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Abstract

This paper investigates the development of a watch-dog
system that detects a subset of road user actions in traffic
intersections. Footage of the intersections is captured with
RGB and thermal cameras to ensure that the road is visible
round-the-clock even in difficult weather conditions. The
watch-dog system consists of several, cascaded detectors
which are capable of detecting specific road user actions,
such as Right Turning Vehicles, Left Turning Vehicles, and
Straight Going Cyclists. Experimental results on 4 hours of
video from 3 different intersections show good performance
and a precision above 0.93 when detecting turning vehicles.
The use of both RGB and thermal video generally results
in better performance, providing overall stability when ob-
serving the road.

1. Introduction

It is the goal of the European Commission to cut the
number of road deaths by 50 % in 2020 and diminish the
number almost entirely by 2050 [3]. In order to reach these
goals, not only the security of the vehicles must be enhanced
but also the layout of the roads must change to enhance
safety. Historically, road layouts have been changed to the
better based on previous knowledge of road fatalities and
deaths. This means that traffic researches and designers
must wait for accidents to happen in order to improve the
layout of the road.

In surrogate safety analysis, however, it is sufficient to
measure the number of accidents that almost happened. The
foundation behind surrogate analysis is the existence of a
continuous relationship between the levels of severity of an
accident and their corresponding frequencies. For instance,
it is assumed that slight injuries occur more frequently than
severe injuries and thus one may form a safety pyramid
[6] where the fatal injuries resist at the very upper parts
of the pyramid (severe, low frequency) and normal traffic

fill up the bottom parts of the pyramid (normal, high fre-
quency). By counting the number of near-accidents where
a critical interaction between road users nearly happened,
one achieves a surrogate measure of the number of more
severe, fatal interactions [14]. Recently, this rationale has
been taken even further by indicating that less-severe, nor-
mal traffic interactions enables traffic researches to monitor
the safety level [11], [15]. This enables a rapid safety anal-
ysis of roads from data over weeks instead of years.

Special attention is needed in improving the safety of
vulnerable road users (VRU). VRUs is defined as pedestri-
ans, elderly, disabled persons, cyclists, and riders of pow-
ered two-wheelers (mopeds and motorcycles). Compared
to the total number of traffic accidents, VRUs account for
a disproportionately high number of road fatalities and in-
juries. In 2013, according to the European Commission [3]
more than 14.000 VRUs were killed in the European Union.
It is the long-time goal of this project to enable traffic re-
searches to improve the safety of VRUs by gaining knowl-
edge of the accident causations. In this work, we are laying
the foundation by studying specific movements of selected
road users at intersections.

1.1. Monitoring road users

We have to study the roads in order to understand the fre-
quency and nature of accidents and near-accidents. Manu-
ally monitoring the roads is tedious and inflexible and does
not allow for a larger understanding of accident causation.
A more flexible approach is to record the roads with a cam-
era and watch the footage off-line. This allows for the re-
construction of critical events but still presents the user with
a tremendous amount of data. The optimal solution to this
problem is to design a system that automatically detects and
tracks the road users from the recorded video data. From
these tracks, traffic analysts can define heuristics that deter-
mine the interactions between the road users and on a higher
level, the safety of a particular road.

However, the detection and tracking of objects in uncon-
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strained scenes is still an unsolved problem. State-of-the
art tracking systems are usually evaluated at 2-minute inter-
vals under static weather conditions and does not perform
well under occlusion, clutter, and illumination changes. No
tracker is currently capable of detecting and tracking objects
round-the-clock in unconstrained scenarios. Smeulders et al
[13] provides a good review and performance evaluation of
recent trackers.

Jackson et al [7] have developed an open-source toolbox
for traffic video analysis which forms the base line for sur-
rogate traffic analysis such as the work of [12]. However, as
with general tracking algorithms, the length of the dataset
is short and the video data is captured under good weather
conditions [10]. The toolbox builds upon the popular KLT-
tracker [1] which needs an additional grouping of tracked
features to convert a number of tracked points to a number
of tracked objects. The grouping is often ambiguous - is it
a single bicycle or a cluster of cyclists waiting at the stop
line? Is it a truck with a trailer - or two separate vehicles?

1.2. Reducing the amount of video

Because tracking still remains an unsolved problem, we
acknowledge that there is a need for a human-in-the-loop
to assess the nature and severity of the events between road
users. However, we may design a system that reduces the
amount of video data to manually assess. Such a watch dog
should not necessary track all road users at all times but in-
stead detect whenever there are situations that need further
investigation - and whether there are periods of time when
nothing of interest occurs. In this work, we will refrain
from detecting interactions between road users but instead
study the individual actions of the road users and obtain a
reliable detection. Once these detections are achieved, one
may obtain interactions by combining the detections. We
build upon the ideas introduced by Madsen et al [9]. In this
work, we introduce a thorough evaluation of the individual
detectors on novel datasets in both the RGB and thermal do-
mains. Furthermore, we explain the algorithmic framework
behind the detectors and how they are enhanced to work in
both domains.

The issue of observing the road through a camera is
treated in Section 2. The proposed watch dog that operates
on the video data is presented in Section 3. Experiments
are discussed in Section 4 and concluding remarks are pre-
sented in Section 5.

2. Observing the road

Even the best tracking systems are only as good as the
data they process. We want to detect the road users round-
the-clock in all weather conditions which means that the
road should be observable in almost any condition by look-
ing at the recordings provided. Traditional surveying tech-

niques employ one or multiple visible light (RGB) cam-
eras to monitor the intersection [8]. While this works well
under good weather conditions, the video data still stuffer
from varying shadows and very sparse information during
the night. Thermal cameras, on the other hand, capture
the radiated heat from objects and are thus not sensitive to
changes in the environment as long as the object of interest
has a different temperature from the background. For a sur-
vey of thermal cameras, refer to [5]. However, the thermal
modality is poor on features which makes it much harder
to discriminate between objects, recover identities after oc-
clusion, or classify road users. Together though, RGB and
thermal cameras supplement each other and extend the vis-
ibility of the road. In this work, we use a joint configuration
of a RGB and thermal camera to monitor road intersections.
See Figure 1 for a comparison of the two modalities.

(a) RGB (b) Thermal

(c) RGB (d) Thermal

Figure 1: (a), (b): RGB and thermal images of an intersec-
tion at dusk. In the RGB modality, the headlights of the
cars passing by dominates most of the road. In the thermal
modality, the cars are fully visible. (c), (d): RGB and ther-
mal images of an intersection in full sunlight. In the thermal
image, the car on the right is barely visible due to the heated
asphalt whereas the biker on the upper pedestrian crossing
stands out. The RGB image is fully visible.

3. Watch-dog system
Because our system should be able to function as a

watch-dog to a human operator, robustness to changes in the
environment is more important than the ability to perfectly
detect and track road users. In order to make the watch-dog
robust, we tailor the system to perform a number of specific
tasks in certain areas of interest. We use the geometry of the



intersection to infer specific patterns that road users must
take to complete an action. For instance, if we want to anal-
yse a vehicle doing a right-turn at an intersection we know
that the vehicle must (1) enter the intersection, (2) perform
a right turn, and (3) exit the intersection. These tasks may
be solved in succession:

1. Detect presence: Detect if an object is present at the
chosen entry point of the intersection. If the size of the
object fulfils the criteria of the vehicle type, proceed to
step 2. Otherwise, discard the object.

2. Detect movement: Detect if the object of interest is
turning right, e.g. if there is movement in a certain di-
rection in a predefined area of the intersection. If the
movement is sufficient, proceed to step 3.

3. Detect presence: Detect if the object is present at the
chosen exit point of the intersection by applying the
method of step 1.

We assume that a vehicle has made a right turn if the three
tasks are completed in succession. If not, the vehicle is do-
ing something else - which another detector may detect.

In this specific context, we create the foundation to detect
near-conflicts between vehicles and cyclists at urban signal-
ized traffic intersections. In order to do so, we want to detect
right turning vehicles, left turning vehicles, and straight go-
ing cyclists. The three detectors all consists of a chained
combination of the two basic tasks; detecting presence and
detecting movement which are further described in the fol-
lowing.

3.1. Detecting presence

When detecting presence, we want to detect if a road
user is present or not at a given region of interest in the
image. This is obtained via a background subtraction tech-
nique applied to the specific region of interest (ROI). We use
a background subtraction technique based on reference im-
ages which are updated according to the routine described
below:

1. Perform Canny edge detection [2] on current image
and obtain edge image.

2. Subtract edge image from background edge image.

3. Filter noise.

4. Find pixel sum of remaining edges. If sum is above
threshold, the detector is triggered.

5. Update background if the following criteria are satis-
fied:

(a) Motion between current and previous frame is
below 10 % of threshold for τ1 concurrent
frames.

