
Aalborg Universitet

Efficient Distance-Aware Query Evaluation on Indoor Moving Objects

Xie, Scott, Xike; Lu, Hua; Pedersen, Torben Bach

Published in:
Proceedings of the 29th IEEE International Conference on Data Engineering

DOI (link to publication from Publisher):
10.1109/ICDE.2013.6544845

Creative Commons License
Unspecified

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Xie, S. X., Lu, H., & Pedersen, T. B. (2013). Efficient Distance-Aware Query Evaluation on Indoor Moving
Objects. In Proceedings of the 29th IEEE International Conference on Data Engineering: ICDE (pp. 434-445).
IEEE Computer Society Press. https://doi.org/10.1109/ICDE.2013.6544845

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ICDE.2013.6544845
https://vbn.aau.dk/en/publications/90835fc5-46d7-47d1-aff7-664d0a38b077
https://doi.org/10.1109/ICDE.2013.6544845

Efficient Distance-Aware Query Evaluation on
Indoor Moving Objects

Xike Xie, Hua Lu, Torben Bach Pedersen

Department of Computer Science, Aalborg University, Denmark
{xkxie, luhua, tbp}@cs.aau.dk

Abstract— Indoor spaces accommodate large parts of people’s
life. The increasing availability of indoor positioning, driven by
technologies like Wi-Fi, RFID, and Bluetooth, enables a variety of
indoor location-based services (LBSs). Efficient indoor distance-
aware queries on indoor moving objects play an important role
in supporting and boosting such LBSs. However, the distance-
aware query evaluation on indoor moving objects is challenging
because: (1) indoor spaces are characterized by many special
entities and thus render distance calculation very complex; (2)
the limitations of indoor positioning technologies create inherent
uncertainties in indoor moving objects data.

In this paper, we propose a complete set of techniques for
efficient distance-aware queries on indoor moving objects. We
define and categorize the indoor distances in relation to indoor
uncertain objects, and derive different distance bounds that can
facilitate query evaluation. Existing works often assume indoor
floor plans are static, and require extensive pre-computation
on indoor topologies. In contrast, we design a composite index
scheme that integrates indoor geometries, indoor topologies,
as well as indoor uncertain objects, and thus supports indoor
distance-aware queries efficiently without time-consuming and
volatile distance computation. We design algorithms for range
query and k nearest neighbor query on indoor moving objects.
The results of extensive experimental studies demonstrate that
our proposals are efficient and scalable in evaluating distance-
aware queries over indoor moving objects.

I. INTRODUCTION

Large parts of people’s daily life are accommodated in
various indoor spaces such as office buildings, shopping malls,
conference venues, and transportation facilities, e.g., metro
systems and airports. In such indoor spaces, positioning is
becoming increasingly available due to different underlying
technologies including Assisted GPS (A-GPS), Wi-Fi, RFID
and Bluetooth. Indoor positioning provides localization for
people in indoor spaces, and thus enables a variety of indoor
location-based services (LBSs).

We give two examples of indoor LBSs. A cafe in a large
shopping mall may send message advertisements to nearby
shoppers to boost its business. A broadcasting solution for
this case would be cost-inefficient and annoying to people far
away. In a large airport, it is important to monitor individuals
within a pre-defined range from a sensitive point, e.g., a power
distribution unit. In these two examples, and in many other
indoor LBS scenarios, appropriate handling of indoor distances
and relevant queries is of critical importance. However, this
requirement poses challenges due to several factors.

First, indoor spaces are characterized by entities such as
walls, doors, rooms, etc., which render Euclidean distance and

spatial network distance unsuitable [16], [24]. Such entities
imply topological constraints that enable or disable move-
ments. We show a floor plan example in Figure 1. The
Euclidean distance between two points p and q does not make
sense because it is blocked by a wall. To reach p from q, one
has to go through doors d13 and d15 to enter room 12. One can
not reach room 12 by d12 because the door is one-directional,
as marked by the arrow. Note that one-directional doors are
often seen, e.g., in security control in airports.

Fig. 1. Floor Plan Example

Second, indoor entities, as spatial units, can also be aug-
mented with temporal variations. For example, a room may
be temporarily available due to its opening hours, or being
blocked in emergence. Also, a large room, e.g., a conference
hall, may be partitioned into several smaller rooms to accom-
modate different events. Such reorganizations can render pre-
computed indoor distances [16], [24] volatile. Refer to the
example shown in Figure 1. Room 21 can be a single partition
in banquet style, if the sliding wall indicated by the dashed
line is dismounted. It can also be split into two partitions in
meeting style if the sliding wall is mounted. Consequently,
point s cannot reach t through room 21, and the distance
between s and t needs recalculating by involving doors d41
and d42.

Third, the accuracy of indoor positioning is very limited,
typically varying from several to about 100 meters [1]. For
example, with RFID based indoor positioning, the location of
an object is reported as a region when it is in the detection

range of an RFID reader. Due to economic reasons, an indoor
space is not fully covered by such readers. As a result, indoor
moving objects do not get continuous location updates as their
outdoor counterparts do in GPS positioning. Consequently, the
location uncertainties in indoor moving objects data make it
difficult to calculate object-related indoor distances.

Motivated as such, we need to support indoor distances that
take into account topological constraints, temporal variations,
and location uncertainties, whereas recent research [16], [24]
only considers part of these important points. In this paper,
we propose a complete set of techniques for efficient distance-
aware queries on moving objects in realistic dynamic indoor
spaces. Our proposals cover the following technical aspects
that are necessary for the efficient query evaluation.

First, we define the indoor distance between a fixed point
q and a moving object O, whose location is obtained through
aforementioned limited indoor positioning. For the distance
quantification, we choose the expected distance as it is both
interpretative in entity-based queries (range query) and se-
mantically comprehensive in rank-based queries (k nearest
neighbor query) [6]. By referring to the indoor topology, we
divide O’s imprecise location into disjoint subregions each
falling into one indoor partition (e.g., a room). Subsequently,
we classify the distances between q and the subregions based
on the topological properties, and derive various distance
bounds that can disqualify objects in query evaluation without
calculating detailed expected indoor distances.

Second, we design a composite index for indoor spaces as
well as indoor moving objects, as illustrated in Figure 2. The
geometric layer consists of a tree structure that adapts the R∗-
tree [3] to index all indoor partitions, as well as a skeleton tier
that maintains a small number of distances between staircases.
In addition, the topological layer maintains the connectivity
information between indoor partitions, and it is implicitly
integrated to the tree structure through inter-partition links.
The object layer stores all indoor moving objects and is
associated with the tree through partitions at its leaf level.
Integrating the distance bounds at corresponding layers, the
index supports fast pruning in query evaluation.

Fig. 2. Composite Index for Indoor Space

Third, we study range query and k nearest neighbor query
on indoor moving objects. We define the queries by adopting
the expected indoor distance, and design efficient query pro-
cessing algorithms that exploit the power of the indoor distance
bounds and the composite index.

We conduct extensive experiments to evaluate our proposals.
The experimental results show that the indoor distance bounds

and the composite index are effective, efficient and scalable
for query evaluation compared to alternatives. The composite
index design is also maintenance-efficient in presence of both
topological updates and object updates.

Our contributions in this paper are summarized as follows.
• We study indoor distances and effective pruning bounds

in relation to indoor moving objects. (Section II)
• We design a composite index for indoor spaces and

moving objects. (Section III)
• We define and evaluate range queries as well as k nearest

neighbor queries on indoor moving objects. (Section IV)
• We show the performance superiority of our proposals

through extensive experimental studies. (Section V)
In addition, Section VI reviews the related work; Sec-

tion VII concludes the paper and discusses future directions.

