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Abstract— The internal model principle based Repetitive 
Control (RC) offers an accurate control strategy for grid-tied 
power converters to feed sinusoidal current into the grid. How-
ever, in the presence of grid frequency variations, the 
conventional RC fails to produce high quality feeding current. 
This paper thus explores a frequency adaptive repetitive control 
strategy for grid converters, which employs fractional delay 
filters in order to adapt to the change of the grid frequency. Case 
studies with experimental results of a single-phase grid-connected 
PV inverter system are provided to verify the proposed controller.  

Keywords— frequency adaptive; power converter; repetitive 
control; fractional delay filter; PV inverters 

I.  INTRODUCTION 
According to the internal model principle, a Repetitive 

Controller (RC) [1]-[8] can achieve zero steady-state error 
tracking of any periodic signal with known period due to the 
introduction of high gains at the interested harmonic 
frequencies. It offers a very simple but effective and accurate 
control solution for power converters to produce high quality 
sinusoidal voltages/currents. The conventional RC controller 
in its digital form of z N/(1 z N) can track any periodic 
reference signal with an integer period of N =fs/f, where f is the 
fundamental frequency of reference signal and fs is the 
sampling rate. However, in grid-connected applications, the 
grid frequency is usually variable in a certain range (e.g., 49 
Hz ~ 51 Hz) in practice and specified in the grid codes. Thus 
N would often be fractional in the case of a fixed sampling 
rate fs. Since only z N with an integer N can be implemented in 
practice, the conventional RC is sensitive to grid frequency 
variations, and it thus cannot exactly compensate periodic 
voltages/currents of variable frequency. Ensuring the integer 
period of N is always the same in the presence of grid 
frequency variations, the variable sampling rate approach 
enables the RC to reject harmonics completely [9]-[15]. 
However, a variable sampling rate will significantly increase 
the real-time implementation complexity of the control 
systems, such as online controller redesign [16], [17]. 

In order to address this issue, a frequency adaptive RC 
strategy at fixed sampling rate is proposed to for grid-tied 
converters to feed sinusoidal current into grid in the presence 
of a variable grid frequency. The fractional delay z N with a 

fractional number N will be replaced with an approximated 
Finite Impulse Response (FIR) factional delay filter. The 
proposed FIR fractional delay filter only consumes a small 
number of multiplications and additions to update its 
coefficients, and it is well suited to fast online tuning of the 
fractional delay. The proposed frequency adaptive RC will 
enable grid-tied converters always to produce sinusoidal 
feeding currents under variable grid frequency. The analysis 
and synthesis of such frequency adaptive RC systems are 
addressed. Case studies of grid-tied converters are provided to 
evaluate the proposed frequency adaptive RC. 

II. FREQUENCY ADAPTIVE REPETITIVE CONTROL 
Fig. 1 shows the typical closed-loop control system with a 

plug-in Conventional Repetitive Controller (CRC), where R(z) 
is the reference input, Y(z) is the output, E(z) = R(z) –Y(z) is 
the tracking error, D(z) is the disturbance, Gp(z) is the plant, 
Gc(z) is the conventional feedback controller, Gr(z) is a feed-
forward plug-in CRC, kr is the RC gain, Ur(z) is the output of 
the CRC, Gf(z) is a phase lead compensation filter to stabilize 
the overall closed-loop system [18]-[22], and Q(z) = a1z + a0 + 
a1z 1with 2a1 + a0 = 1 is a low pass filter to enhance the entire 
control system robustness [12]. 

 
Fig. 1. Plug-in repetitive control system in a general converter structure. 

The transfer function Gr(z) of the plug-in CRC shown in Fig. 
1 can be written as 
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             (1) 

where N =fs/f  with f being the fundamental frequency of  
the reference signal R(z) and/or disturbance D(z), and fs being 
the sampling rate, N is the order of the RC; the poles of Gr(z) 
are located around 2m  f, with m =0, 1, 2, …, M (M = N/2 for 
an even N and M = (N 1)/2 for an odd N). It is clearly seen 
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that the amplitudes of Gr(z) at frequencies 2m f approach 
infinity if Q(z)=1. Consequently, the CRC provides zero 
steady-state error tracking of all harmonic components below 
the Nyquist frequency if Q(z)=1 and its order N is an integer 
[6]-[8]. Moreover, z N with an integer N can be easily 
implemented in practice. However, in the case of a time-
varying frequency f, N =fs/f would often be fractional with a 
fixed sampling rate fs. As a result, high control gains will be 
shifted away from the interested harmonic frequencies. Thus, 
the CRC is sensitive to the change of the grid frequency f. 
    In order to adapt to a variable frequency f, the factional 
delay term of z-N can be approximated by Fractional Delay 
(FD) filters [23]-[28]. Assuming that z N= z Ni F with Ni = N  
being the integer part of N and F = N–Ni (0 ≤ F < 1) being the 
fractional part of N, the fractional delay z F can thus be 
approximated by a Lagrange interpolation polynomial FIR 
filter as given in the following [23]-[26] 
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where k = 0, 1, …, n, and Ak are the interpolation polynomial 
coefficients that can be given as 
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It should be noted that, if n = 1 in (2), a linear interpolation 
polynomial z-F ≈ (1-F) + Fz-1 will be attained.  

