad = 35, no matter how to design the current controller 
with this structure. The non-minimum phase characteristic 
will also bring in a lower stable limit for the proportional 
gain of the current controller kp, which tends to make more 
impact when ωres is above the critical frequency ωv. 

In contrast, Figs. 9 and 10 show the root loci for the cases 
of low LCL resonance frequencies, where the ωres is close to
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       (a)          (b)         (c) 
   

Fig. 8. Root loci of grid current control loop for Cf = 4.7 μF, ωres = 0.24ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 
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       (a)          (b)         (c) 
   

Fig. 9. Root loci of grid current control loop for Cf = 9.4 μF, ωres = 0.17ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 
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Fig. 10. Root loci of grid current control loop for Cf = 14.1 μF, ωres = 0.14ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 

 
ωs/6 in Fig. 9, and ωres<ωs/6 in Fig. 10. In both cases, the 
closed-loop poles track outside the unit circle for kad = 0. It is 
therefore needed to adopt the active damping to stabilize the 
control system. Unlike Fig. 8, there are no open-loop poles 
outside the unit circle in Figs. 9 and 10. Only for ωad = 1.5ωs 
in Fig. 9(a) and Fig. 10(a), the open-loop poles are moving 
outwards the unit circle with the increase of kad, and the 
system turns unstable for kad = 35, no matter how to design 
the current controller with the given structure. Moreover, the 
increase of ωad does not always force the root loci to move 
inside the unit circle. As for kad = 15 shown in Fig. 9 (c), 
Figs. 10 (b) and (c), a higher ωad is moving the root locus 
outwards the unit circle, which leads to less damping. Hence, 
for the different filter capacitors, the parameters of the active 
damping controller for the optimal root locus are different. 
Consequently, the proportional gain of the current controller 
for the optimal damping poles will be different. Designing 
the current controller merely based on the total inductance 
may not yield optimal parameters. 

A co-design of the HPF and the proportional gain of grid 
current controller kp by the root locus analyses like in Figs. 8 
to 10 is therefore needed. The design flow is summarized as 
follows: 

1) The HPF cutoff frequency can be determined based 
on Fig. 5 to avoid introducing the non-minimum 
phase system.  

2) Then, a set of HPF parameters like in Figs. 8 to 10 
can be used to identify their influences on the root 
loci of the control system, and consequently select 
their parameters for the optimal root locus.  

3) Lastly, the proportional gain of the current controller 
is determined for the optimal damping based on the 
locations of poles. Since the resonant integral gain of 
current controller only works at the grid fundamental 
frequency, it can still be designed by following the 
traditional method in (21).   

IV. EXPERIMENTAL RESULTS 

To confirm the theoretical analyses presented, the three-
phase voltage source converter in Fig. 1 is implemented and 
connected to a California Instruments MX-series AC power 
supply for grid emulation. Circuit parameters listed in Table 
I are chosen for the converter. Table II gives the parameters 
designed for the controllers following the analyses in Figs. 8 
to 10. The corresponding closed-loop poles are highlighted  



TABLE II.  CONTROLLER PARAMETERS 

Test Case PR controller (kp) PR controller (ki) HPF (ωad) HPF (kad) 

 Case I 
 Cf = 4.7 μF, ωres = 0.24ωs 

16 600 0.35ωs 0/5/15 

Case II 
Cf = 9.4 μF, ωres = 0.17ωs 

12 600 0.25ωs/0.35ωs 5/15 

Case III 
Cf = 14.1 μF, ωres = 0.14ωs 

9 600 0.15ωs/0.25ωs 5/15 
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Fig. 11. Measured A-phase grid voltage and grid current for Cf = 4.7 μF, ωres = 0.24ωs. (a) kad = 0. (b) kad = 5, ωad = 0.35ωs. (c) kad = 15, ωad = 0.35ωs. 
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Fig. 12. Measured A-phase grid voltage and grid current for Cf = 9.4 μF, ωres = 0.17ωs. (a) kad = 5, ωad = 0.25ωs. (b) kad = 15, ωad = 0.25ωs. (c) kad = 15, ωad = 
0.35ωs. 
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Fig. 13. Measured A-phase grid voltage and grid current for Cf = 14.1 μF, ωres = 0.14ωs. (a) kad = 5, ωad = 0.15ωs. (b) kad = 15, ωad = 0.15ωs. (c) kad = 15, ωad = 
0.25ωs. 
 
in Figs. 8 to 10. The control system is implemented with a 
dSPACE DS1006 system, where a DS5101 digital waveform 
output speed A/D board is used to sample the PCC voltage 
and grid current in synchronous with the PWM pulses.   

