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Extremal Regions Detection Guided by
Maxima of Gradient Magnitude

Mehdi Faraji, Jamshid Shanbehzadeh, Kamal Nasrollahi, Thomas B. Moeslund

Abstract—A problem of computer vision applications is to
detect regions of interest under different imaging conditions.
The state-of-the-art Maximally Stable Extremal Regions (MSER)
detects affine covariant regions by applying all possible thresholds
on the input image, and through three main steps including:
1) making a component tree of extremal regions’ evolution, 2)
obtaining region stability criterion, and 3) cleaning up. MSER
performs very well, but, it does not consider any information
about the boundaries of the regions which are important for
detecting repeatable extremal regions. We have shown in this
paper that employing prior information about boundaries of
regions results in a novel region detector algorithm that not only
outperforms MSER, but avoids the MSER’s rather complicated
steps of enumeration and the cleaning up. To employ the
information about the region boundaries we introduce Maxima of
Gradient Magnitudes (MGMs) which are shown to be points that
are mostly around the boundaries of the regions. Having found
the MGMs, the method obtains a Global Criterion (GC) for each
level of the input image which is used to find Extremum Levels
(ELs). The found ELs are then used to detect extremal regions.
The proposed algorithm which is called Extremal Regions of Ex-
tremum Levels (EREL) has been tested on the public benchmark
dataset of Mikolajczyk [1]. The obtained experimental results
show that the inclusion of region boundaries through MGMs,
results in a detector that detects regions with high repeatability
scores and is more robust against noise compared to MSER.

Index Terms—Maxima of Gradient Magnitude (MGM), Max-
imally Stable Extremal Region (MSER), Extremal Regions of
Extremum Levels (EREL), Feature Detection

I. INTRODUCTION

MANY computer vision applications such as image reg-
istration, object recognition, image retrieval, to name a

few, employ a feature extraction phase in order to represent the
image by a set of vectors capable of conveying the pertinent
information of the image. Feature extraction usually includes
two steps of detection and description which are followed by
a matching step. Some known works such as bag-of-features
[2], multi-resolution bag-of-features [3], and hyperfeatures
[4] have substituted the matching phase with two stages,
namely feature clustering and constructing the histogram of
visual code-word occurrences. The steps involved in feature
extraction are highly related to each other, thus, more efficient
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results from one step lead to more efficient outcomes from
the next one. The outset of the process which is the detection
phase has an absolutely crucial role in obtaining more stable
overall performance. Thus, presenting an efficient detection
method, which is exactly the focus of this paper, is of great
importance in many computer vision applications.

Recent detectors usually report the locations of the interest
points and their surrounding regions by several geometric pa-
rameters. These parameters which are obtained by the second
moment matrix can approximate the shape of the detected
region of interest. Particularly, the idea of representing the
elliptical regions has been proposed by Lindeberg [5]–[9].
He used this idea to represent the detected regions by the
Laplacian and the scale-space determinant of the Hessian and
also by the gray-level blobs. Harris-Affine/Laplace detector
[10]–[12], which detects interest points by auto-correlation
matrix across scale space, and Hessian-Affine [10], which
detects interest point based on the Hessian matrix across
scale space, are two notable detectors that have followed the
Lindeberg’s idea of determining the surrounding region around
the interest points. Similarly, Edge-Based Region (EBR) [13]
and Intensity-Based Region (IBR) [14] are suitable for affine
regions detection. EBR is a model-based approach that tries
to find some structures in the image while IBR evaluates a
function for all rays emanated from an extremum point to
find a region. A comprehensive evaluation of these detectors
can be found in [1].

The fundamental theory of scale-space representations, was
first thoroughly discussed by Lindeberg [6], [15]. His out-
standing works with scale-selection and feature detection [7],
shape affine adaptation [16], and the theoretical concepts
of image matching [17], has contributed to the literature
significantly. In [15], he well identified the underlying concept
for what later proposed as MSER [18], by defining the gray-
level blob as the three dimensional volume delimited by the
gray-level surface and the baselevel [15]. Therefore, based
on the mentioned concept, the well-known region detector,
Maximally Stable Extremal Regions (MSER) [18], which has
been the inspiration for the proposed algorithm in this paper,
has been introduced. Given an input image, MSER, which
is a level set based algorithm, thresholds the image with all
possible threshold values. The goal of MSER is to find a range
of thresholds in which the regions are more stable than the
regions appearing outside the range. A region is considered
stable if its area in a level changes slighter than its area
belonging to other levels.

MSER has been used in many computer vision applications,
like, stereo vision in [18]–[21], object recognition [22]–[24],
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3D segmentation [25], lane detection and tracking systems
[26], [27], real-time image segmentation [28], finger and hand
detection [29], image registration in remote sensing [30], [31],
[31], large-scale image retrieval [32], video stabilization [33],
and text detection [34]–[36]. Several authors [37]–[39] have
proposed improvements on the implementation of MSER.
They have concentrated on the algorithmic details of MSER
and concurrent construction of the union finding forest and
the components’ (extremal region) tree. There have also been
lots of extensions over the original version of MSER, as
those in [40]–[46]. In [43], an integrated algorithm, ED-
MSER, is proposed which combines MSER [18] with SIFT
[47] and a filtering strategy. The notion of enclosed regions
detected by setting several thresholds was introduced in [44].
Enclosed regions consist of External Enclosing Regions (EER)
and Internal Enclosed Regions (IER). Recently, MSER has
been adapted to work with scale-space theory as for example
in [45], [46], [48]. Forseen and Lowe [48] introduced a
multi-resolution version of MSER and used it to construct a
descriptor for detected extremal regions. In [45] a multi scale
version of MSER called MMSER has been proposed in which
the selected regions should not only be stable in their own
levels, but also in the pyramid scale space based on a local
minimum of stability criterion. In [46], MSER is employed on
the Difference of Gaussian (DoG) which have been inspired
by the concept of original scale-space and the gray-level blobs
proposed by Lindeberg [15]. The stable regions are selected
if the barycenter of a region is surrounded by at least ten
barycenters of other regions in its adjacent scales. In [41]
Maximally Stable Color Regions (MSCR) has been introduced
and obtained by an agglomerative clustering of image pixels,
which models the distribution of edge magnitudes.

The topology of a manifold can be investigated by looking
at the differentiable functions of that manifold. J. Milnor [49]
explained Morse theory using a torus tangent to a plane. The
variation of the topology of a segment of the torus as a function
of height above the plane can reflect the general topology of
the torus. In image processing and computer vision, the image
can be regarded as a landscape height map (Lindeberg [15]
considered a non-degenerate gray-level function f : R2 −→ R
at a fixed level of scale). For each height value, a set of
connected pixels (called extremal regions) can be extracted.
The set of all extremal regions belong to each height, consti-
tutes a finite set of extremal regions. We propose an intuitive
method, to select a fair number of extremal regions from the
finite set based on a global estimation ratio between boundaries
variation and surface variation.

As illustrated in [1], MSER obtained low repeatability when
blur transformations happen which can be mostly because of
its stability criterion. The stability criterion considers mainly
the area of the regions as the crucial parameter. So, the
stable regions are those regions with the least change during
a range of thresholds. This idea considers no information
about the boundaries of the regions during the detection of
stable regions. Particularly, blur transformation manipulate
the boundaries of the regions, so the area-based stability
criterion of MSER can result in low repeatability. To deal
with this problem Kimmel [50] proposed another stability

Fig. 1. The block diagram of the proposed system. a) Provides information
about edges of the image by detecting MGMs from the input image.
b) Calculates a global stability value for each level of the image and stores
the values in vector Ψ. c) Selects each level that has a local maximum Ψ.
d) Finds the connected components of the selected levels which include at
least one MGMs.

criterion based on the length of the boundaries. It can be
seen that various types of transformations may need different
kind of stability criterion to perform well. Another issue with
MSER is that it mostly include a rather complicated step of
enumeration followed by a cleaning up step. The proposed
system in this paper, is an improved version of [51] (Fig. 1)
that presents a completely novel region detection algorithm
in which the above-mentioned issues are tackled by including
the information of the region boundaries. To do so, we have
introduced a kind of interest points, Maxima of Gradient Mag-
nitudes (MGMs), Fig. 2, which are mostly concentrated around
the edges (region boundaries). Therefore, they are used as
prior information for detecting invariant regions in our region
detection algorithm. The experimental results on a challenging
benchmark dataset show superiority of the proposed algorithm
over the state-of-the-art region detection algorithms.

The rest of the paper is as follows. The details of the
proposed algorithm and the introduced MGM points are ex-
plained in the next section. The experimental results are given
in Section III. The time complexity analysis of the proposed
method is presented in section IV. The effect of the parameters
of the method and the advantages of the proposed method over
MSER is discussed in section V. Finally the paper is concluded
in Section VI.

II. THE PROPOSED METHOD

The block diagram of our novel proposed algorithm is
shown in Fig. 1. We first detect MGM points (Fig. 1(a)). Then,
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Fig. 2. MGMs for two different parts of the “graf” and the “leuven” images of [1].

we binarize the image by applying all possible thresholds on it
and obtain a Global Criterion (GC) based on the information
provided by both white pixels of the thresholded image and the
MGMs. The obtained thresholds intersected with the detected
MGMs are shown in Fig. 1(b). After that, we select a number
of Extremum Levels (ELs) based on the GC vector. The
selection process which finds local extrema of the GC is shown
in Fig. 1(c). In the last step (Fig. 1(d)) we detect extremal
regions in only those selected ELs that intersect with at least
one MGM. The above steps are explained in the following
subsections, respectively.

A. Maxima of Gradient Magnitude (MGM)

Given an input image, I , we first obtain its gradient, ∇I , by
a simple gradient filter like Soble. An MGM is a point p(x, y)
in ∇I that has two conditions: first, it has a maximum value
of the gradient magnitudes among their local neighborhood
points with radius r, as:

‖∇I(p)‖ > ‖∇I(P )‖,∀P ∈ N(p, r) (1)

where N(p, r) = {P |∀P ∈ I, ‖P − p‖ < r} is the neighbor
function. Second, the mean of the gradient magnitudes of its
neighbor points, should be larger than a threshold:

E[‖∇I(N(p, r))‖] ≥ α · τ (2)

where E() is a mean function, and α is an arbitrary coefficient
which controls the strength of the of resulted points. Here, τ
is a suitable threshold value that used for thresholding the
gradient magnitudes image. To find the value of τ we use the
isodata method [52]. First, we assume that the mean of the
image gradient magnitude is an initial point in its histogram

that separates foreground from the background. Then, the
mean of each distribution is calculated and the average of
both means becomes the new threshold. This process continues
iteratively (only takes a few iterations) until the threshold
value does not change. Therefore, such a threshold is achieved
by a simple iterative algorithm that runs in constant time. In
addition, it can keep a fair amount of high informative points
along edges. As it can be seen, the process of finding τ is a
global function and works on the histogram of the gradient
magnitudes of the image. To have more robust results, we
first equalize the histogram of the input image prior to the
thresholding.

Checking the above two conditions for all the pixels of the
input image, a binary image, M , can be generated in which
the positions of the MGMs are highlighted. So, we identify
that a point termed p(x, y) is an MGM if M(x, y) = 1, where,
x and y indicate the location of the point.

Fig. 2 shows two example images and the MGMs extracted
from them. The high repeatability of MGMs can be seen in
zoomed boxes of the Fig. 2. Even for changes in strength of the
light source (the second row of Fig. 2), it is clear that MGMs
can be easily detected. Therefore, although we employ MGMs
as prior information about the boundaries here, one can use
them as pure interest points in a specific application.

The resulted M(x, y) image from the above process is then
used in the next step of the proposed system to obtain a
stability criterion.

B. Global Criterion (GC)

Following the block diagram of the proposed system in
Fig. 1, having found the MGMs, the next step is obtaining
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a GC. Two sets of regions, Q− and Q+, can be detected from
an input image when any type of level set methods, like the
one used in this paper, is employed:

• The first set, Q−, contains regions that evolve from
brighter surfaces to darker boundaries. These regions can
be detected from the original image by thresholding at
different levels. Each of these thresholds result in a binary
image, T−

ϑ (x, y), as:

T−
ϑ (x, y) =

{
1 if I(x, y) ≥ ϑ
0 otherwise (3)

where ϑ is the current threshold. The range of the
thresholds depends on the number of the bits used per
pixel.

• The second set, Q+, contains those regions that evolve
from darker surfaces to brighter boundaries. To detect
these regions we use:

T+
ϑ (x, y) =

{
1 if I(x, y) ≤ ϑ
0 otherwise (4)

We should calculate a GC vector for both types of + and −

regions. Since the steps required are independent of the type
of the regions, we only explain them for the + type of regions.
The reader can do the same process for the − type of regions.

We intend to have a GC with a more distinguishable
capability to specify the levels that have the most stable edge
variations in proportion to their adjacent levels. However, we
should also consider that having only a lot of edge points in
a level cannot precisely determine a suitable invariant level
to extract covariant regions. If there are small variations in
the area of the regions, the edge points variations that we
are representing by MGMs variations, cannot discriminate a
global invariant level. So, to find levels with most stable edge
variations, we need to monitor the the concurrent changes of:

• the total number of the newly appeared white pixels in
the thresholded image

• the obtained number of the MGM points in each level
that intersect with available pixels in that level.

In fact, the former is an interpretation of the histogram of the
image, and the latter is the histogram of the MGM points.
So, we define the ratio between these two factors in a V +

function, defined as:

V +
ϑ =

hϑ(I(x, y) ·M(x, y))

ε+ hϑ(I(x, y))
, 0 ≤ ϑ ≤ Θ (5)

where the hϑ(I(x, y) ·M(x, y)) and hϑ(I(x, y)) represent the
histogram of the MGMs and the histogram of the image at
level ϑ, respectively. To avoid devision by zero, an ε value
is used. The parameter Θ indicates the maximum possible
intensity value, i.e., for an 8-bit image, Θ = 28 − 1.

The underlying variations of V + are suitable clues for
indicating levels in which the variation of the edge points
over the surface area become stable. Therefore, we employ
the same concept of the local stability of MSER [18], but in
a global consideration. Using vector V +, the GC+, Ψ+, is
achieved:

image 1

image 5

Fig. 3. Selected ELs for two different blur transformations of “trees” image
set of [1]. Note that β = 1 and the values of both vectors have been scaled.

Ψ+
ϑ =

V +
ϑ

|V +
ϑ+1 − V

+
ϑ−1|

(6)

Similarly, the same process can be performed on the other type
of regions (−) to obtain the Ψ−. However, because the second
phase is performed on the inversed of the image, instead of
using hϑ, we use the reverse of vector hϑ, which is h[Θ−ϑ].

C. Extremum Levels (ELs) Selection

Following the block diagram of the algorithm in Fig. 1,
having obtained the Ψ+

ϑ , we need to find ELs+. A level like
ϑ belongs to the set of EL+ if its Ψ+

ϑ , is a local maximum.
To select EL+, each cell of Ψ+

ϑ is hence compared with its β
previous cells and β subsequent cells. β shows the radius of the
neighborhood window and represents the number of adjacent
levels which are involved in the process of local maxima
selection (Fig. 1). For all of our experiments throughout the
paper, we set β = 1. The calculated GC− vector and the
selected ELs have illustrated in Fig. 3. It can be seen that
selected ELs are located in the stable trends of the blue graph,
which is V −.

D. Extremal Regions Detection

Extremal regions can be finally detected from each elements
of EL+ and EL− by any arbitrary connected component
analysis algorithms or a labeling strategy. Note that for each
vector (EL+ and EL−), we run the algorithm separately. So,
the following explanation should also be considered for EL−.
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trees bikes

wall graf

boat ubc

leuven bark

Fig. 4. Repeatability scores achieved by 10% overlap errors for all image
sets of dataset [1].

Having a high number of detected extremal regions implies
the importance of applying a filter on them to efficiently select
more repeatable regions. To do so, the algorithm starts from
the first indicated EL+, extracts the extremal regions of that
level and chooses only those extremal regions that intersect
with at least one MGM. After that, the MGMs belonging
to the selected extremal regions will be ignored in the next
ELs+. This process continues till all elements of ELs+ be
processed. It should be noted that the number of elements in
ELs+ are related to the radius of the neighboring window.
For instance for β = 5 it yields less than 20 elements. If a
region intersect with no MGM, it shows that either the region
has been detected wrongly because of the presence of the
noise, or the region is not stable enough. So, MGMs actually
help both selecting regions and cleaning up the unwanted
extremal regions. However, it should be noted that no direct
cleaning up nor clustering and enumeration is performed by
EREL. Since, our proposed method detects extremal regions
belonging to both ELs+ and ELs−, we call it: Extremal
Regions of Extremum Levels (EREL).

III. EXPERIMENTAL RESULTS

The experiments reported in this paper have been conducted
on the image sequences of the public benchmark dataset
of Mikolajczyk, affine covariant dataset [1]. The images in
this dataset have gone through different degradation factors,
including:

trees bikes

wall graf

boat ubc

leuven bark

Fig. 5. Repeatability scores achieved by 40% overlap errors for all image
sets of dataset [1].

• blur (by “tress” and “bike” sequences) which have been
acquired by changing the camera focus

• viewpoint (by “graf” and “wall” sequences) which have
been transformed by changing the camera view from
a front-to-parallel view to one with significant fore-
shortening at almost 60 degrees to the camera [1]

• scaling and rotation (by “boat” sequence) which has been
acquired by varying the camera zoom at a factor of about
4, and

• JPEG compression (by “ubc” sequence) which is gener-
ated using a standard xv image browser with the image
quality parameter varying from 40% to 2% [1].

The above dataset has been used to draw comparisons
between the proposed method and the competing state-of-the-
art method of MSER [18]. To do so, three tests are conducted.
In all tests in this paper, we set all parameters of both methods
(MSER and EREL) equally, i.e minimum area of a region
equal to 30, maximum area of a region equal to 0.01 × N
[18], and for the ellipse fitted to the region, as it has been
suggested in [1], we double the scale of the fitted ellipse. In
addition, the value of the parameter of the method, α = 1.2,
has been kept unchanged during all of the tests in this section.

• In the first test, we evaluate the performance of the
detector and compare it against MSER. The evaluation
is based on two common criteria: repeatability and the
accuracy of localization [1].

• In the second test, we compare our detector against
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trees bikes

wall graf

boat ubc

leuven bark

Fig. 6. Repeatability score as function of overlap error for image pairs of the
dataset of [1]. All pairs are similar, i.e. < image1, image4 >.

MSER, based on the performance of their extracted
descriptors. Most of the applications extract descriptors
from detected regions prior to any further processing.
So, evaluating the descriptor can generally show the
performance of the method in real applications. The
two main factors for this evaluations are recall and 1-
precision.

• In the third test, we compare our system against MSER
in the presence of noise.

The evaluation factors in each of the above three mentioned
tests and the obtained results are explained in the following
subsections.

A. The First Test (Repeatability and Accuracy)

In this test two evaluation factors of repeatability test and
overlap error (accuracy of localization) are considered.

1) Repeatability Test: One of the important factors of
assessing systems like the one proposed in this paper, is the
repeatability criterion of Schmid [53]. It defines how a detector
can repeatedly detect the same regions in different images
of the same scene (when images are transformed by differ-
ent geometric and photometric imaging parameters, including
those in the used database of [1]). The repeatability score
provides a quantity value of the performance including the
accuracy of localization and region estimation and is defined
as the ratio of the number of region-to-region correspondences
and the smaller number of regions detected in one of the

Fig. 7. Comparing the relative area of the regions detected by EREL against
MSER [18] for all of the image sets of [1].

images [1]. To locate the corresponding points in planar
image pairs a homography matrix is employed which finds
the corresponding points in relative locations with an error less
than 1.5 pixel. Higher repeatability score and larger number
of correspondences indicate a better detector performance.
Therefore, reaching a 100% repeatability and representing
the more horizontal line by the plot of the repeatability and
the number of correspondences are two ultimate goals of
an optimal detector. To have a better understanding of the
performance of the EREL, its repeatability scores for six image
sets of the dataset are shown in Fig. 4 and Fig. 5 for overlap
errors of 10% and 40%, respectively. We illustrate the results
of the repeatability scores for 10% overlap error in order
to show the accuracy of the regions. Not to mention that,
reporting the results for 40% overlap error is common in the
literature.

It can be seen from Fig. 4 and Fig. 5 that in most of
the cases the proposed system outperforms MSER. However,
the degree of the improvement changes from one image to
another, since the contents of the images in the dataset are
very different. For example, the “trees” and the “wall” images
represent textured type of scene and contain huge amount
of variations. Although, this means that the MGMs can be
better detected on the boundaries of the shapes, the concept
of detecting blob-like regions is in contrast with this kind of
images. Lindeberg [15] has stated this very clearly by saying
that the presence of another nearby blob may neutralize a blob
or reduce its size which at the end results in decreasing the
repeatability of every detector that designed to work based on
this theory.

2) Overlap Error: Another important factor in assessing the
performance of detectors is the overlap error which shows the
accuracy of the localization and the region estimation. Overlap
error, εo, which is used to find two corresponding regions, if
εo is small enough, is defined:

εo = 1−
|Rµa ∩R(HTµbH)|
|Rµa

∪R(HTµbH)|
(7)

where |.| is a function that calculates the area of the region,
H is a homography matrix (used to find a point to point
correspondences), Rµ is an elliptic region, and ∩ and ∪
represent the union and the intersection between the regions,
respectively. Obviously, smaller overlap error implies greater
similarity of the detected regions of the reference image and



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

their counterparts in the transformed images. We have also
compared the EREL against MSER by the repeatability score
as a function of the overlap error in several image pairs of
the Mikolajczyk’s dataset of [1]. The results (shown in Fig. 6)
reveal that the detected regions by the proposed system in
most pairs are the most accurate ones, and it achieves the best
repeatability scores.

3) Number of Detected Regions: The repeatability score’s
superiority of the proposed system to MSER is more valuable
when we compare the number of the detected regions of the
two methods, because the number of the detected regions can
affect the repeatability scores. If a detector detects only few
regions one can expect a high repeatability score. On the other
hand, detecting a huge number of regions can causes lots of
accidentally matched regions [1]. It is shown in Fig. 13(d)
that the number of the regions detected by our method is very
close to those found by MSER Fig. 13(c), which means that
the number of the detected regions by the proposed system is
comparable with MSER.

4) Region Size: As it has been demonstrated in [1], having
a lot of big regions affect the repeatability scores since they
contain more information, they can be matched more easily
and consequently, the score will be increased. However, not to
mention that the rate of the increase is not very substantial. A
method with a poor design can never achieve high performance
based on having bigger area sizes. One way to show its
effects on the performance or on the repeatability, is to obtain
the relative size of the detected regions. Accordingly, we
illustrate the relative areas of the detected regions by EREL
and compare it with MSER in Fig. 7. It can be seen from this
demonstration that the average of EREL’s region size are close
to MSER in most cases.

B. The Second Test (Descriptors)

The proposed EREL algorithm not only detects regions with
high repeatability, but improves the performance of real world-
applications. To show this, we extract SURF descriptors [56]
from the regions detected by both MSER and EREL. As both
methods are able to report all pixels that contribute to a region,
we extract SURF descriptors based on the detected extremal
regions’ pixels (Distinguished Regions [18]). We then compare
the performance of the features obtained from these descrip-
tors against each other. The performance is evaluated based
on criteria explained in [57], namely recall and precision.
The process of descriptor evaluation begins with matching
descriptors of the reference image and the transformed image.
The matching can be done using different strategies, e.g.,
1) Threshold based matching, 2) Nearest neighbor based
matching, and 3) Nearest neighbor distance ratio matching (see
[57] for further explanations). Although all three strategies can
correctly evaluate the performance of descriptors, especially
when no specific application is desired, we use the nearest
neighbor based matching in the matching step due to its
slightly better performance [57].

The second step is to determine which of the matched
regions by the matching strategy actually are correct matches
and which of them are not. This can be done by employing

a homography matrix. The result of this step are the number
of correct matches and the number of correspondences. These
numbers are used to calculate the two important criteria for
evaluating the performance of descriptors:

recall =
Mc

C
(8)

1− precision =
Mf

Mc +Mf
(9)

where C represents the total number of correspondences be-
tween two images. Here,Mc andMf indicate the number of
correct matches and the number of false matches, respectively.
Drawing a graph with recall on vertical axis and 1-percision
on the horizontal axis (as has been used in [57]) clarifies the
performance of methods based on these criteria. These are
illustrated in Fig. 8.

The ideal value for recall is one. So, higher value of recall
in based on the precision implies the superior performance of
a method. Considering these facts, it can be seen from Fig. 8
that the performance of the EREL is better than MSER. These
results confirm the accuracy of EREL as well. The accuracy
of EREL (higher repeatability in lower overlap error), have
influenced the descriptor performance and has improved it,
i.e., in higher precisions (horizontal values closer to zero),
greater recalls are achieved.

Another interesting conclusion can be drawn by comparing
the repeatability results (see Fig. 4 and Fig. 5) of “wall”,
“trees”, and “bark” image sequences with the results of its
descriptor performance (see Fig. 8). Although the repeatability
of EREL is lower than or equal to MSER in some cases, the
performance of the extracted descriptor is higher than MSER.
This shows that the regions of EREL have been distinctively
detected and can be finely matched using a standard descriptor.

C. The Third Test (Presence of Noise)

The presence of noise is an inevitable obstacle of real-world
applications. In the following section, we report our evaluation
results of EREL against noise contamination and show that
our proposed method is more robust to noise when compared
to MSER. To do that, we first contaminate all the images
of the dataset [1] using Gaussian noise with three different
variances (σ2 = 0.01, 0.03, and 0.05). Then, we apply MSER
and EREL to these noisy images and calculate the repeatability
scores from the extracted noisy regions. The obtained scores
are illustrated in Fig. 9. It can be seen that, in most occasions,
repeatability scores of MSER are lower than EREL when the
images are contaminated by noise. However, the performances
of both methods drop when the noise variance is increased,
which is a natural consequence of noise contamination.

Another comparison is drawn based on the performance
of the extracted descriptor (see section III-B) of the noise
contaminated EREL and MSER. The results are shown in
Fig. 10. It can be seen that recall of EREL in most cases,
are higher than MSER for similar noise variances. So, more
distinctive descriptors can be extracted from EREL rather than
MSER when the input images are noisy which confirms the
robustness of EREL in real applications.
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Fig. 8. The performance evaluation of the EREL and MSER based on an extracted SURF descriptor for each of them. Features have been extracted from
images of [54] dataset. Each row belongs to a same image sequence. Columns represent the image pairs.
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Fig. 9. The repeatability scores of EREL and MSER extracted from noisy images from [1] dataset. Each row represents the results for different overlap
errors. Columns indicate the input images.

D. EREL Against Recent Versions of MSER
In this section we further compare the repeatability score of

the proposed EREL method against the very recent extensions

of MSER which have reported their results on the benchmark
dataset of [1]. These systems are TBMR [55] and Enclosed
region [44]. TBMR uses a topological approach for region
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Fig. 10. The performance evaluation of the EREL and MSER based on an extracted SURF descriptor against noise contamination. Features have been
extracted from images of [54] dataset. Rows belong to image sequence. Columns represent the image pairs.

detection in which regions are contrasted [55] while Enclosed
region based system assumes that an object is enclosed by
the same region before and after the degradation and/or
transformation [44]. The results of the comparison (for an
overlap error of 40% ) are shown in Fig. 11. It can be seen
from this figure that for structure type scene (“bark”) and a
blur degraded image (“bikes”) EREL has high performance
which is close to the other methods.

IV. TIME COMPLEXITY ANALYSIS

Prior to discuss about the time complexity, we review
the steps of our proposed method considering an efficient
implementation. Although EREL can be simply implemented
based on a parallel methodology, we have implemented it
sequentially in order show that it has a linear running time,
and also to draw a fair comparison to the other implantations
of MSER. In short, EREL detection has four steps including
detection of MGM points, obtain two global criteria vec-
tors, extremum level selection, and extremal region detection.
EREL can also implemented efficiently based on other ideas,
for example using connected component algorithms or using
a flood-fill method, however our implementation for each step

is as following. Please note that by N we mean the number of
pixels in the image. In addition, we neglect every histogram
traversal and consider its running time as constant because the
number of levels for an 8-bit image is 256 which is too small
and takes a few CPU clocks to run.

• Image Initialization: At first, we pass every pixels of
the image to prepare the histogram of the image and
subsequently equalizing it (O(N)), then we apply a
Sobel filter on the image in order to have a gradient
magnitude image (O(N)), and finally we construct an
integral gradient image [56], [59] (O(N)). The overall
complexity for this step is O(N ) .

• MGMs Detection: To efficiently extract MGM points
from the image, we use the concept of integral image
which has been introduced in [59]. As MGMs are ex-
tracted from the obtained gradient magnitudes, we use the
exploited integral gradient image from the initialization
step to calculate the neighborhood average of each pixel
in a constant time. So, only four array references happen
for each averaging which result in linear time extraction
of the MGM points. Finally, during the process of MGM
detection, as soon as an MGM found, the histogram of
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Fig. 11. Comparing the Repeatability scores of EREL with MSER and two
very recent methods of TBMR [55] and Enclosed region [44] (Overlap error
is 40%). Please note that some of the plots are overlapping. The plots of
EREL are obtained based on having a histogram equalization and without a
histogram equalization.