(b) Pixel sum is below 80 % of threshold, and back-
ground has not been updated for τ2 consecutive
frames.

The routine above is applied independently on both the
RGB and thermal modality. The threshold is found exper-
imentally for each intersection and modality and is higher
when detecting vehicles than detecting bicycles due to the
difference in size of these road users.

3.2. Detecting movement

Estimation of the movement in a ROI of the video is ob-
tained by using the two-frame dense motion estimation of
Farneback [4] with the following procedure:

1. Calculate the dense optical flow of the ROI.

2. Count number of flow vectors of certain magnitude in-
side a chosen flow range.

3. Threshold vector count and update confidence mea-
sure.

The flow range mentioned in step 2 is chosen to only detect
movement in the preferred range of the detector. For in-
stance, we only want do detect movement from left to right
when detecting right turning vehicles.

3.3. Chaining actions

It is of special interest of the traffic researchers to know
whenever a road user is stationary in certain areas of the
intersection. Therefore, we combine the tasks of detecting
presence and movement into a third detector, the stationary
object detector. The stationary object detector is triggered
whenever something is present within the ROI and there is
no or little movement, or flow, inside the ROI.

As described at the beginning of Section 3 we define
events inside the intersection by chaining sequential actions.
By tailoring the detectors for specific needs we focus the
overall generic tracking problem to solve a very constrained
problem at hand. Other problems, for instance right turning
cyclists, might be solved by building another chained set
of detectors. The task of detecting right turning vehicles is
performed by the use of five detectors; two presence detec-
tors, abbreviated E, two movement detectors (F), and one
stationary detector (S). The number of detectors used for
detecting left and right turning vehicles, and straight going
cyclists is listed in Table 1.

A vehicle is detected as a right turning candidate when-
ever it enters the entry point of the intersection which is
laid out in the ROI of detector E1 (Figure 2a). Whenever
detector E1 is triggered, the movement detector F1 and the
stationary detector S1 are activated. The detector F1 looks
for movement in the direction of the arrow (see Fig. 2a) and



RTV LTV SGC

Detecting presence (E) 2 2 3
Detecting movement (F) 2 4 1
Stationary object (S) 1 0 0

Table 1: Detector types, and their shorthand notation, used
when detecting Right Turning Vehicles (RTV), Left Turning
Vehicles (LTV), and Straight Going Cyclists (SGC).

detector S1 detects if the vehicle has stopped. If F1 has de-
tected that the vehicle is turning, the detector E2 is activated
to judge if the vehicle enters the conflict zone which con-
cludes the detection. If S1 is activated, we assume that the
vehicle has stopped in the middle of the intersection and is
possibly awaiting clearance to turn. In this case, we let the
other detectors stay open a little longer to detect an even-
tual turn of the vehicle. If no action occur in the detectors
E2, F2, and S1, they are deactivated after a short duration
of time. The detector F2 is used to filter out false positives,
for instance vehicles going from left to right in the intersec-
tion. An activity diagram explaining the work-flow of the
Right Turning Vehicle (RTV) detector is shown in Figure 3.
The RTV detector is shown on an intersection prototype in
Figure 2a and in an actual configuration in Figure 2b.

The Left Turning Vehicle (LTV) detectors and Straight
Going Cyclist (SGC) detectors work similarly to the RTV
detector. In the LTV detector, the stationary detector is dis-
carded and the area of the presence detector (E1) is moved
further into the intersection. Two movement detectors (F3,
F4) have been added to filter out false detections from ve-
hicles from other directions, complementing the F2 of the
RTV detector. The proposed layout of the LTV detector is
shown in Figure 2c. The SGC detector adds one presence
detector to help filter pedestrians and cars from cyclists. It
discards the detectors F2, F3, and F4 as they have shown
to be of little use in this specific case. The SGC detector
prototype is seen in Figure 2d. A straight going cyclist is
detected if the detector E3 is activated in a chain of actions.

3.4. Fusing modalities

The video data of the intersections is captured by both
a conventional RGB and a thermal camera. In this exper-
iment, we synchronize the two modalities and run the de-
tectors on each modality concurrently. Each underlying de-
tector, i.e. the presence and movement detector, operates on
both a RGB and a thermal image. For each modality, the
detector outputs a confidence value between 0 and 1. An in-
dividual detector is triggered if the confidence is above 0.5.
A multi-modal detector must have an averaged confidence
value above 0.5 to be triggered.

