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Abstract— Voltage and current control loops play an 

important role in the performance of microgrids employing 

power electronics voltage source inverters. Correct design of 

feedback loops is essential for the proper operation of these 

systems. This paper analyzes the influence of state feedback 

cross-coupling in the design of resonant regulators for inner 

current loops in power converters operating in standalone 

microgrids. It is also demonstrated that the effect of state 

feedback cross-coupling degrades the performance of the control 

loops by increasing the steady-state error. Different resonant 

regulators structures are analyzed and compared, performing 

experimental tests to validate the results of the theoretical 

analysis. 

Keywords—voltage and current regulators; 

proportional+resonant (PR), complex vector PR 

I.  INTRODUCTION  

Voltage and current regulators are fundamental in modern 
applications of power electronics, such as variable speed 
drives, active power filters, and microgrids [1],[2],[3]. The 
converter employed for these purposes is the Voltage Source 
Inverter (VSI), following the specific application it can be 
controlled operating in the current or voltage control mode. 
The inner loops are responsible for controlling current/torque 
in AC machines, harmonic compensation in active power 
filters and microgrids, and voltage regulation in isolated 
microgrids. Hence, accurate control of current, voltage or both 
is required for the VSI to succeed in implementing the desired 
feature of each application. It is expected from any current or 
voltage regulator to [3],[4]: i) provide zero steady-state error; 
ii) accurately track the commanded reference during transients; 
iii) bandwidth as higher as possible; and iv) decrease or 
minimize the total harmonic distortion. 

Although nonlinear current regulators such as hysteresis 
controllers can achieve these challenge goals, secondary effects 
as variable switching frequency are undesirable in several 
applications. Furthermore, due to its nonlinear nature, basic 
control tools cannot be applied in the analysis and design of 
these regulators. On the other hand, linear regulators suit very 
well for analysis with classical control theory. Among linear 
controllers the synchronous reference frame proportional 
integral (PI) [4], and proportional resonant (PR) [5] are the 
most common regulators used in these applications. Due to the 
importance of these controllers, there has been substantial 
research activity in the subject throughout the years [6-9]. 

The classical synchronous frame PI regulators work with dc 
quantities having zero steady-state error. However, they need 

rotational transformations to rotate the measured quantities to 
the d-q rotating frame and the commanded output back to the 
stationary frame. This can be a drawback when implemented in 
low cost general purpose digital signal processor due to the 
computation of the transformations. PR controllers do not 
require these rotations and can be used in single-phase systems. 
The PR controller [5] is derived from two synchronous frame 
PI regulators [4], one for the positive sequence and the other 
for the negative sequence component of the signal, but it is 
implemented in the stationary reference frame. In some 
applications, non-ideal PR is used to avoid implementation 
problems in low cost processors. Another resonant controller, 
called complex vector PR was initially applied in sensorless 
AC drives [10]. It is derived from two complex vector PIs [11] 
and is implemented in the stationary reference frame.  

This paper investigates different current control 
implementations based on resonant controllers for VSI 
connected in isolated microgrids. Even though extensive 
research has been done in systems with a strong electromotive 
force (emf), the isolated microgrid structure has not been 
completely analyzed. In islanded microgrids the coupling 
between the capacitor voltage and inductor current has a strong 
influence in the performance of PR regulators. Thus, the aim of 
this paper is to analyze the performance of PR regulators, the 
effect of voltage coupling in the performance of these 
regulators, and the fundamental differences between the PR 
controllers.  

II. SYSTEM DESCRIPTION 

The control of parallel-connected VSIs in isolated 

microgrids is based on droop control strategy that provides the 

voltage and frequency references for the inner loops [3]. The 

inner current and voltage loops are cascaded and, in general, 

are tuned using serial tuning. The bandwidth of the inner 

current loop is set to the maximum value allowed by the 

system stability, in order to increase the dynamic 

performances and reduce the interactions with the voltage 

loop. The reduction of the interactions between the current and 

voltage loops move to a more robust design. 