II. INDOOR DISTANCES FOR UNCERTAIN OBJECTS

In this section, we study indoor distances in detail. Sec-
tion II-A presents preliminaries on indoor space and indoor
distance. Section II-B defines the expected indoor distance for
uncertain moving objects. Section II-C discusses categories of
indoor distances, and Section II-D derives bounds for indoor
distances. Table I lists all notations used throughout this paper.

TABLE I
NOTATIONS

Notation Meaning
O a set of uncertain objects
I, E Indoor space, Euclidean space
|p, q|I Indoor distance between p and q
|p, q|E Euclidean distance between p and q
|p, q|K Skeleton distance between p and q

a.l or a.u lower or upper bound of the value a
↑ A the link/pointer to the entity A

[R−i , R+
i] the range for R on dimension i

len(Ri) |R+
i −R−i |E

D(p) doors of partition p
P (d) partitions connected to door d
P (q) the partition containing point q
P (O) partitions overlapping with object O
|O| the number of instances belonging to object O

a
∗d
 b a path from a to b with d as the last door

a
∗→ b the shortest path from a to b

�(c, r) a circle centered at c with radius r

A. Preliminaries on Indoor Space and Indoor Distance

Given an indoor space, we use partitions to refer to rooms,
staircases, or hallways. They are connected by doors or
staircase entrances. For simplicity, we regard hallways and
staircases as rooms. The two entrances of a staircase can be
represented by doors located on the staircase’s two ends. Parti-
tions, including their associated doors, are atomic elements in
indoor spaces. An indoor partition’s characteristics lie in two
major aspects: geometry and topology. In terms of geometry,
they are 3D spatial entities in Euclidean space. Meanwhile,
they are aligned to floors inside a building. For topology,
partitions are separated by walls etc, and interconnected by
doors or staircase entrances.

The doors graph [24] has been proposed to represent
the connectivity of indoor partitions as well as door-to-door

distances. Formally, the doors graph is defined as a weighted
graph Gd = 〈D,E〉, where:
(1) D is the set of vertices, each corresponding to a door.
(2) E is the set of edges. An edge (di, dj) exists if these two

doors are associated with a same partition.
(3) Each edge (di, dj) has a weight that is the distance from

door di to door dj through their common partition.1

Specifically, if a door is unidirectional, i.e., allowing one-way
movement only, its graph vertex’s associated edges acquire
directionality accordingly and are in- or out-edges. If an edge
does not involve unidirectional doors, the edge is bidirectional.
More details can be found in the previous work [24].

Figure 3(a) is the doors graph for the floor plan in Figure 1.
One-way door d12’s adjacent edges, (d15, d12) and (d12, d11),
are unidirectional in the doors graph, whereas other edges that
do not involve doors d12 or d15 are bidirectional, as amplified
in Figure 3 (b).

Fig. 3. Example of Doors Graph

In this paper, we do not create a separate doors graph.
Instead, in our composite index for indoor space, we add
extra links to the leaf-level tree nodes if their corresponding
partitions are connected by a door. This design yields a de
facto doors graph that is integrated in the index. More details
are to be presented in Section III.

Unlike the previous works [16], [24], we do not pre-compute
and store the shortest indoor distances for all door pairs
before query processing. Pre-computing all such distances are
expensive especially when a given indoor space has many
partitions and doors. On the other hand, our decision is also
justified by temporal indoor space variations we consider in
this paper. As explained in Section I, partitions can be split or
merged. Partitions can also be blocked in emergence or booked
by sudden events, thus some doors are closed and/or temporary
doors are opened accordingly. Such changes inevitably inval-
idate the indoor distance computing, and a considerable part
of the shortest indoor distances can be affected if the temporal
change happens on a pivot door or partition.

Given two indoor positions p and q, we use q
δ
 p to

denote a path from q to p where δ is the sequence of doors
on that path. Referring to Figure 3(b), a path from q to p is
q
d13,d15
 p that means one can reach p from q through door

1The door midpoints are used for calculating door-related distances.

d13 followed by d15. We call the length of the shortest path as
indoor distance from q to p, and denote it as |q, p|I . Formally,

|q, p|I = minδ(|q
δ
 p |). In the example, q

d13,d15
 p is also

the shortest path as it is the only possible path. We use q
δ→ p

to denote the shortest path from q to p.
Indoor distance |q, p|I consists of two parts: door-door dis-

tance and intra-partition object-door distance. In Figure 3(b),
door-door paths (e.g., d13 → d15) are represented by solid
arrows; object-door paths (e.g., d15 → p) are represented by
dashed arrows. Let D(p) be the set of doors of p’s partition.
In general, the indoor distance |q, p|I =

mindq∈D(q),dp∈D(p)(|q, dq|E + |dq, dp|I + |dp, p|E) (1)

Previous works [16], [24] assume that all possible |dp, dq|Is
are known beforehand. In this paper, we lift this assumption
and investigate how to process queries without pre-computing
|dq, dp|Is. As a remark, strictly speaking, |q, dq|E should
consider the possible obstacles in q’s partition. Our proposals
in this paper can incorporate such obstructed distances [25]
at a low level for indoor partitions. As this is not the focus
of this paper, we omit the details. Reversely, the concept and
the computation of obstructed distances are insufficient for
modeling complex indoor topologies and distances.

B. Indoor Moving Objects and Expected Indoor Distance

Existing proposals [7], [19] model a moving object by an
uncertainty region, where the exact location is considered as
a random variable inside. The possibility of its appearance
can be collected by objects’ velocities [24], parameters of
positioning devices [7], or analysis of historical records and
thus represented by a probability density function (pdf). The
pdf can be described by either a close form equation [4], [5],
or a set of discrete instances [12], [15]. In this paper, we
adopt the instance representation, as it is general for arbitrary
distributions. Thus, an indoor moving object O is represented
by a set {(si, pi)}, where si is an instance and pi is its
existential probability, satisfying

∑
si∈O pi = 1. Based on

such probabilities, we define an expected indoor distance to
measure the distance from a fixed point to an uncertain object.

Definition 1: (Expected Indoor Distance for Uncertain
Object) Given a fixed point q ∈ I and a uncertain object O,
the indoor distance from q to O is:

|q,O|I = Esi∈O(|q, si|I) =
∑
si∈O

|q, si|I · pi (2)

In an indoor setting, an object O’s uncertainty region may
overlap with multiple partitions. An example is shown in
Figure 6. Object O’s uncertainty region overlaps with three
different rooms. Accordingly, all the instances in O are divided
into subsets. Generally speaking, we have O = ∪1≤j≤mS[j]
(1 ≤ m ≤ |O|) where each S[j] corresponds to a different
partition and contains all those instances in that particular par-
tition. We also call such a S[j] as O’s uncertainty subregion.
We proceed to do a case study on all possible |q,O|Is.

C. Cases of Indoor Distance |q,O|I
We consider how many uncertainty subregions, i.e., S[j]s,

object O has, and how many indoor paths exist from q to S[j].
Accordingly, there are three cases for |q,O|I .

1) Single-Partition Single-Path Distance: In this case, O’s
uncertainty region falls into one single partition P . In addition,
for an arbitrary si ∈ O, the shortest path q

∗d→ si shares the
same door sequence ending with d through which the path
enters P to reach si. As a result, we calculate the indoor
distance as follows

|q,O|I = |q, d|I +
∑
si∈O

|d, si|E · pi (3)

2) Single-Partition Multi-Path Distance: In this case, O’s
uncertainty region still falls into one single partition P . How-
ever, for different instances si and sj , shortest paths q ∗→ si
and q ∗→ sj do not share the same door sequence. As a result,
the indoor distance is calculated as follows

|q,O|I =
∑
si∈O

|q, si|I · pi (4)

An example of this case is shown in Figure 4, where O has
two instances s1 and s2. The shortest path from q to them are:
q
d3,d1 s1 and q d2 s2.

Fig. 4. |q,O|I
Fig. 5. Weighted Bisector b12

The solution space of the single-partition multi-path dis-
tance is the Additive Weighted Voronoi Diagram. Suppose par-
tition P has doors {d1, . . . , dm}. For each door di, we assign a
weight wi, where wi = |q, di|I . In implementation, we can use
weighted bisectors to represent the Additive Weighted Voronoi
Diagram. Given two doors di and dj , whose weights are wi
and wj , respectively, the weighted bisector bij is a curve:

bij = {p : |p, di|E + wi = |p, dj |E + wj} (5)

There are three possible shapes for bij , as listed in Table II.
Following the conditions, the bisector bij is a hyperbola, as
shown in Figure 5. It splits P into two parts, such that if an
instance s is on the part of di, the distance between q and s
is calculated by path q ∗di→ s.

In the implementation, we first check whether the bisector
is null. If it exists, we further check whether an object is on
a single side of the bisector. If the object intersects with the
bisector, we check all its instances.

TABLE II
THE SHAPE OF bij

Shape of bij Condition
straight line wi = wj

hyperbola wi 6= wj and
wi < |dj , P |maxE and wj < |di, P |maxE

null wi > |dj , P |maxE or wj < |di, P |maxE

3) Multi-partition Path Distances: In this case, object O’s
uncertainty region overlaps with more than one partition, and
thus O = ∪1≤j≤mS[j] (1 < m ≤ |O|). We calculate the
indoor distance as follows

|q,O|I =
∑

1≤j≤m

(|q, S[j]|I ·
∑

si∈S[j]

pi) (6)

In the above equation, |q, S[j]|I is calculated according to
either Equation 3 or 4, by substituting S[j] for O.

An example of this case is shown in Figure 6, where
object O has three uncertainty subregions S1, S2 and S3.
Accordingly, we have |q,O|I = E(

∑
1≤j≤3(|q, S[j]|I).

In summary, to calculate the indoor distance |q,O|I , we
need to find shortest paths from q to every instance si ∈ O.
Next, we derive effective upper and lower bounds to alleviate
the extensive computation.

D. Upper and Lower Bounds for Indoor Distances

Given a fixed point q and an uncertain object O in an indoor
space, we derive the upper and lower bounds (ULBounds in
short) of |q,O|I for each of the layers mentioned in Section I
(see Figure 2 also). Specifically, they are Euclidean Lower
Bounds for the geometric layer, Topological ULBounds for the
topological layer, and Probabilistic ULBounds for the object
layer where object probabilities are available for use.

1) Euclidean Lower Bounds: For point q and object O in
an indoor space, the (virtual) Euclidean distance between them
is the lower bound of their indoor space. Therefore, we have
|q,O|minE ≤ |q,O|I , where |q,O|minE = minsi∈O|q, si|E .

Note that it is impossible to derive the indoor upper bounds
by using Euclidean distances only. However, indoor distances
can be upper bounded by a mixture of Euclidean distances
and topological constraints.

2) Indoor Topological ULBounds: For point q and object
O = ∪mi=1S[i], suppose that P (q) is the partition containing
q, P (S[i]) is the partition containing S[i], and P (O) are the
partitions overlapping with O.

Lemma 1: (Topological LBound) Let tmin(S[i]) be:

min
dq∈D(P (q)),ds∈D(P (S[i]))

|q, dq|E + |dq
∗→ ds|+ |ds, S[i]|minE

Then, |q,O|I ≥ min{tmin(S[i])}.
Lemma 2: (Topological UBound) Let tmax(S[i]) be:

min
dq∈D(P (q)),ds∈D(P (S[i]))

|q, dq|E + |dq
∗→ ds|+ |ds, S[i]|maxE

Then, |q,O|I ≤ max{tmax(S[i])}.

Fig. 6. Multi-Partition Path

Fig. 7. Upper / Lower Bound

If object O’s uncertainty region only overlaps with one
partition, the above two lemmas can be simplified into:

min
dq∈D(P (q)),ds∈D(P (O))

|q, dq|E + |dq
∗→ ds|+ |ds, O|minE

≤ |q,O|I ≤ (7)

min
dq∈D(P (q)),ds∈D(P (O))

|q, dq|E + |dq
∗→ ds|+ |ds, O|maxE

From Lemma 1 and 2, to derive the ULBounds requires
computing shortest paths (e.g. |dq

∗→ ds|) on the doors graph.
Then, we design a looser topological upper bound. It is not as
tight as Topological UBound, but it is more economic to be
derived. Instead of getting the shortest paths, it only requires
knowing some paths connecting point q and subregion S[i].
We call it Topological Looser UBound.

Lemma 3: (Topological Looser UBound, TLU) Let
tmax(S[i]) be:

min
dq∈D(P (q)),ds∈D(P (S[i]))

|q, dq|E + |dq
∗
 ds|+ |ds, S[i]|maxE

Then, |q,O|I ≤ max{tmax(S[i])}.
As to be detailed in Section IV, we use the looser bounds

to prune doors and partitions in query processing. Afterwards,
the shortest paths are only evaluated on the remaining doors
and partitions for the topological ULBounds.

3) Indoor Probabilistic ULBounds: If object O overlaps
with multiple partitions, the topological ULBounds may be
very loose. Refer to the example shown in Figure 6, where
object O = ∪3i=1S[i]. The distance from q to S[1] is short,
while the distance to S[3] is long. If the gap between topolog-
ical upper and lower bound is large, the expected distance is
only constrained by a loose range but not well approximated.
To tackle this problem, we design Probabilistic Upper/Lower
Bounds by using probability information associated with ob-
jects.

Suppose object O overlaps with m partitions (O =
∪mi=1S[i]), and S[i]s are sorted according to the minimum
distance to a given point q, as shown in Figure 7. We use
p̂i to denote

∑i
j=1 pi. As S[i] and S[j] do not overlap, by

using Markov Inequality, we have:
Lemma 4: (Markov Lower Bound)

E(|q,O|I) ≥ |q, S[i]|maxI · (1− p̂i)

It is possible to use Markov Inequality to derive an upper
bound as well. However, Lemma 4 is not tight enough. Thus,
we derive tighter upper/lower bounds.

Lemma 5: (Probabilistic ULBounds)

|q, S[i]|maxI · (1− p̂i) + |q,O|minI · p̂i ≤ E(|q,O|I)
≤ |q,O|maxI · (1− p̂i) + |q, S[i]|maxI · p̂i (8)

Proof: E(|q,O|I) =

E(|q,∪j≤iS[j]|I) · p̂i + E(|q,∪k>iS[k]|I) · (1− p̂i) (9)

Since |q, S[i]|maxI ≥ E(|q,∪j≤iS[j]|I) ≥ |q,O|minI and
|q,O|maxI ≥ E(|q,∪k>iS[k]|I) ≥ |q, S[i]|maxI , we substitute
them into Equation 9, and the lemma is proved.

An example of Probabilistic ULBounds is shown in Fig-
ure 7. If there are many such S[i]s, we prefer to choose bigger
”i” to derive the lower bound and smaller ”i” to derive the
upper bound 2. Although subregions are disjoint, their distance
ranges may overlap. In case that no such S[i] (when all S[i]s
overlap) is found, we do not have to apply Lemma 5. If their
distance ranges are very close to each other, the topological
bounds are very tight. In this case, Lemma 5 still holds, but
degenerates to Topological ULBounds.