Fig. 11 shows the measured A-phase voltage and current 
waveforms in the case of Cf = 4.7 μF, ωres = 0.24ωs. Since the 
resonance frequency is above the one sixth of the sampling 
frequency, the system keeps stable without any damping, as 
shown in Fig. 11 (a), where the HPF gain kad is set to zero. 
However, as illustrated in Figs. 8 (b) and (c), the transient 
performance of the system can be enhanced with the HPF-

based active damping. To validate this conclusion, Figs. 11 
(b) and (c) show the measured results with ωad = 0.35ωs, and 
kad = 5 in Fig. 11 (b) and kad = 15 in Fig. 11 (c), where a step 
response of the current reference from 5 A to 7.5 A is tested. 
Compared to Fig. 11 (a), it is clear that a damping during the 
transient response is obtained with the HPF, and a higher kad 
provides a better damping performance.  

Fig. 12 shows the measured phase-A voltage and current 
waveforms for Cf = 9.4 μF, ωres = 0.17ωs. In this case, the 
LCL resonance frequency is closes to the one-sixth of the 
sampling frequency. The system turns into unstable region 



without damping. Fig. 12 (a) shows the resonant currents 
with the reduced HPF gain kad, where the system will be 
tripped by over-current protection if kad is further decreased. 
Figs. 12 (b) and (c) give a comparison for the different cutoff 
frequencies ωad. It can be seen that the system tends to be 
less damped during the transient of the step response from 5 
A to 7.5 A, as shown in Fig. 12 (c). These results confirm the 
root loci analyses in Figs. 9 (b) and (c), where the root locus 
corresponding to the case of kad = 15, as highlighted in the 
red dot line, is moving outwards the unit circle by increasing 
the HPF cutoff frequency ωad.  

Fig. 13 shows the measured waveforms for the case with 
the lower resonance frequency (Cf = 14.1 μF, ωres = 0.14ωs) 
than the one-sixth of the sampling frequency. Similarly to the 
measured results in Fig. 12, the system resonates with the 
reduced HPF gain kad, as shown in Fig. 13 (a). Also, for the 
given kad = 15, the less damping is produced by increasing 
the HPF cutoff frequency from 0.15ωs to 0.25ωs, which can 
be observed in Figs. 13 (b) and (c). These results match with 
the root loci analyses in Figs. 10 (a) and (b). It is also shown 
that the reduced LCL resonance frequency requires a lower 
ωad to obtain a good damping with the same kad.     

V. CONCLUSIONS 

This paper has presented a systematic analysis and design 
of the grid current feedback active damping control scheme 
for LCL-filtered voltage source converters. Impedance-based 
analysis has revealed that this active damping loop basically   
synthesizes a virtual impedance in parallel with the grid-side 
filter inductor, which is shaped by the negative HPF with a 
series RL damper in parallel with a negative inductor. It is 
further found that the negative virtual inductor is important 
to avoid the non-minimum phase system induced by the 
transport delay in digital control system. A co-design of the 
current controller and active damping controller parameters 
has also been discussed based on the root loci analysis in the 
discrete z-domain. Experimental results obtained have shown 
the good steady-state and transient performance of the active 
damping controller based on the design guideline presented.     

 

REFERENCES 
[1] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an 

LCL-filter-based three-phase active rectifiers,” IEEE Trans. Ind. 
Appl., vol. 41, no. 5, pp. 1281-1291, Sept./Oct. 2005.   

[2] R. N. Beres, X. Wang, F. Blaabjerg, C. L. Bak, and M. Liserre, “A 
review of passive filters for grid-connected voltage source 
converters,” in Proc. IEEE APEC 2014, pp. 2208-2215.  

[3] J. Dannehl, M. Liserre and F. Fuchs, “Filter-based active damping of 
voltage source converters with LCL filter,” IEEE Trans. Ind. 
Electron., vol. 58, no. 8, pp. 3623-3633, Aug. 2011. 