In isolated microgrids the VSI operates in voltage mode 

where the capacitor voltage and inductor currents are the 

controlled quantities. The general block diagram of the system 

including a three-phase inverter with its respective control 

loops is presented in Fig. 1. With reference to Fig. 1, the 

voltage and current are measured and transformed to the 

stationary reference frame ( 𝛼𝛽 ) being 𝒊𝛼𝛽 = 𝑖𝛼 + 𝑗𝑖𝛽 , 



𝒗𝛼𝛽 = 𝑣𝛼 + 𝑗𝑣𝛽  the inductor current and capacitor voltage 

vectors, respectively.  

The voltage loop, with the limitations imposed by its 

bandwidth, controls the converter output voltage by fixing the 

current reference. The inner current loop controls the inverter 

states in order to follow the current reference. 
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Fig. 1. Block diagram of a three phase VSI with voltage and current loops 

The simplified control block diagram of the closed-loop 

system is shown in Fig. 2, where 𝒗𝛼𝛽
∗  and 𝒊𝛼𝛽

∗  are the 

reference voltage and current vectors, 𝒊𝑜𝛼𝛽  is the output 

current vector, Lf is the filter inductor, Rf is the equivalent 

series resistance of the inductor, and Cf is the filter capacitor 

value. 𝐺𝑖(𝑠) and 𝐺𝑣(𝑠) are respectively the current and voltage 

regulators transfer functions, and 𝐺𝑝𝑤𝑚(𝑠) = [1 − (𝑇𝑑/2)𝑠]/
[1 + (𝑇𝑑/2)𝑠] is the transfer function related to computation 

and PWM delays. 
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Fig. 2. Simplified block diagram of the closed-loop system 

The design of the controllers is based on the serial tuning 
which means that initially the innermost loop must be tuned. In 
this case the current loop must be tuned firstly using the block 
diagram of Fig. 3. 
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Fig. 3. Block diagram for the design of the current regulator 

The current regulators analyzed in this work are: i) ideal 
PR; ii) non-ideal PR, and iii) complex vector PR. The transfer 
functions of each regulator are presented in TABLE I. , where 
𝑘𝑝𝐼  and 𝑘𝑖𝐼  are the proportional and integral gains, while 

𝜔𝑜 = 2𝜋50 rad/s is the fundamental resonant frequency, and  ℎ 

is the harmonic order of the resonant frequency to be 
compensated.  

The general approach to design this loop is to neglect the 
capacitor cross-coupling that can be treated as a disturbance. 
This is the basic assumption in AC drives and grid connection 
application, as the emf is strong, and acts as disturbance to the 
current regulator. If this approach is used in the system of Fig. 
3 the closed-loop transfer function is (1).  

TABLE I.  INNER CURRENT LOOP CONTROLLERS 

Non-ideal PR controller Ideal PR controller 
Complex vector 

PR controller 

𝑘𝑝𝐼 +
2𝜔𝑐𝑘𝑖𝐼𝑠

𝑠2 + 2𝜔𝑐𝑠 + (ℎ𝜔𝑜)2
 𝑘𝑝𝐼 +

𝑘𝑖𝐼𝑠

𝑠2 + (ℎ𝜔𝑜)2
 

𝑘𝑝𝐼𝑠2 + 𝑘𝑖𝐼𝑠

𝑠2 + (ℎ𝜔𝑜)2
 

 

𝑖𝛼𝛽(𝑠) =
𝐺𝑖(𝑠)𝐺𝑃𝑊𝑀(𝑠)

𝐿𝑓𝑠+𝑅𝑓+𝐺𝑖(𝑠)𝐺𝑃𝑊𝑀(𝑠)
𝑖𝛼𝛽

∗ (𝑠) −
1

𝐿𝑓𝑠+𝑅𝑓+𝐺𝑖(𝑠)𝐺𝑃𝑊𝑀(𝑠)
𝑣𝐶𝛼𝛽(𝑠)

The design of the gains for a PR controller can be made 
starting from the design of a PI regulator employed in the dq-
synchronous reference frame, since PR regulators are just 
implementations of two PI controllers in the stationary 
reference frame. The current regulator was tuned by selecting 
a controller zero approximately equal to the break frequency 
of the RL load, i.e., 𝑘𝑖𝐼 𝑘𝑝𝐼⁄ ≅ 𝑅𝑓 𝐿𝑓⁄ . The controller gain was 

selected to achieve the desired bandwidth (𝑓𝑏𝑤). By neglecting 
the delay of the system, the regulator gains can be calculated 
by using (2). For the delay of the system 𝑇𝑑 = 1.5𝑇𝑠 =
150 𝜇𝑠,  a bandwidth of 1 𝑘𝐻𝑧, and the system parameters 
used (see TABLE II. , these gains are approximately 𝑘𝑝𝐼 =
11.32 and 𝑘𝑖𝐼 = 628.  

 𝑘𝑝𝐼 = 2𝜋fbw𝐿𝑓  ;        𝑘𝑖𝐼 ≅
𝑅𝑓

𝐿𝑓
𝑘𝑝𝐼 

However, when the delay model is considered, the 
regulator gains for the same bandwidth are presented in 
TABLE III. For the value of the delay used in this application, 
and the bandwidth chosen for the inner loop (𝑓𝑏𝑤 = 1 𝑘𝐻𝑧), 
the gain difference neglecting the delay model or including it is 
more than 50%.  

TABLE II.  SYSTEM PARAMETERS 

Parameter Symbol Value 

Line to line voltage 𝑣𝑔𝑙𝑙  400 V 

Fundamental frequency 𝑓𝑔 50 Hz 

Rated power 𝑃𝑛𝑜𝑚 2.2 kW 

Rated current 𝑖𝑠𝑛𝑜𝑚 3.33 A 

Switching frequency 𝑓𝑠𝑤 10 kHz 

Sampling period 𝑇𝑠 100 s  

Filter inductance 𝐿𝑓 1.8 mH 

Filter capacitance 𝐶𝑓 27 F 

Inductor ESR 𝑅𝑓 0.1 Ω 

Rated load resistance 𝑅𝑙 68 Ω 

TABLE III.  CONTROL PARAMETERS 

Parameter Symbol Value 

Proportional gain 𝑘𝑝𝐼 5.61 

Integral gain 𝑘𝑖𝐼 311 

Damping term 𝜔𝑐 5 rad/s 



III. FREQUENCY RESPONSE ANALYSIS WITHOUT VOLTAGE 

DECOUPLING 

Because of the cross-coupling between the capacitor 
voltage and inductor current the formula (1) is not adequate to 
analyze the system, specifically for the closed loop pole 
locations. The system presented in (1) with the controllers, and 
the parameters of TABLE II. and TABLE III. is a 4

th
 order 

system that is stable for the anlyzed controllers.  
The relationship between the states variables is presented in 

(4). Substituting (4) into (1) it yields to the transfer function 
(5). This is a 5

th
 order transfer function that results in an 

unstable system when the complex vector PR is used, 
independently of the regulator gains. Therefore, it is more 
appropriate to analyze the system performance. 

 𝑣𝐶𝛼𝛽(𝑠) = [𝑖𝛼𝛽(𝑠) − 𝑖𝑜𝛼𝛽(𝑠)] 
1

𝐶𝑓𝑠
 

The frequency response (FR) for each regulator was 
analyzed for different values of integrator gain 𝑘𝑖𝐼  in the range 
from 11 to 511 to see its effect on the closed loop system. This 
range was chosen in order to have values around the one that 
produces zero-pole cancelation (𝑘𝑖𝐼 = 311). The effect of the 
disturbance was not analyzed since the main goal of the inner 
current loop is to track the command, while the outer voltage 
loop is responsible for disturbance rejection.  

Fig. 4 shows the closed loop FR of the system showed in 
Fig. 3 using the non-ideal PR as current regulator. It can be 
observed that:  

1) The controller ability to produce zero steady-state error 
at the desired frequency (50 Hz) is affected by the 
integrator gain (𝑘𝑖𝐼), the smaller its value the bigger will 
be the error at 50 Hz; 

2) Variations of the resonant frequency (reference of the 

regulator), while the resonant gain 𝜔𝑜 is kept constant at 

the tuned resonant frequency, can lead to a significant 

impact in the steady-state error, especially if the 

parameter 𝜔𝑐 is small; 
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Fig. 4. Closed loop FR of the inner current loop with non-ideal PR regulator 

and without voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511 (arrows indicate 

increasing of 𝑘𝑖𝐼). 

Fig. 5 shows the closed loop FR when the ideal PR is used 
in the system of Fig. 3. It can be observed that: 

1) The regulator is able to produce zero steady-state error at 
the desired line frequency (50 Hz); 

2) The system FR is very sensitive to frequency variations 
(reference of the regulator) around the fundamental 
frequency. Small changes in the reference regulator 
frequency, while the resonant gain 𝜔𝑜 is kept constant at 
the tuned resonant frequency,  can result in very high 
steady-state error; 

3) Low integrator gain (𝑘𝑖𝐼) values increase the sensitivity 
to frequency variations.  
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Fig. 5. Closed loop FR of the inner current loop with ideal PR regulator and 

without voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511  (arrows indicate 

increasing of 𝑘𝑖𝐼). 

The fundamental reason why the ideal PR has an overshoot 
around the resonant frequency can be explained based on the 
behavior of a PI regulator in the synchronous reference frame. 
As said before, PR regulators are based on the implementation 
of two PI controllers. For the simple case of a PI controller and 
an RL load the complex vector block diagram is shown in Fig. 
6. As shown in [11] the nature of the controller zero and plant 
pole are different, one real (ki / kp) and the other complex (-R / L 

- je). 
This mismatch is a function of the synchronous frequency 

and, for a given bandwidth, it results in closed loop dominant 
poles close to imaginary axis that produce overshoot in the 
response. As also shown in Fig. 6 this behavior can be 
overcome decoupling the cross-coupling due to the 
synchronous reference frame implementation. The PR 
regulator is the implementation of two of these controllers in 
the stationary reference frame, as shown in Fig. 7(a). As can be 
seen in Fig. 7(b).the cross-coupling decoupling of the positive 
sequence regulator cancels the decoupling of the negative 
sequence regulator. Therefore, the problem that is present in 
the synchronous frame PI when there is no decoupling is also 
present in the PR regulator no matter if a decoupling is done. 

 

𝑖𝛼𝛽(𝑠) =
𝐺𝑖(𝑠)𝐺𝑃𝑊𝑀(𝑠)𝐶𝑓𝑠

𝐿𝑓𝐶𝑓𝑠2+𝑅𝑓𝐶𝑓𝑠+𝐺𝑖(𝑠)𝐺𝑃𝑊𝑀(𝑠)𝐶𝑓𝑠+1
𝑖𝛼𝛽

∗ (𝑠) +
1

𝐿𝑓𝐶𝑓𝑠2+𝑅𝑓𝐶𝑓𝑠+𝐺𝑖(𝑠)𝐺𝑃𝑊𝑀(𝑠)𝐶𝑓𝑠+1
𝑖𝑜𝛼𝛽(𝑠) (4) 
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Fig. 6. Closed loop complex vector block diagram of an RL load with a 

synchronous frame, shown in synchronous reference frame (e) 

jeL

+vab+
+

+

iab
*

+

-

^

Decouplings

-

R

1

s

1

L

1

s - je

ki

kp

kp

++

-

ki

kp

kp

jeL
^

-

+

-

+

1

s + je

+

iab

iab

iab

vab

vab

Positive sequence

Negative sequence

 