E. Summary

To summarize, we use topological ULBounds for the case
that an object overlaps with a single partition; and use
probabilistic ULBounds for the case that an object overlaps
with multiple partitions, as shown in Table III. With the

TABLE III
INDOOR DISTANCES AND THEIR UPPER / LOWER BOUNDS

Indoor Distance Bounds
Single-partition single-path distance Indoor Topological Upper/ Lower
Single-partition multi-path distance Bounds (Equation 7)

Multi-partition path distance Indoor Probabilistic Upper/ Lower
Bounds (Equation 8)

ULBounds, as well as the approximate indoor distances, we
avoid computing shortest paths for all existential instances of
an uncertain object. However, we still need to find shortest
paths for other objects and instances when using these bounds.
To accelerate such shortest path computing, we design a
composite index scheme to enable search space pruning.

III. COMPOSITE INDEX FOR INDOOR SPACES

Our composite index consists of three layers, namely Geo-
metric layer, Topological layer, and Object layer. The geomet-
ric layer consists of tree tier and skeleton tier. Section III-A
details the composite index structure. Section III-B presents
the Geometric Lower Bound property which is useful in the
query phase. Section III-C briefly discusses index updates.

2Although the tightest bounds can be derived by elaborating all combina-
tions, it costs more than calculating the exact distance itself, which contradicts
our intention. For simplicity, we adopt the heuristic described above.

Fig. 8. An Example of the Composite Indoor Index (without the skeleton tier)

A. Composite Index Structure

1) Overview: For the floor plan shown in Figure 1, its
composite index is shown in Figure 8(c). Figure 8(a) is a planar
view of the index and Figure 8(b) is an amplified view of the
floor plan part covered by tree node R1.

Indoor partitions are indexed by the Tree Tier, called indR-
tree, that adapts an R-tree and treats the floor plan as an
Euclidean space. Large partitions may be decomposed into
small ones, each of which corresponds to a leaf node entry.
Each leaf node, which represents a (sub)partition, is associated
with a bucket of objects in that partition. The set of all object
buckets form the Object Layer. This way, the object can
be easily located to one or more indoor partitions given its
positioning information (either a location or an uncertainty
region) via the tree. Since the Euclidean distance is a lower
bound of the indoor distance, the hierarchical tree structure
supports indoor distance-aware queries efficiently, by pruning
away disqualified candidates at higher levels.

The indoor topology information is covered by the Topolog-
ical Layer. To support indoor distance calculation, especially
for the door-to-door distance, we can traverse the topological
layer in the way of traversing a graph. In addition, the o-table
maps an object to the tree leaf nodes it overlaps with, while
the h-table stores the mappings from a leaf node entry to an
indoor partition it belongs to.

2) Tree Tier: Indoor partitions like rooms and hallways are
special spatial entities. They occupy 3D regions, spanning two
horizontal dimensions and one vertical dimension. Considering
a building consisting of many floors, the closest facility (e.g.,
a restroom) might be the one upstairs. Therefore, the distance
of the vertical dimension should be considered.

On the other hand, for the entities on the same floor, we care
more about their planar distances. If a partition is represented
by a 3D Minimum Bounding Rectangle (MBR in short) in
indR-tree, the maximum 3D distance will surely surpass its
planar counterpart. This would degrade the tree’s pruning
performance while handling queries.

However, if the MBRs are planar rectangles, the splitting

strategy for R-tree fails as the 3D volume of a tree node,
expected to be minimized in R-tree construction, is always 0.
To this end, when creating the tree we set the vertical length
for one partition to 1 centimeter, which is very small compared
to its horizontal length. Let the vertical dimension be the third
dimension. We set an MBR R’s vertical range to be [R−3 , R

+
3],

where R+
3 increases R−3 by 1 centimeter. In the query phase,

while calculating distances, we consider the R’s vertical range
to be [R−3 , R

−
3], where the vertical length is neglected. In other

words, the partition is treated as a 2D rectangle distributed in
the 3D space in query phase. This design gives two advantages:
1) it reduces the distance calculation workload; 2) it makes
the distance reflected in the tree more accurate without the
disturbance from the vertical dimension.

Some special partitions, such as a hallway, may be very
imbalanced: long in one dimension but short in the other in the
planar space. It may also be a non-convex region, e.g., hallway
10 in Figure 8(b). Such irregularities cause much dead space in
a tree node, and thus degrade the tree’s query performance. To
handle them, we decompose an irregular partition into smaller
but regular regions. We call such resulting regions, as well as
undecomposed regular partitions, index units.

For an imbalanced partition, we check the ratio between
the short side length and the long side length on the planar
dimensions. The decomposition is done recursively on the
longer dimension until that ratio of each resulting unit is no
less than a given threshold Tshape. For a non-convex partition,
we define the points at which the internal angle is greater than
180◦ as turning points. Then, we decompose the partition
into several smaller, convex units. For a more irregularly-
shaped partition, e.g., a circular shape, we use polygons to
approximate it and find the turning points over the polygonized
region. At each iteration of the decomposition, the turning
points closer to the middle of one dimension is preferred. This
would produce a more quadratic index unit, which is good for
the indR-tree construction and the query processing. These
two criteria are implemented in Algorithm 3 in Appendix A.

For example, in the tree shown in Figure 8(a), the root node

is R0 and the hallway 10 is decomposed into three index units:
Ra10, Rb10, and Rc10 given Tshape = 0.5. The mapping between
such an index unit and its original indoor partition is recorded
in a hash table h-table when the tree is constructed. Formally,

h− table : {index unit} →
∑
{indoor partition}

In the tree tier, each leaf node represents an index unit
that corresponds to either a regular, undecomposed partition
or a smaller region obtained from decomposing an irregular
partition. In addition to the MBRs, a leaf node also stores
two types of information: 1) a linked bucket for all objects
inside it; 2) links to its connected partitions. These two kinds
of information belong to Object layer and Topological layer,
respectively. We proceed to introduce these two layers.

3) Object Layer: Due to uncertainty, an object may over-
lap with multiple indoor partitions. For example, object O2

overlaps with three partitions in Figure 8(b), namely 10, 11
and 12. In each of the three leaf-nodes’ buckets, we store O2.
Meanwhile, we maintain a hash table o-table as follows.

o− table : {O} → 2{index unit}

Note that o-table maps an object to all the index units it
overlaps, and it is tightly tied up with the tree tier. When an
object update occurs, o-table needs to be updated accordingly.
We discuss such updates in Section III-C.

4) Topological Layer: We maintain the connectivity be-
tween partitions in this layer. Here, to simplify the discussion,
we assume each door always connects two partitions. As intro-
duced in Section III-A.1, each leaf node stores a (sub)partition.
For accessibility, we also store the doors belonging to the par-
tition, and the links to accessible partitions through each door.
Referring to the running example shown in Figure 8(c), for
partition R12, we store door d12, together with its accessible
partition’s link ↑ Rb10.

5) Skeleton Tier: In our preliminary experiments we found
that the Euclidean lower bound is too loose to be effective for
indoor space queries. Although it applies to road networks [20]
that are modeled as planar graphs, it falls short in indoor
spaces that are more complex than planar graphs. Usually, an
indoor floor’s horizontal extent is much larger than its height.
Consider a 20-floor building where each floor is of size 600 m
× 600 m × 4 m and has four staircases each on one corner.
Suppose a range query is issued for the center of the ground
floor and asks for objects within 300 meters. Over 90% of
the building space is covered if the Euclidean lower bound is
used to constrain the search. As a matter of fact, only objects
on the ground floor qualify since any path to upper floors is
longer than 300 meters due to the staircase positions.

Staircases can be critical in deciding whether to expand the
search to other floors or not. This motivates us to design the
Skeleton Tier that captures all staircases in a concise way to
help distance based pruning in query processing. This tier is
a graph. Each staircase entrance is captured as a graph node,
and an edge connects two nodes if their entrances are on the
same floor or their entrances belong to the same staircase.
The weight of an edge is the indoor distance between the

two staircase entrances. For the staircase plan example in
Figure 9(a), its skeleton tier is shown in Figure 9(b).

Fig. 9. Skeleton Tier Example

Let M be the total number of staircase entrances in a build-
ing, which is much smaller than that of doors in the building.
We compute the indoor distance for each pair of staircase
entrances and store such distances in a M by M matrix Ms2s.
Let si and sj be two staircase entrance identifiers. Matrix Ms2s

satisfies the following properties:

(1) Ms2s[si, si] = 0;
(2) Ms2s[si, sj] = |si, sj |E if si and sj are on the same floor;
(3) if si and sj are of a same staircase, Ms2s[si, sj] is the

shortest distance from si to sj within that staircase;
(4) Ms2s[si, sj] is calculated as the shortest path distance

from si to sj in the skeleton layer for other cases.

B. Indoor Distance Bounds in the Geometric Layer

Within the geometric layer of the composite index, we
can derive tighter indoor distance bounds than the Euclidean
distance bounds. Let q be a fixed indoor point, q.f the floor
of q, and S(q.f) all the staircases on floor q.f . We define the
skeleton distance from two points q to p as follows.

Definition 2: (Skeleton Distance) Given two points p and
q, their skeleton distance |q, p|K = |q, p|E if they are on the
same floor; otherwise, |q, p|K = min

sq∈S(q.f),sp∈S(p.f)
(|q, sq|E +

Ms2s[sq, sp] + |sp, p|E).
If q and p are on different floors, reaching p from q has to go

through one staircase entrance on q’s floor and another on p’s
floor. Therefore, the skeleton distance sums up the Euclidean
distance and the indoor distance. Hence, we define the skeleton
distance as the alternative Geometric Distance. Now we design
the Geometric Lower Bound Property based on that.

Lemma 6: (Geometric Lower Bound Property) Given
two points p and q, their skeleton distance lower bounds their
indoor distance, i.e., |q, p|K ≤ |q, p|I .

Proof: If q and p are on the same floor, |q, p|K =
|q, p|E ≤ |q, p|I . Otherwise, suppose s∗q ∈ S(q.f) and s∗p ∈
S(p.f) are on the shortest path from q to p, denoted by

q
∗s∗q∗s

∗
p∗→ p. Since |q, p|K = min

sq∈S(q.f),sp∈S(p.f)
(|q, sq|E +

Ms2s[sq, sp]+ |sp, p|E) ≤ |q, s∗q |E+Ms2s[s
∗
q , s
∗
p]+ |s∗p, p|E =

|q, p|I , the lemma is proved.
Consider an entity e that is either an object or an indR-tree

node. If e spans multiple floors, we use interval [e.lf, e.uf] to

represent all those floors. Note those floors must be consecu-
tive. We define the mininum skeleton distance |q, e|minK :

|q, e|minK =

|q, e|minE , if q.f ∈ [e.lf, e.uf];
min
{ min
sq∈S(q.f),se∈S(e.lf)

(|q, sq|E +Ms2s[sq, se] + |se, e|minE),

min
sq∈S(q.f),se∈S(e.uf)

(|q, sq|E +Ms2s[sq, se] + |se, e|minE)},

otherwise.
(10)

With |q, e|minK 3, we can constrain the search via the indR-
tree to a much smaller range compared to if we use the
Euclidean distance bounds. We design an algorithm called
RangeSearch, as shown in Algorithm 4 in Appendix B. The
algorithm takes a query point q and a distance r as input, and
returns the objects and partitions within the specified range.
When r=0, the query degenerates to a point-location query
that returns the partition containing q.

C. Dynamic Operations on the Index

Both indoor topology and objects have dynamic natures as
aforementioned. We proceed to introduce the update opera-
tions on the two layers, as well as corresponding adjustments
to the tree tier.

1) Topological Layer Operations: We design update oper-
ations for partitions. As doors are associated with partitions,
their operations are contained by partitions.

Insertion. When the topological change leads to a new in-
door partition P , P (or its sub-partitions due to decomposition
for irregularity) is inserted into the indR-tree, its leaf node is
connected to the adjacent partitions, and the h-table is updated
if a decomposition is invovled.

Deletion. If a partition P is to be deleted, it is removed
from the indR-tree, the links involving P are removed from
the adjacent partitions, and P ’s entry in the h-table is deleted
if P is a sub-partition due to a decomposition.

If a change involves a staircase s, we need to update Ms2s.
However, we only need to update the distances involving the
staircase entrances to s and those on the same floor as s.

2) Object Layer Operations: We consider object insertion
and deletion, as an object update can be implemented as a
deletion followed by an insertion.

Insertion. In order to insert an object O, we search the
indR-tree to find the leaf nodes {Pi} that overlap with O’s
uncertainty region. For each Pi, its associated buckets in
the object layer is updated accordingly. Also, a new entry
〈O, {Pi}〉 is inserted into the o-table.

Deletion. To delete an object O, we use the o-table to find
the indR-tree leaf nodes {Pi} that overlap with O’s uncertainty
region. For each Pi, O is removed from its associated bucket.
Also, the entry for O is deleted from the o-table.

In reality, an object O comes to a partition only from its
adjacent partitions. We can make use of this to speed up

3Note that if e is a descendant of E (e ⊆ E), we have |q, E|minK ≤
|q, e|minK , because one has to go through some parts of E to reach e.

object updates. To simplify the presentation, we suppose O
is in partition P before the update. If the location reporting in
the indoor positioning/tracking is sufficiently frequent, after
the update O must be stored in the bucket of P ’s adjacent
partitions. Such partitions and their leaf nodes can be easily
found by looking at the o-table, whereas search for P can be
facilitated by those links in the topological layer. This way
avoids searching the indR-tree.

IV. EFFICIENT QUERY EVALUATION

In this section, we study two representative queries in indoor
applications: Indoor Range Query and Indoor k Nearest Neigh-
bor Query. We define their query semantics in Section IV-A,
and elaborate on query evaluation in Section IV-B.

A. Query Semantics

Definition 3: (Indoor Range Query, iRQ) Given a query
point q ∈ I and a distance value r, the iRQ returns ob-
jects whose indoor distances are smaller than r. Formally,
iRQq,r(O) = {O | |q,O|I ≤ r, O ∈ O}.

Definition 4: (Indoor k Nearest Neighbor Query, ikN-
NQ) Given a query point q ∈ I and a parameter k, the ikNNQ
returns k objects whose indoor distances to q are the smallest
among all objects. Formally, ikNN q,k(O) = {O | O ∈ O},
where |ikNN q,k(O)| = k, ∀Oi ∈ ikNN q,k(O),∀Oj ∈ O \
ikNN q,k(O), |q,Oi|I ≤ |q,Oj |I .

B. Efficient Query Evaluation

We make use of the indoor distances (Section II) and
the index (Section III) to efficiently evaluate the iRQ and
ikNNQ queries. Our query evaluation consists of 4 phases.
The first phase, filtering phase, locates the source partition that
contains the query point and retrieves candidate partitions as
well as candidate objects. The second phase, subgraph phase,
constructs a subgraph based on candidate partitions, and uses
the doors of the source partition as sources to compute the
shortest indoor paths that are to be used in the subsequent two
phases. In the third phase, pruning phase, upper/lower distance
bounds for objects are calculated to further reduce the number
of candidate objects. In the fourth phase, refinement phase, the
indoor distances for the remaining objects are computed and
the qualifying objects are returned as the query results. We
proceed to present the algorithms for iRQ and ikNNQ.