[4] J. Dannehl, F. W. Fuchs, S. Hansen, and P. Thogersen, “Investigation 
of active damping approaches for PI-based current control of grid-
connected pulse width modulation converters with LCL filters,” IEEE 
Trans. Ind. Appl., vol. 46, no. 4, pp. 1509-1517, Jul./Aug. 2010.  

[5] V. Blasko and V. Kaura, “A novel control to actively damp resonance 
in input LC filter of a three-phase voltage source converter,” IEEE 
Trans. Ind. Appl., vol.33, no. 2, pp. 542-550, Mar./Apr. 1997. 

[6] V. Miskovic, V. Blasko, T. Jahns, A. Smith, and C. Romenesko, 
“Observer based active damping of LCL resonance in grid connected 
voltage source converters,” in Proc. IEEE ECCE 2013, pp. 4850-
4856. 

[7] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Capacitor-current-
feedback active damping with reduced computation delay for 
improving robustness of LCL-type grid-connected inverter,” IEEE 
Trans. Power Electron., vol. 29, no. 7, pp. 3414-3427, Jul. 2014. 

[8] X. Wang, F. Blaabjerg, and P. C. Loh, “Design-oriented analysis of 
resonance damping and harmonic compensation for LCL-filtered 
votlage source converters,” in Proc. IEEE IPEC 2014, pp. 216-223. 

[9] S. G. Parker, B. P. McGrath, and D. G. Holmes, “Regions of active 
damping control for LCL filters,” IEEE Trans. Ind. Appl., vol. 50, no. 
1, pp. 424-432, Jan./Feb. 2014. 

[10] J. Dannehl, C. Wessels, and F. W. Fuchs, “Limitations of voltage-
oriented PI current control of grid-connected PWM rectifiers with 
LCL filters,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 380-388, 
Feb. 2009. 

[11] R. Teodorescu, F. Blaabjerg, M. Liserre, and A. Dell’Aquila, “A 
stable three-phase LCL-filter based active rectifier without damping,” 
in Proc. IAS 2003, pp. 1552-1557. 

[12] J. Yin, S. Duan, and B. Liu, “Stability analysis of grid-connected 
inverter with LCL filter adopting a digital single-loop controller with 
inherent damping characteristic,” IEEE Trans. Ind. Infor., vol. 9, no. 
2, pp. 1104-1112,  May 2013. 

[13] X. Wang, F. Blaabjerg, and W. Wu, “Modeling and analysis of 
harmonic stability in an AC power-electronics-based power system,” 
IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-12, Feb. 2014.  

[14] C. Dick, S. Richter, M. Rosekeit, J. Rolink, and R. De Doncker, 
“Active damping of LCL resonance with minimum sensor effort by 
means of a digital infinite impulse response filter,” Proc. EPE 2007, 
pp. 1-8. 

[15] M. Hanif, V. Khadkikar, W. Xiao, and J. L. Kirtley, “Two degrees of 
freedom active damping technique for LCL filter based grid 
connected PV systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, 
pp. 2795-2803, Jun. 2014. 

[16] J. Xu, S. Xie and T. Tang, “Active damping-based control for grid-
connected LCL-filtered inverter with injected grid current feedback 
only,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4746-4758, Sept. 
2014. 

[17] S. Chung, “A phase tracking system for three phase utility interface 
inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431-438, 
May 2000. 

[18] T. Messo, J. Jokipii, A. Makinen, T. Suntio, “Modeling the grid 
synchronization induced negative-resistor-like behavior in the output 
impedance of a three-phase photovoltaic inverter,” in Proc. IEEE 
PEDG 2013, pp.1-8. 

[19] S. Buso and P. Mattavelli, Digital Control in Power Electronics, San 
Francisco, CA: Morgan & Claypool Publ., 2006.  

[20] A. G. Yepes, F. Freijedo, O. Lopez, and J. Gandoy, “High-
performance digital resonant controllers implemented with two 
integrators,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 563-
576, Feb. 2011. 

[21] D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong, 
“Optimized design of stationary frame three phase AC current 
regulators,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2417-
2426, Nov. 2009. 

 