Substituting (2) and (3) into (1), a Frequency Adaptive RC 
(FARC) will be obtained as  
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which will become the CRC of (1) when F = 0. The FARC of 
(4) provides a general approach to track or eliminate any 
periodic signal with an arbitrary fundamental frequency. It 
should be pointed out that both Ni and F should change slowly 
in practical applications.  

Fig. 2 shows the magnitude responses of the Lagrange 
interpolation based FD filter of (2) with the order n = 1 and n 
= 3 for various fractional F from 0 to 0.9. It is seen that the FD 
filter of (2) with order n = 3 gives an excellent approximation 
of the fractional delay z F at low frequencies within the 
bandwidth of 75 % of the Nyquist frequency. In contrast, the 
bandwidth of 50 % of the Nyquist frequency is observed for 
the FD filter of order n = 1.  

Notably, the Lagrange interpolation is one of the easiest 
ways to design a FD filter to approximate a given fractional 
delay. Moreover, the coefficient of (2) for the FD filter only 
consumes a small number of additions and multiplications for 
a fast online update of the coefficients. Such an FIR FD filter-
based FARC offers an attractive method for the real-time 
control of high switching-frequency grid-tied converters. 
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Fig. 2. Frequency responses of the Lagrange interpolation based fractional 
delay filters with different F, where the frequency is normalized taking the 
Nyquist frequency as the base value: (a) n= 1 and (b) n= 3. 

III. CASE STUDY: GRID-TIED SINGLE-PHASE PV INVERTER 

Fig. 3 shows a grid-connected single-phase inverter for PV 
applications with an LCL-filter, which is used to feed currents 
into the grid. The inner current control loop comprises a 
deadbeat feedback and the proposed plug-in FARC controller. 
The outer control loop is responsible for generating accurate 
current references for the inner control loop [1]. 

A. Modeling and Control 
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Fig. 3. Schematic and overall control structure of a single-phase single-stage 
grid-connected PV inverter system with an LCL filter (PLL – Phase Locked 
Loop, PWM – Pulse Width Modulation).  



 

As it is shown in Fig. 3, the capacitor Cf  is used to eliminate 
high-order harmonic currents of switching frequencies, and 
together with the grid-side inductor L2, it is referred to as an 
“ideal” load. Hence, the dynamics of the PV inverter can 
simply be described as 

1 1 g in
g

v g
di

L R i v v
dt

                (5) 

where vg is the grid voltages, ig is the grid currents, L1 and R1 
are the nominal values of ac-side inductor (L1) and resistor 
(R1) of the LCL filter, respectively. 

One control objective of the inverter is typically to achieve 
a unity power factor and thus a Second-Order Generalized 
Integrator based Phase Locked loop (PLL) system [29] is 
adopted. The second objective is to maintain a low harmonic 
distortion sinusoidal current using advanced control schemes.  

The sampled-data model of (5) can be written as 
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         (6) 

where b1=L1/Ts, b2=R1, u is the modulation signal with 
vinv(t)=u(t)vdc(t), and Ts is the sampling period.  

For the plant in (6), a Dead-Beat (DB) current controller is 
adopted as 
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     (7) 

which makes ig(k+1)=igref(k). As it is shown in Fig. 3, the CRC 
Gr(z) and the proposed FARC Gfr(z) of (4) are plugged into 
the current control loop to ensure high accuracy current 
tracking.  
    For the FARC of (4), n = 3 is chosen to be the Lagrange 
polynomial degree. Hence, the corresponding fractional delay 
will be 

1 2 3
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B. Experimental Setup  
A test rig is built-up, where a single-phase commercial 

power converter is connected to the grid through an LCL-
filter, and the control system was implemented in a dSPACE 
DS 1103 rapid prototyping kit. Parameters of the test setup are 
listed in Table I. To achieve approximately zero phase 
compensation, a filter Gf (z) = zp is used to compensate 
sampling delays, model mismatches, and un-modeled delay, 
where the lead step p = 3 is determined by experiments. 

