Aalborg Universitet

Surfactants as enhancement of In Situ Alkaline Hydrolysis (ISAH) of pesticide DNAPL

Results of bench and pilot scale field tests

Muff, Jens; Søgaard, Erik Gydesen; Bennedsen, Lars R.; Rügge, Kirsten; MacKinnon, Leah; Durant, Neal; Pennell, Kurt; Bondgaard, Morten

Publication date: 2015

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Muff, J., Søgaard, E. G., Bennedsen, L. R., Rügge, K., MacKinnon, L., Durant, N., Pennell, K., & Bondgaard, M. (2015). Surfactants as enhancement of In Situ Alkaline Hydrolysis (ISAH) of pesticide DNAPL: Results of bench and pilot scale field tests. Poster presented at AquaConSoil 2015, København, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Surfactants as enhancement of In Situ Alkaline Hydrolysis (ISAH) of Pesticide DNAPL: Results of bench and pilot scale field tests

Jens Muff^{*1} and Erik G. Søgaard¹, Lars Bennedsen², Kirsten Rügge ³, Leah MacKinnon and Neal D. Durant⁴, Kurt Pennell⁵, Morten Bondgaard⁶

¹Aalborg University, Denmark, ²Rambøll, Denmark, ³COWI, Denmark, ⁴Geosyntec Consultants, CA & Maryland USA, ⁵Tufts University, Massachusetts, USA, ⁶Central Region, Denmark

Background

Groyne 42 is a 20,000 m² former chemical dump site in Denmark contaminated with 100-200 tons of organophosphorous pesticides (OPPs). The majority

Bench scale testing

Equilibrium DNAPL tests (30 g/L of surfactants) 16000

Pilot scale testing

of contaminant mass is present as sorbed phase and residual **DNAPL**. The **NorthPestClean** project was established to determine the effectiveness of using *in situ* alkaline hydrolysis to treat the DNAPL (Fig. 1).

Fig. 1: The alkaline hydrolysis of OPPs.

The primary challenge was in situ mixing, establishing sufficient contact between hydroxide and DNAPL and surfactants were tested as 1 of 3 enhancement technologies at bench and pilot scale.

Site and sampling

Fig. 4: Batch equilibrium tests of ethoxylate surfactants at pH 13 with a 10:1 surfactant:DNAPL volumetric ratio. Reaction time was 7 days.

Batch tests with soil

Fig. 6: Pilot testing was completed in 10x10 m test cells (TCs) with TC2 used for testing of surfactants in cycle 3. 1600 kg Ecosurf EH-9 was mixed with extracted water in a 25% solution and added the 60 m3 effective pore volume of the targeted treatment area (TTA) resulting in a concentration of about 2.7%.

Fig. 2: The site is located directly at the waterfront. Residual OPP DNAPL is widespread in hot spots.

Fig. 3: Sampling of site water and soil with visible DNAPL. Over 2¹/₂ years, more than 2000 water samples and 1200 soil samples were analyzed in NorthPestClean.

Initial selection

Previous work has identified **non-ionic surfactants** as the best performing type of surfactants for increasing OPP solubility. Ten non-ionic candidates were tested in bench scale, and equilibrium solubility tests showed that alcohol ethoxylate non-ionic surfactants was superior with respect to increasing OPP solubility compared to the alkaline tap water

Fig. 5: Bacth soil tests with contaminated soil / *surfactant water ratio of 4 g/mL*. No extra DNAPL was added. Results presented are aquesous concentrations and soil removal of four alcohol

Fig. 7: Results showed an increase in EP3 and a slight increase in hydrolysis products up to 1 year after surfactant addition.

reference.

Data representation

Parameter	Compounds
SUM OPPs	parathion (EP3), methyl-parathion (MP3), malathion, ethyl-sulfotep
SUM P2 acids	O,O-diethylthiophosphoric acid (EP2), O,O-dimethylthiophosphoric acid (MP2)
PNP	para-nitrophenol

ethoxylates after 7 days of reaction at pH 13.

Ecosurf EH-9 was chosen for pilot scale testing due to best performance in soil test (lower soil sorption compared to Rhodasurf) and cost of the chemical (3-4 € / kg).

regionmidtivilanc

surfactant in the TTA of TC2.

Conclusion

2. juli 2013 2. september 2013

Surfactant enhanced ISAH increased dissolved OPP concentration (x10) and total mass removal was 20-40% higher compared to baseline ISAH.

The research was funded through the NorthPestClean Project by Central Denmark Region supported by EU Life

Conducted in close collaboration with:

