Surfactants as enhancement of In Situ Alkaline Hydrolysis (ISAH) of pesticide DNAPL

Results of bench and pilot scale field tests

Muff, Jens; Søgaard, Erik Gydesen; Bennedsen, Lars R.; Rügge, Kirsten; MacKinnon, Leah; Durant, Neal; Pennell, Kurt; Bondgaard, Morten

Publication date:
2015

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA): Muff, J., Søgaard, E. G., Bennedsen, L. R., Rügge, K., MacKinnon, L., Durant, N., ... Bondgaard, M. (2015). Surfactants as enhancement of In Situ Alkaline Hydrolysis (ISAH) of pesticide DNAPL: Results of bench and pilot scale field tests. Poster presented at AquaConSoil 2015, København, Denmark.
Surfactants as enhancement of In Situ Alkaline Hydrolysis (ISAH) of Pesticide DNAPL: Results of bench and pilot scale field tests

Jens Muff1,2 and Erik G. Søgaard1, Lars Bennedsen3, Kirsten Rügge 3, Leah Mackinnon and Neal D. Durant4, Kurt Pennell5, Morten Bondgaard6

1Aalborg University, Denmark, 2Rambøll, Denmark, 3COWI, Denmark, 4Geosyntec Consultants, CA & Maryland USA, 5Tufts University, Massachusetts, USA, 6Central Region, Denmark

Background

Groyn 42 is a 20,000 m² former chemical dump site in Denmark contaminated with 100-200 tons of organophosphorus pesticides (OPPs). The majority of contaminant mass is present as sorbed phase and residual DNAPL. The NorthPestClean project was established to determine the effectiveness of using *in situ* alkaline hydrolysis to treat the DNAPL (Fig. 1).

The primary challenge was in situ mixing, establishing sufficient contact between hydroxide and DNAPL and surfactants were tested as 1 of 3 enhancement technologies at bench and pilot scale.

Site and sampling

Fig. 2: The site is located directly at the waterfront. Residual OPP DNAPL is widespread in hot spots.

Fig. 3: Sampling of site water and soil with visible DNAPL. Over 2½ years, more than 2000 water samples and 1200 soil samples were analyzed in NorthPestClean.

Initial selection

Previous work has identified non-ionic surfactants as the best performing type of surfactants for increasing OPP solubility. Ten non-ionic candidates were tested in bench scale, and equilibrium solubility tests showed that alcohol ethoxylate non-ionic surfactants was superior with respect to increasing OPP solubility compared to the alkaline tap water reference.

Data representation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM OPPs</td>
<td>parathion (EP3), methyl-parathion (MP3), malathion, ethyl-sulfotep</td>
</tr>
<tr>
<td>SUM P2 acids</td>
<td>O,S-dimethylthiophosphoric acid (EP2), O,S-dimethylthiophosphoric acid (MP2)</td>
</tr>
<tr>
<td>PNP</td>
<td>para-nitrophenol</td>
</tr>
</tbody>
</table>

Bench scale testing

![Equilibrium DNAPL tests (30 g/L of surfactants)](image)

Fig. 4: Batch equilibrium tests of ethoxylate surfactants at pH 13 with a 10:1 surfactant:DNAPL volumetric ratio. Reaction time was 7 days.

Pilot scale testing

![10m](image)

Fig. 6: Pilot testing was completed in 10x10 m test cells (TCs) with TC2 used for testing of surfactants in cycle 3. 1600 kg Ecosurf EH-9 was mixed with extracted water in a 25% solution and added the 60 m³ effective pore volume of the targeted treatment area (TTA) resulting in a concentration of about 2.7%.

Baseline ISAH

![Screen 1](image)

Fig. 7: Results showed an increase in EP2 and a slight increase in hydrolysis products up to 1 year after surfactant addition.

Surfactant-ISAH

![Screen 1](image)

![Screen 2](image)

![Screen 3](image)

Fig. 8: Surface tension analysis showed an equal distribution of surfactant in the TTA of TC2.

Conclusion

Surfactant enhanced ISAH increased dissolved OPP concentration (x10) and total mass removal was 20-40% higher compared to baseline ISAH.