TABLE I.  
SYSTEM PARAMETERS OF A SINGLE-PHASE GRID-TIED INVERTER SYSTEM. 

LCL-filter L1 = L2 = 3.6 mH, Cf = 2.35 μF,  
Transformer leakage inductance Lg= 2 mH 

Switching and sampling frequency fs = fsw = 10 kHz 
DC voltage Vdc = 400 V 

Power rating Pn = 1 kW 
Nominal grid voltage vg 50 Hz, 325 V (peak) 

Grid current reference Ig
*  5 A (peak) at unity power factor 

Repetitive control gain krc = 1.8 
Low pass filter Q(z) 0.175z-1 + 0.65 + 0.175z 

C. Experimental Results  
Fig. 4 gives the steady-state responses of the DB plus CRC 

controlled single-phase inverter. It can be seen that the CRC is 
sensitive to the change of the grid frequency f – when f drops 
from nominal 50 Hz to 49 Hz, the Total Harmonic Distortion 
(THD) of the feeding current ig increases from 1.4% to 6.25%; 
when f rises from nominal 50 Hz to 51 Hz, the THD of 
feeding current ig increases from 1.4% to 6.5%. Then, the 
FARC controller is added to improve the current control. 

Fig. 5 gives the steady-state responses of the DB plus FARC 
controlled single-phase inverter. It can be seen that the CRC is 
much less sensitive to the change of the grid frequency f. 
Specifically, when f drops from nominal 50 Hz to 49 Hz, the 
THD of feeding current ig increases from 1.4% to 3.10%; 
when f rises from nominal 50 Hz to 51 Hz, the THD of 
feeding current ig increases from 1.4% to 3.16%.  
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Fig. 4. Steady-state responses of the DB plus CRC controlled single-phase 
inverter system (grid voltage vg [100 V/div]; grid current ig [5 A/div]; time [4 
ms/div]):  (a)  f = 50 Hz, N = 200, THD of ig = 1.4%, (b) f = 49 Hz, N = 200, 
THD of ig = 6.25%, and (c) f = 51 Hz, N = 200, THD of ig = 6.5%.  
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Fig. 5. Steady-state responses of the DB plus FARC controlled single-phase 
inverter system (grid voltage vg [100 V/div]; grid current ig [5 A/div]; time [4 
ms/div]):  (a) f = 49 Hz, THD of ig = 3.1% and (b) f = 51 Hz, THD of ig = 
3.16%. 

Furthermore, the THD of the feeding current with these two 
repetitive control schemes under various grid frequencies is 
shown in Fig. 6. It can be observed that the FARC can ensure 
a satisfactory feeding current quality with THD < 5% in the 
presence of time-varying grid frequency, but the CRC cannot 
maintain a lower THD in the case of grid frequency variations. 
Addtionally, Fig. 7 shows that the FARC controlled inverter 
keeps feeding almost constant good quality current into the 
grid regardless of the step-changes of the grid frequency 
between 49.5 Hz to 50.5 Hz. This further confirms the 
effectiveness of the FARC in terms of dynamics.  
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Fig. 6. THD of the feeding current ig of the CRC and FARC controlled single-
phase grid-tied system under various grid frequencies. 
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Fig. 7. Dynamic performance of the DB plus FARC controlled single-phase 
inverter system (grid voltage vg [250 V/div]; grid current ig [5 A/div]; PLL 
estimated grid frequency fpll [1 Hz/div]; time [20 ms/div]):  (a) the grid 
frequency changed from 49.5 Hz to 50.5 Hz and (b) the grid frequency 
changed from 50.5 Hz to 49.5 Hz. 

IV. CONCLUSIONS 
A frequency adaptive repetitive control method has been 

proposed for grid-tied converters to feed sinusoidal currents 
into electricity network in the presence of a time-varying grid 
frequency. The proposed frequency adaptive repetitive control 
scheme offers a fast on-line tuning of the fractional delay and 
a fast update of the coefficients. It provides to grid-tied 
converters with a simple but very accurate control solution 
under grid frequency variations. An application example of 
grid-tied single-phase PV inverters has presented to 
demonstrate the effectiveness and advantages of the proposed 
frequency adaptive repetitive control solution. 
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