1) iRQ: The evaluation of iRQ is formalized in Algorith-
m 1. In the filtering step, iRQ calls RangeSearch (Algorith-
m 4 in Appendix C) to search the geometric layer. In particular,
it retrieves all those objects (in Ro) and indoor partitions (in
Rp) whose geometric lower bound distances (Equation 10) are
no larger than the query range r. Given the Geometric Lower
Bound Property (Lemma 6), Ro and RP guaranteed to avoid
false negatives. Specifically, any discarded entity e (object or
partition) satisfies |q, e|I ≥ |q, e|minK > r.

Set Ro is a superset of the final result. So iRQ continues
to subsequent phases to verify the candidates incrementally.
Specifically, the Dijkstra Algorithm is called to calculate
single-source shortest paths starting at doors of the partition

Fig. 10. iRQ Fig. 11. ikNNQ (k = 2)

containing q 4 . The distance calculation only involves the
partitions in Rp rather than the original topological layer
that contains significantly more doors and partitions. After
that, iRQ makes use of the topological upper/lower bounds
to approximate indoor distances and compare them to r
(Lines 5-10). The exact indoor distances are only comput-
ed for those objects whose bounds cover r (Lines 11-13).

An example of iRQ is shown in Figure 10. The circle
�(q, r) is the query region represented in the Euclidean
space. Object O1 is pruned away in filtering phase, since
|q,O1|minK > r. After deriving the upper/lower bounds for
the remaining objects in the pruning phase, O3 is qualified.
For the undetermined object O2, the exact indoor distance is
calculated and compared to r.

Algorithm 1 iRQ
1: function IRQ(query point q, distance r, indoor index T)
2: result set R; candidate object set C;
3: (Ro, Rp)← RangeSearch(q, r, T); // Phase1 : filtering
4: Dijkstra(Rp); // Phase 2: subgraph
5: for each object O in Ro do // Phase 3: pruning
6: [O.l, O.u]← [|q,O|minI , |q,O|maxI]; // (Table III)
7: for each O ∈ Ro do
8: if O.u ≤ r then R = R ∪ {O}
9: else

10: if O.l ≤ r then C = C ∪ {O}
11: for each O ∈ C do // Phase 4: refinement
12: Calculate |q,O|I ;
13: if |q,O|I ≤ r then R = R ∪ {O};
14: return R.

2) ikNNQ: The evaluation of ikNNQ is formalized in
Algorithm 2. In the filtering step, ikNNQ first calls kSeeds-
Selection (Algorithm 5 in Appendix C) to return an object
set Ro1 and a partition set Rp1. Specifically, Ro1 contains k
objects that are in query point q’s partition or in the closest
adjacent partitions, and Rp1 is the set of all those involved
partitions. Then, ikNNQ derives Topological Looser Upper
Bounds for the k objects and choose the longest one as
kbound = max

seedi∈Ro
1

{|q, seedi|I .TLU}. Next, a range search

�(q, kbound) is done on the tree tire (Line 5). The Geo-
metric Lower Bound Property (Lemma 6) ensures zero false
negatives.

4The weight of an edge is the Euclidean distance of two accessible doors.

An example is shown in Figure 11, where kSeedsSelection
finds O2 and O3 as seeds. Because O2’s topological looser
upper bound is longer, it is chosen as the kbound. Through
the range search, O1 is excluded since |q,O1|K > kbound.

The process of applying the Dijkstra Algorithm and deriving
upper/lower bounds (Lines 6 to 8) are similar to iRQ.
The remaining objects are sorted and Ok whose upper bound
is the k-th shortest is found. Objects with O.u closer than
Ok.l are added to the final result (Line 11). Objects with
O.l farther than Ok.u have no chances as there already
are k objects closer (Line 13). For undetermined objects,
their indoor distances are calculated and the qualifying ones
are picked (Lines 14-15). Finally, k objects having the
shortest distances are returned.

Algorithm 2 ikNNQ
1: function IKNNQ(query point q, k, indoor index T)
2: result set R; candidate object set C;
3: (Ro

1, R
p
1)← kSeedsSelection(q, k); // Phase 1: filtering

4: kbound ← maxO∈Ro
1
{|q,O|I .TLU}; // (Lemma 3)

5: (Ro
2, R

p
2)← RangeSearch(q, kbound, T);

6: Dijkstra(Rp
2); // Phase 2: subgraph

7: for each object O in Ro
2 do // Phase 3: pruning

8: [O.l, O.u]← [|q,O|minI , |q,O|maxI]; // (Table III)
9: Find object Ok which has the k-th shortest O.u; set C = ∅;

10: for each O ∈ Ro
2 do

11: if O.u < Ok.l then R = R ∪ {O}
12: else
13: if O.l ≤ Ok.u then C = C ∪ {O}
14: for each O ∈ C do // Phase 4: refinement
15: Calculate |q,O|I ;
16: Sort objects in C by |q,O|I in ascending order and add top

k − |R| objects to R;
17: return R.

V. EXPERIMENTAL STUDIES

We conduct experimental studies to evaluate our proposals.
Section V-A describes the experiment settings, where default
parameters are bolded. Section V-B reports the results.

A. Experimental Setup

Indoor Space. We use a real floor plan of a shopping
mall5. Each floor takes 600 m ×600 m × 4 m, with 100
rooms and 4 staircases. To test scalability, we use the plan to
generate buildings with 10, 20, and 30 floors. All of them are
connected by hallways and staircases. We vary the number of
floors and therefore also the number of partitions and doors.

Indoor Moving Objects. We generate a series of datasets,
containing 10K, 20K, and 30K objects randomly distributed in
a given building. Objects’ uncertainty regions are represented
by circles, with radii 5, 10, and 15 meters. The pdf is repre-
sented by a set of 100 sampling points, following Gaussian
distribution. The mean is the circle center and the variance is
the square of 1/6 of its diameter.

5http://fc06.deviantart.net/fs28/f/2008/143/4/6/Floor Plan for a Shopping Mall
by mjponso.png

Tree Tier. We use a packed R*-tree [17] to index all
indoor partitions. The entire tree is accommodated in the main
memory. We set the tree fanout to be 20, according to the
results reported elsewhere [9].

Queries. Query points are randomly generated in a given
building. For iRQ, we set the query range to 50, 100, and
150 meters. For ikNNQ, we set k to 50, 100, and 150. In
all experiments, we issue 50 queries and report the average
response time for each query type.

All programs were implemented in C++ and run on a Core2
Duo 3.40GHz PC enabled by MS Windows 7 Enterprise.

B. Experimental Results

Sections V-B.1 and V-B.2 report the query performances for
iRQ and ikNNQ, respectively. For both query types, we test
their efficiency and scalability with respect to the number of
objects (|O|), the size of uncertainty regions, and the number
of partitions. Section V-B.3 investigate the effectiveness of
our indoor distance bounds in filtering and pruning phases.
Section V-B.4 evaluates the composite indoor index.

1) Performance of iRQ: The results of iRQ execution time
are reported in Figure 12. Referring to Figure 12(a), the query
time increases stably with |O| and the size of query ranges.

We show the query time break-down for default settings in
Figure 12(b). The filtering and subgraph phases depend on the
topologies, and thus they do not change as |O| increases. On
the other hand, larger |O|s make the refinement phase handle
more objects that pass the filtering and pruning phases, and
thus increase the query time.