MGMs is updated.
• Obtaining Two Global Criteria: For calculating the global

criteria we need histogram of the image and histogram of
the MGMs, see Eq. (6), which have been calculated from
the previous step. Therefore, this step takes constant time
to compute the vector Ψ+ and vector Ψ−.

• Extremum Level Selection: Similar to the previous step,
local maxima selection from the vector Ψ+ and vector
Ψ− need a constant time.

• Extremal Region Detection: The main part of the im-
plantation of the EREL and its time complexity, depends
on this step. An efficient algorithm can significantly
decrease the running time of the whole method. So,
we use a weighted quick union-find structure with path
compression [60] in order to join the connected pixels
and sequentially create a tree of image pixels. Reader can
refer to [60] for thorough discussion about union-finding.
To do so, we first sort pixels in decreasing order. Since we
have calculated the histogram of the image, we employ
the histogram to sort pixels in a linear time by BINSORT
[60], the idea of this type of sorting is similar to [18],
[38]. Note that, we just sort the pixel once and for doing
union-find on the inversed of the image, we traverse the
pixels from N to 1. The complexity of the weighted quick
union-find structure is O(N) [60], because every union
and find step take constant time and all pixels in the image
are checked based on their 4-connectivity. Compared to
Nister version of MSER [39], our method is even faster,
since it stops doing union as soon as it passes the last
specified extremum level (obtained from the previous step
of EREL). So, we do not construct the whole forest.

All in all, although the method should run twice (for Q+ and
Q− regions), the complexity of EREL is O(N). The complex-
ity of the original MSER is O(NlglgN) [18]. Additionally,

(a)

(b)

Fig. 12. Comparison of the Running time of the proposed EREL with several
implementations of MSER (Matas [18], vlfeat [58], Nister [39]).
(a) The running time based on the increasing number of pixels (N ) in the
input image. (b) The running time based on the increasing number of detected
pixels (Np) from the input image. Both (a) and (b) belong to a same detection
sequence.

Nister [39] proposed a faster algorithm based on another
immersion strategy which is almost linear. Another efficient
implementation has been proposed in [58]. We compare the
actual running time of the EREL with aforementioned three
efficient implementations of MSER [18], [39], [58]. The test
has been implemented on a laptop with a Core i7 CPU and
16GB of RAM. The results can be seen in Fig. 12. We prepare
a test that measures the running time of EREL and three
different implementations of MSER on a similar condition
but based on two different considerations. The first one is the
elapsed time against the number of pixels in the image, N .
As we demonstrate in Fig. 12(a), the elapsed time of EREL is
almost equal to the MSER proposed by Nister [39] based on N
which is linear. Secondly, we consider a criterion that mostly
ignored in the literature, i.e. the total number of extracted
pixels by the detector. We know that the original MSER [18]
and also vlfeat-MSER [58] do not report exact coordinates
of the pixels in the region and only provide us with the
parameters of the fitted ellipse on that region plus a threshold.
In order to get the exact coordinates of the pixels belonging
the region, one should perform a flood-fill algorithm to retrieve
the pixels of that region, which is a costly process. That is why
the two methods in Fig. 12(a) take longer time to be finished.
A possible solution for the mentioned issue has been discussed
in [37]. They proposed to construct and save the whole tree
in a structure called N-Tree Disjoint Set Forest (NDS). This
idea again needs to pass each of the detected pixels at least Np
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times, after finishing the enumeration phase. It should be noted
that Np = ΣNERs

i=1 Area(ERi), is the total number of extracted
pixels by the detector and NERs represents the number of
obtained extremal regions. The reason why we believe that
by Np we draw a fairer comparison rather than using N , is
because of the content of the input image. An image may
consist of a few extremal regions (less informative) but has
a high resolution, it means large N . A method may result in
lower number of regions, so it can process a lower number of
pixels and achieves a lower elapsed time. Accordingly, if we
take the total number of extracted pixels into consideration, an
unbiased comparison can be drawn. Therefore, we plotted the
second graph in Fig. 12(b). As it is illustrated in Fig. 12(b),
the average EREL process time for each extracted pixel is
lower than the Nister version of MSER [39]. Not to mention
that, EREL reports all coordinates of the pixels belonging the
regions in addition to the parameters of the fitted ellipse.

V. DISCUSSION

We conducted four tests on all image sets of Oxford dataset
[10] to show the performance of our proposed method, EREL.
We first tested the repeatability of the detected regions by
EREL against MSER and then to study how the method
reacts in the real-world applications, we extracted features
from the detected regions by SURF [56] and measured its
recall rate. Both of the tests confirmed that EREL detection can
improves the performance of an application. We also studied
the presence of noise, by contaminating the images in the
dataset and evaluating the repeatability of the extracted regions
and measure the recall value of the descriptor. It showed that
MSER detection is adversely affected by the presence of noise,
however, as EREL has prior information about the edges, it
detects extremal regions more robustly.