(a) 

+vab+
+iab

*

+

-
-

R

1

s

1

L

1

s - je

ki

kp

kp

+ki

kp

kp

+

-

+

1

s + je

+

iab

vab

vab

 
(b) 

Fig. 7. PR regulator with an RL load: (a) expliciting show the decoupling; 

(b) resulting regulator 

The complex vector root locus for two different 
synchronous frequencies, with the current regulator tuned to 
cancel the pole plant (𝑘𝑖 𝑘𝑝 = 𝑅 𝐿⁄⁄ ), is shown in Fig. 8. At 

low resonant frequencies (Fig. 8a), the controller zero Zc (a 
complex number) approximately interact more with the 
controller pole Pc (also a complex number), both being close 
to the plant poles Pp. As the controller`s bandwidth increases 
the closer the zero and closed loop poles will be. This allows 
the response of the system to be dominated by the faster 
closed-loop pole. Furthermore, less oscillation is expected 
since the closed loop poles are moving away from the 
imaginary axis. 

As the resonant frequency increases (for the same 
bandwidth) the resulting slower closed loop roots become 
closer to the imaginary axis and away from the zero. 
Therefore, more oscillation is expected. The results become 
worse as the resonant frequency increases, and the regulator 
bandwidth decreases. This can be a serious problem when 
harmonic compensators are used since these regulators are 
supposed to work at high resonant frequencies, and, in 
general, have low bandwidth.  
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Fig. 8. Complex vector root locus of RL load with PR regulator: x – open 
loop poles; * closed loop poles; o – zeros (a) resonant frequency 50 Hz; (b) 

resonant frequency 150 Hz. 

Although the complex vector PR is not suited for use 
with the system of Fig. 3 due to instability it is worth to 
analyze its closed loop FR. Fig. 9 shows its FR for the same 
bandwidth and variation of 𝑘𝑖𝐼 . It can be observed that: 

1) The controller is able to produce zero steady-state 
error at the resonant frequency (50 Hz); 

2) The system response has low sensitivity to frequency 
variations around the resonant frequency. This feature 
is well suited for systems whose frequency changes; 

3) Changes in the integrator gain (𝑘𝑖𝐼) have almost any 
influence in the FR around the resonant frequency, at 
least in the range observed. This feature is basically 
due to closer zero and pole design of this controller. 
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Fig. 9. Closed loop FR of the inner current loop with complex vector PR 

regulator and without voltage decoupling: 𝑘𝑝𝐼 = 5.6; 𝑘𝑖𝐼 = 11 − 511 

(arrows indicate increasing of 𝑘𝑖𝐼). 

If it is possible to stabilize the system showed in Fig. 3 
the complex vector PR regulator would be the right choice 
due to its interesting features, especially with the frequency 
changes which is normally the case in droop controlled 
microgrids. 

The reason why the system (Fig. 3) is unstable is due to 
the capacitor voltage cross-coupling. Therefore, if a voltage 
decoupling is performed the complex vector PR can be used 
and the system can take advantage of its good properties. 

IV. FREQUENCY RESPONSE ANALYSIS WITH VOLTAGE 

DECOUPLING 

If the output voltage is measured, it is possible to 
decouple its effect on the inner current loop. Fig. 10 shows 
this design. By considering ideal voltage cross-coupling 
decoupling (in practice a lead compensator must be included 
to compensate for the PWM transfer function delay), the 
closed loop transfer function is just the first term of (1). The 
load does not disturb the current regulator anymore.  



iab

-
Gi(s)

Rf

1

s

1

Lf

+ iab

ioab

+
-

iCab

1

s

1

Cf

-
+

-

+

+

* vab vCab
Gpwm(s)

 

Fig. 10. Block diagram of the inner current loop with output voltage cros-

coupling decoupling 

For the FR showed in this section the controllers 
parameters were the same as in the previous section. Fig. 11 
shows the closed loop FR of non-ideal PR controller with 
output voltage cross-coupling decoupling. It can be observed 
that: 