(a) Right Turning Vehicle (RTV) (b) RTV on intersection C(1)

(c) Left Turning Vehicle (LTV) (d) Straight Going Cyclist (SGC)

Figure 2: RTV, LTV, and SGC detectors on intersection pro-
totypes

[E1 is not triggered]

[S1 is triggered]

Skip frames for x minutesRead new frame

Set F1 active for x minSet S1 active for x min F2 is always active

[E1 is triggered]

[S1 is not triggered]

[F2 is triggered]

Set E2 active for x min

[F2 is not triggered]

Right turning vehicle detected!

[E2 is triggered]

[E2 is not triggered]

Figure 3: Activity diagram of the Right Turning Vehicle
(RTV) detector.

4. Experimental results

The RTV, LTV, and SGC detectors are evaluated at three
different intersections located in the Danish cities of Aal-
borg (A, B) and Viborg (C). The duration of the evaluated
video data is four hours in total. The data is captured in
the morning peak hour to capture as much traffic as possi-
ble and thus challenge the algorithms. The conditions of the



evaluated intersections are listed in Table 2. Samples from
the intersections are shown in Figure 4.

Intersection Time Weather Temperature

A(1) 07:00 - 08:00 Sunny 13 ◦C
A(2) 07:00 - 08:00 Overcast 15 ◦C
B(1) 07:00 - 08:00 Rain 12 ◦C
C(1) 07:00 - 08:00 Overcast 13 ◦C

Table 2: Conditions of the evaluated video data. Video A(2)
is showing the same intersection as A(1), four days later.

Figure 4: Snapshots of the intersections used in the experi-
ments. For each intersection, two frames are shown in both
the RGB and thermal modalities. From top to bottom; A(1),
A(2), B(1), C(1).

For each of the locations, right turning vehicles, left turn-
ing vehicles, and straight going cyclists have been annotated
manually and assigned a time stamp which corresponds to
the entry of the vehicle or cyclist in the final presence de-
tector (E2/E3) of the RTV, LTV, and SGC detectors. The
detectors are fitted to each of the intersections using the first
ten minutes of video. For sequence A(1) and A(2), the same
settings are used. A detection is considered a true positive
if its time stamp is within ±2 seconds of the nearest ground
truth time stamp. Detections and the corresponding ground
truths can only be associated once, i.e. only one of multiple
detections may be marked as a true positive if they all cor-
respond to the same ground truth label. The results of the
experimental evaluation are listed in Table 3. The detec-
tors are evaluated on the RGB and thermal modalities both
separately and combined.

Overall, the results show good performance of the RTV
and LTV detectors, resulting in a precision of 0.94–1.00
and a recall of 0.80–0.97 when combining both modalities

(RGBT). The SGC detector performs poorer than the RTV
and SGC in the four sequences, most notably in the RGB
modality. The poorer performance of the cyclist detection
is possibly due to occlusion and the case that cyclists rid-
ing side-by-side are detected as a single cyclist. Cyclists
are more distinguished in the thermal modality which is
reflected by higher precision rates than the corresponding
RGB detections.

In 15 out of 24 cases (precision+recall), the detectors
operating on RGBT perform better than or equal to the
best performing single modality. In the remaining 9, the
performance is better in a single modality. However, in
these cases, the RGBT is trailing behind the best perform-
ing modality by typically 0.01–0.03, even if the other single
modality performs considerably worse.

5. Conclusions
This work presented a system that detects right and left

turning vehicles, and straight going cyclists in signalized in-
tersections by using RGB and thermal video data. It does so
by chaining the output of two fundamental detectors which
detects presence and movement. The spatial constraints of
the intersections are used to create chains of actions that
classifies a road user. The detectors are evaluated on a to-
tal of four hours of data from three different intersections.
The results are promising and shows that the combination of
RGB and thermal video may lead to a more stable detection
of the road users in real-life, long-term traffic video.

Future work includes a more sophisticated fusion of the
modalities by using contextual information to create a con-
fidence measure reflecting the reliability of a modality. Fur-
thermore, the detections will be combined to produce an es-
timate of the interactions between road users at the selected
intersections.
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