As objects’ uncertainty regions become larger, more objects
are involved in the iRQ execution, and therefore the query time
also increases, as shown in Figure 12(c).

We also fix the number of objects and vary the number
of partitions to see the effect on query time. The results are
shown in Figure 12(d). Since the average number of objects in
one partition (i.e., object density in each partition) decreases,
we see query time decreases accordingly.

2) Performance of ikNNQ: The results of ikNNQ execution
time are reported in Figure 13. Referring to Figure 13(a), the
query time increases stably as the number of objects and k
increase. The query time break-down for default settings is
shown in Figure 13(b). Compared to iRQ, ikNNQ need to
retrieve more indoor partitions to find sufficient k = 100
candidates in the filtering phase. Consequently, the subsequent
phases get higher workloads to process.

The results on the effect of object uncertainty region size are
shown in Figure 13(c). Larger uncertainty sizes render more
objects and partitions to be retrieved in the range search step,
and thus increase the query execution time.

The results on the effect of the number of partitions are
shown in Figure 13(d). Again, query time decreases as the
object density in each partition decreases.

3) Effectiveness of Indoor Distance Bounds: Our indoor
distance bounds contribute to the efficiency of query execution
through filtering and pruning phases, as indicated by the results

shown in Figure 14. We define the term pruning ratio as the
ratio of objects disqualified over |O|.

Referring to Figure 14(a), over 97.3% objects are filtered out
by the skeleton distance bound in the filtering phase of iRQ
in all tested settings. The results show that the skeleton layer
and the skeleton distance bound are very effective in filtering
indoor partitions (less than 2.7% partitions are retrieved) and
objects at a high level without the search going down to the
object layer. Without the filtering phase, all indoor partitions
would be involved in the shortest path computation, which
would be too expensive for the query execution. After the
pruning phase over 99.4% objects in total are pruned.

We further study the effect of the pruning phase by including
and excluding it in iRQ execution. The results are shown
in Figure 14(b). Clearly, the topological distance bounds
(Table III) used in the pruning phase are very effective in
speeding up the query processing.

The counterpart results for ikNNQ are shown in Fig-
ures 14(c) and 14(d). Again, indoor distance bounds are
very effective in discarding objects. In particular, the pruning
phase contributes more for ikNNQ than for iRQ. Referring
to Figure 14(d), the query time would increase by at least 4
times without the pruning phase. As discussed in Section V-
B.2, ikNNQ involves more indoor partitions after the filtering
phase and thus the topological distance bounds exert more
effective influence in the pruning phase.

4) Composite Indoor Index: We also enable and disable the
skeleton tier and compare the corresponding performances to
evaluate its effectiveness. The results on the number of indoor
partitions retrieved are reported in Figure 15 (a). Clearly,
the skeleton tier effectively supports partitions’ retrieval, e.g.,
almost two thirds irrelevant partitions are excluded when the
query range equals to 100.

We evaluate the construction time for the composite index
and report the results in Figure 15 (b). In all tested cases,
the construction finishes within several seconds. Note that the
skeleton tier is constructed in only one millisecond.

We also study the time costs for update operations on
the composite index and report the results in Figure 15(c).
With 2000 partitions in an indoor building, each object update
operation costs only less than 0.01 milliseconds on average,
whereas each topology update operation costs less than 1
milliseconds on average. In contrast, distance pre-computation
is very expensive, as shown in Figure 15(d). With the same
2000 partitions, more than half an hour is needed to update
the door-to-door distances in case of a topological change in
the indoor space. This significant performance gap justifies
our composite index design without door-to-door distance pre-
computation. Our composite index for indoor spaces is an
update-efficient design.

VI. RELATED WORK

Different indoor space models have been proposed. The
3D Geometric Network Model [13] treats the vertical and
horizontal connectivity relationship among 3D spatial cells
separately. The 3D Indoor Geo-Coding technique employs

 0
 1
 2
 3
 4
 5
 6
 7
 8

10K 20K 30K

T
q

(m
s)

of Objects

 r=50
 r=100

 r=150

 0.01

 0.1

 1

 10

 100

10K 20K 30K

T
q

(m
s)

of Objects

Filtering
subgraph

Pruning
 Refinement

 1
 2
 3
 4
 5
 6
 7
 8
 9

10 20 30

T
q

(m
s)

Uncertainty Region

 r=50
 r=100

 r=150

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1K 2K 3K

T
q

(m
s)

of Partitions

 r=50
 r=100

 r=150

(a) Tq vs. |O| (b) Tq’s Breakdown (c) Tq vs. Uncertainty (d) Tq vs. # of Partitions
Fig. 12. iRQ Query Execution Time

 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

10K 20K 30K

T
q

(m
s)

of Objects

 k=50
 k=100
 k=150

 0.1

 1

 10

 100

10K 20K 30K

T
q

(m
s)

of Objects

Filtering
subgraph

Pruning
 Refinement

 16
 18
 20
 22
 24
 26
 28
 30
 32

10 20 30

T
q

(m
s)

Uncertainty Region

 k=50
 k=100
 k=150

 15

 20

 25

 30

 35

 40

 45

 50

1K 2K 3K

T
q

(m
s)

of Partitions

 k=50
 k=100
 k=150

(a) Tq vs. |O| (b) Tq’s Breakdown (c) Tq vs. Uncertainty (d) Tq vs. # of Partitions
Fig. 13. ikNNQ Query Execution Time

 97

 97.5

 98

 98.5

 99

 99.5

10K 20K 30K

P
ru

ni
ng

 R
at

io
(%

)

of Objects

Filtering
Pruning

 2
 4
 6
 8

 10
 12
 14
 16
 18

10K 20K 30K

T
q

(m
s)

of Objects

withPruning
 withoutPruning

 84
 86
 88
 90
 92
 94
 96
 98

 100

10K 20K 30K

P
ru

ni
ng

 R
at

io
(%

)

of Objects

Filtering
Pruning

 10
 20
 30
 40
 50
 60
 70
 80
 90

10K 20K 30K

T
q

(m
s)

of Objects

withPruning
 withoutPruning

(a) Filtering & Pruning (iRQ) (b) Pruning Phase (iRQ) (c) Filtering & Pruning (ikNNQ) (d) Pruning Phase (ikNNQ)

Fig. 14. Effectiveness of Indoor Distance Bounds

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50 100 150

of

 p
ar

tit
io

ns

query range

withSkeleton
 withoutSkeleton

 0.1

 1

 10

 100

 1000

 10000

1K 2K 3K

T
c

(m
s)

of Partitions

tree-tier
Object-Layer

Topological-Layer
skeleton-tier

 0.01

 0.1

 1

 10

 100

10 50 100

T
c(

m
s)

of Operations

 insertPartition
 deletePartition

 insertObj
 deleteObj

 0

 0.5

 1

 1.5

 2

 2.5

1K 2K 3K

P
re

-c
om

pu
ta

tio
n

(h
ou

r)

of partitions

(a) Skeleton Distance (b) Tc vs. Partitions (c) Tc vs. Dynamic Operations (d) Distance Pre-computation Time

Fig. 15. Results for Composite Indoor Index

the 3D Poincaré Duality [18] to transform 3D spatial cells
from primal space to dual space. A 3D metrical-topological
model [22] describes both the shapes and connectivity of
spatial cells for navigation purposes. Another 3D model [2]
combines space partitions with possible events in a dual space,
to enable navigation in multi-layered buildings. Focusing on
topological relationships, these models do not support indoor
distances and relevant queries.

A lattice-based semantic location model [14] defines the
“length” of an indoor path by the number of doors on the path
rather than the actual indoor distance. As a result, this model
falls short in many practical scenarios [16]. Different ways of
transforming a floor plan into a graph also exist [8], [10], [21],
but such proposals lack support for indoor distances.