Now, we discuss an important parameter of the EREL,
α, which has been denoted in Eq. (2) and compare its
consequences on the performance and the number of detected
regions with the most important parameters of MSER, δ.
Parameter δ actually determines the stability range of a region.
The higher the δ is, the lower number of regions with greater
degree of stability are detected. So, it can be implied that
it is not possible to adjust δ to the type of the application.
The best tuned values for δ in the literature [58] are 5 or
10. On the other hand, the parameter of EREL, α, accepts
various values well. It usually ranges between 0 and 2.5. For
α = 0, the method detects a huge number of MGMs, but
most of them are useless. For α >= 2.5, the method detects
almost no MGMs. Particularly, α shows what rate of high
informative pixels can participate in the process of detecting
MGMs. The lower the α is, the weaker edge points participate
in the detection phase which results in having regions that
cover most parts of the image. In contrast, higher values of
α, help the method to select MGMs from points located on
stronger edges. Therefore, EREL can be adapted based on the
application in a way that its performance is not affected by
changing the value of α. Fig. 13 demonstrates this robustness.
We evaluate EREL and MSER based on the various values for
α (α ∈ [αs αe], αs = 0.4, αe = 2) and δ (δ ∈ [δs δe], δs = 4,

δe = 32) for all image set in the Oxford dataset [18]. The first
row of Fig. 13 ((a) and (b)) shows the change of repeatability
score (∆R) for different values of parameters of both methods.
Obviously, E[∆RMSER] > E[∆REREL], where the function
E() represents the average value. What we mean is that
changes in value of δ decrease the repeatability significantly,
however changes in value of α does not considerably affect
repeatability and keeps it in a stable condition. We conclude
by a similar logic about the second row of the Fig. 13.
The second row ((c) and (d)) demonstrates the number of
detected regions. The maximum and minimum number of
regions for MSER and EREL can be observed in Fig. 13.
It can be seen that change in value of δ actually does not
affect the number of ERs (Fig. 13(c)). It means that high
percent of ERs are similar together, so there is no chance
to produce different kinds of ERs by changing δ according to
a specific application. In contrast, manipulating α can result
in higher variation in the number of detected regions that not
only provide a tool for adjusting the final detected regions
to a specific application, but also enhances the coverage of
image by detected features. To show the actual coverage of
the method, we construct images by placing the pixels of the
detected extremal regions into an empty image for both MSER
and EREL. Fig. 14 illustrates the results for various values
of α. The high coverage of the EREL can be specified by
comparing the second row of the Fig. 14 with other rows.

The final detected regions by EREL, are selected from the
same finite set of extremal regions that MSER chooses its
extremal regions from. Fig. 15 shows the output of the system
for two image pairs from the Mikolajczyk dataset of [1]. There
are several advantages that the general idea of EREL presents
over MSER, including:

• Contribution of the edge points to the method
• Constant time calculation of the global criterion
• Having a prior knowledge to select extremal regions

before the inception of the union-find algorithm
• High adaptability to the type of the application
• Linear time complexity to report both distinguished re-

gions and measurement regions
• High repeatability rates for various transformations
• High recall rates for various transformation
• Robust performance for various transformations at the

presence of noise

VI. CONCLUSION

This paper has introduced a novel algorithm for invariant
region detection. This algorithm is inspired by the well-
known Maximally Stable Extremal Regions (MSER) algorithm
which detects stable repeatable regions through three steps
of extremal regions enumeration, obtaining region stability
criterion, and cleaning up. MSER is proven to be very useful
and efficient, but, it uses no information about the boundaries
of the regions. We have shown in this paper that including such
information in the process of finding the extremal regions not
only eliminates the need for the rather complicated step of re-
gions enumerations and the cleaning up step of MSER, but also
results in a region detector that has linear time complexity and
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Fig. 13. Comparison of the variance of the repeatability and number of detected ERs based on various values for α (belongs to EREL) and δ (belongs to
MSER) for images of [54] dataset.

outperforms MSER. This has been proven through experimen-
tal results on the popular benchmark dataset of Mikolajczyks
in [1] which imposes different image degradations, such as
blur, viewpoint change, scale change, and JPEG compression,
to its image sequences. We have evaluated our proposed
method based on several criterion including repeatability score
for standards overlap errors (40 %) and smaller ones (to show
the accuracy of detected regions) in a similar condition with
MSER features. Employing EREL in real-world applications,
needs descriptor extraction from the detected regions. To show
that our proposed method works properly in such cases we
have extracted SURF [56] descriptor for EREL and MSER,
and have compared their performance. The results of the
comparison have shown that the performance of the EREL
is either superior or close to MSER. The robustness of our
proposed method has also been studied under noisy conditions.
Both the detector performance and the performance of its
extracted descriptors on noisy images, have been evaluated.
The obtained results show that our proposed method is more
robust to noise than MSER. The coverage of EREL features
has been illustrated by reconstructing the images based on
the pixels that contribute to extremal regions. Finally, the
proposed EREL method has been compared against recent
versions of MSER. Overall, EREL detects accurate repeatable
invariant regions and can be more efficiently employed in
various applications, compared to MSER.

We are planning to extend the proposed algorithm to video
sequences and utilize temporal information in our future work.
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