Research on indoor moving objects often assumes symbolic
indoor space modeling and indoor positioning [10]. R-tree
based structures [11] have been used to index offline tra-
jectories of moving objects in symbolic indoor spaces. By
differentiating object states in terms of positioning detection,

a hash indexing method [23], [24] has been designed to index
the online positions of indoor moving objects.

Previous works [16], [23], [24] study spatial queries on
online indoor moving objects. This paper differs from these
works in several aspects. First, the range query definition
in this paper employs indoor distance while the previous
work [23] focuses on semantic units, e.g., a room or a
positioning device, as query ranges and does not support
indoor distances. Second, the k nearest neighbor query in
this paper returns the top-k uncertain indoor moving objects
with the shortest expected indoor distances to the query point.
With a different semantic interest, the nearest neighbor query
in previous work [24] returns all k-subsets of objects whose
collective probability of being the k nearest neighbors, in terms
of the minimum indoor walking distance to the query point,
is higher than a pre-defined threshold. Note that this paper
does not employ such a probability threshold. Third, previous
works [16], [24] assume that all door-to-door distances are
pre-computed and available for query processing, whereas this

paper lifts this assumption and computes indoor distances on
the fly in query processing. Fourth, the previous work [16]
queries on indoor static objects (points of interest, i.e., POIs)
while the queries in this paper are on indoor moving objects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study efficient evaluation of distance-aware
queries on indoor moving objects. We investigate the indoor
distance categories regarding object location uncertainties and
indoor topologies. To speed up distance based pruning in query
evaluation, we propose effective indoor distance upper/lower
bounds. We also design a composite index for indoor space
as well as objects, which facilitates efficient indoor distance
retrieval as well as query processing. Extensive experimental
results demonstrate that our proposals are effective, efficient
and scalable in various query settings. In addition, our compos-
ite index incurs significantly less maintenance costs compared
to a pre-computation based alternative.

Our work in this paper opens directions for future work.
First, it is of interest to study other query types using the
distance bounds and the composite index proposed in this
paper. Second, it is useful to estimate the selectivity for indoor
distance aware queries and make use of it in further optimizing
queries over uncertain objects. Third, it is beneficial to reuse
computational efforts on indoor distances when multiple, re-
lated queries are issued within a short period of time.

ACKNOWLEDGMENTS

This work is partially supported by the BagTrack project
funded by The Danish National Advanced Technology Foun-
dation under Grant No. 010-2011-1.

REFERENCES

[1] Accurate indoor positioning and navigation at the threshold.
http://www.loctronix.com/news/insider/i1-1-a3-scpdain.html (accessed
July 2012).

[2] T. Becker, C. Nagel, and T. H. Becker. A multilayered space-event model
for navigation in indoor spaces. Proc. 3rd International Workshop on
3D Geo-Info, 2008.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD, 1990.

[4] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, 2003.

[5] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise
data in moving object environments. TKDE, 16(9), 2004.

[6] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for
probabilistic data and expected ranks. In ICDE, pages 305–316, 2009.

[7] D.Pfoser and C. Jensen. Capturing the uncertainty of moving-objects
representations. In SSDBM, 1999.

[8] G. Franz, H. Mallot, J. Wiener, and K. Neurowissenschaft. Graph-based
Models of Space in Architecture and Cognitive Science-a Comparative
Analysis. In IIAS InterSymp, pages 30–38, 2005.

[9] S. Hwang, K. Kwon, S. Cha, and B. Lee. Performance evaluation of
main-memory r-tree variants. In STD. 2003.

[10] C. Jensen, H. Lu, and B. Yang. Graph model based indoor tracking. In
MDM, 2009.

[11] C. S. Jensen, H. Lu, and B. Yang. Indexing the trajectories of moving
objects in symbolic indoor space. In SSTD, pages 208–227, 2009.

[12] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-neighbor
query on uncertain objects. DASFAA, 2007.

[13] J. Lee. A spatial access-oriented implementation of a 3-d gis topological
data model for urban entities. GeoInformatica, 8(3):237–264, 2004.

[14] D. Li and D. L. Lee. A lattice-based semantic location model for indoor
navigation. In MDM, pages 17–24, 2008.

[15] X. Lian and L. Chen. Monochromatic and bichromatic reverse skyline
search over uncertain databases. In SIGMOD, 2008.

[16] H. Lu, X. Cao, and C. Jensen. A foundation for efficient indoor distance-
aware query processing. In ICDE, 2012.

[17] M.Hadjieleftheriou. Spatial index library version 0.44.2b.
[18] J. Munkres. Elements of algebraic topology. Addison Wesley Publishing

Company, 1993.
[19] P. Sistla et al. Querying the uncertain position of moving objects. In

Temporal Databases: Research and Practice. 1998.
[20] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in

spatial network databases. In VLDB, 2003.
[21] C. van Treeck and E. Rank. Analysis of building structure and topology

based on graph theory. In ICCCBE, 2004.
[22] E. Whiting, J. Battat, and S. Teller. Topology of urban environments.

In CAAD Futures, pages 115–128, 2007.
[23] B. Yang, H. Lu, and C. Jensen. Scalable continuous range monitoring

of moving objects in symbolic indoor space. In CIKM, 2009.
[24] B. Yang, H. Lu, and C. Jensen. Probabilistic threshold k nearest neighbor

queries over moving objects in symbolic indoor space. In EDBT, 2010.
[25] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Spatial queries in

the presence of obstacles. In EDBT, pages 366–384, 2004.

APPENDIX

A. Decomposition (Algorithm 3)
Algorithm 3 Decompose
1: function DECOMPOSE(Region r, a set of turnning points P , threshold Tshape)
2: if r is concave then
3: let R(r) be the MBR of r;
4: select a turning point t ∈ P on r’s boundary, such that t is closer to the

middle of r;
5: draw a splitting line perpendicular to the longer dimension d to divide r into

two or more regions: {ri};
6: for each ri in {ri} do
7: Decompose(ri, P − {t}, Tshape);
8: else
9: if len(R(r)1)

len(R(r)2)
> Tshape or len(R(r)1)

len(R(r)2)
< Tshape then

10: find the middle point m on r’s longer dimension d;
11: draw a splitting line perpendicular to d to divide r into two regions: r1

and r2;
12: Decompose(r1, P, Tshape);
13: Decompose(r2, P, Tshape);

B. RangeSearch on the Tree Tier (Algorithm 4)
Algorithm 4 RangeSearch
1: function RANGESEARCH(query point q, query range r, indoor index T)
2: set of objects Ro; set of partitions Rp; queue Q;
3: Q.push(T .root);
4: while Q is not empty do
5: t← Q.pop();
6: if t is leaf node then
7: if |q, t|minK ≤ r then
8: Rp = Rp ∪ t;
9: for each object O in t do

10: if |q,O|minK ≤ r then Ro = Ro ∪O;
11: else
12: for each child e of t do
13: if |q, e|minK ≤ r then Q.push(e);
14: return Ro and Rp;

C. kSeedsSelection for ikNNQ (Algorithm 5)
Algorithm 5 kSeedsSelection
1: function KSEEDSSELECTION(query point q, k)
2: set of objects Ro; set of partitions Rp; min-heap H;
3: find the Partition Ps containing q;
4: push heap(H, Ps);
5: while H is not empty and |Ro| < k do
6: Add P to Rp;
7: for each adjacent Partition Pi of P do
8: push heap(H, Pi);
9: for each object Oj in Pi do

10: Add Oj to Ro;
11: Return Ro and Rp;