1) The controller is able to produce zero steady-state 
error at the desired fundamental frequency (50 Hz), 
depending on the value of 𝑘𝑖𝐼; 

2) The smaller the integrator gain (𝑘𝑖𝐼) the bigger will be 
the error at 50 Hz. However, the error is very small 
and is fundamentally in the phase; 

3) The system FR has low sensitivity to frequency 
variations around the resonant frequency. However, 
the smaller 𝑘𝑖𝐼  the bigger will be the sensitivity 
around 50 Hz; 

4) The corrective effect of the non-ideal PR controller 
around the resonant frequency is just 2%;  

5) Changes in the resonant frequency have little impact 
in the steady-state error; 

6) The effect of voltage cross-coupling decoupling is 
more important than the use of the PR controller. 

 
Fig. 12 shows closed loop FR of ideal PR controller with 

output voltage cross-coupling decoupling. The same 
conclusions as for the case of ideal PR controller can be 
drawn, except that in this case the variations are much 
smaller. Again, the effect of voltage decoupling is 
significant.  

P
h
a
se

 (
d
eg

.)

-40

-30

-20

-10

0

10

Frequency  (Hz)
10

1
10

2
10

3
10

4-270

-180

-90

0

0

0.4

-0.4
45 50 55

kiI

-0.2

0.2

45 50 55
-6

-4

-2

0
kiI

|i
a
b
(
s)

/i
a
b
(
s)

| 
(d

B
)

*

 
Fig. 11. Closed loop FR of the inner current loop with non-ideal PR 

regulator, and with voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511 

(arrows indicate increasing of 𝑘𝑖𝐼). 

Fig. 13 shows the closed loop FR of complex vector PR 
controller with output voltage cross-coupling decoupling. 
The same conclusions as for the case of complex vector PR 
regulator without decoupling are true, thus the errors are 
extremely low around the resonant frequency. Comparing 

the complex vector PR regulator with the others analyzed in 
this paper, it is clear that it shows the lowest sensitivity to 
frequency variations around the fundamental frequency. 
Therefore, it is probably the most indicated for use in 
applications where the resonant frequency changes as in 
droop controlled microgrids.  
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Fig. 12. Closed loop FR of of the inner current loop with ideal PR 

regulator, and with voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511 

(arrows indicate increasing of 𝑘𝑖𝐼).  

-40

-30

-20

-10

0

10

Frequency  (Hz)

Freq. (Hz): 1.03×103

Mag. (dB): -3.09kiI

10
1

10
2

10
3

10
4-360

-180

0

180

kiI

0

0.04

45 50 55
-0.04

45 50 55
-2

-1

0

1

2

P
h
a
se

 (
d
eg

.)
|i
a
b
(
s)

/i
a
b
(
s)

| 
(d

B
)

*

kiI

 
 

Fig. 13. Closed loop FR of of the inner current loop with complex vector 

PR regulator, and with voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511 

(arrows indicate increasing of 𝑘𝑖𝐼). 

V. EXPERIMENTAL RESULTS 

The power system of Fig. 1 was tested in the laboratory 
to validate the analysis presented in the previous sections. 
For this purpose, a 2.2 kVA power converter, driven by 
dSpace DS1006 platform, has been employed. The 
proportional and integral gains and the load impedance 
values are reported in TABLE II. and TABLE III. The 
regulators were implemented in discrete time using forward 
and backward Euler discretization of the two cascaded 
integrators used in the PRs regulators. The analysis are 
performed without and with capacitor voltage decoupling. 

As expected from the FR analysis all the three controllers 
produce approximately zero steady-state error when designed 
to have exactly the same resonant frequency as the one of the 
reference current, and with sufficient high 𝑘𝑖𝐼  as the one 
presented in Table III. 

To analyze the sensitivity of the PR regulators to 
frequency variations the reference current frequency was 
changed to 49 Hz, while the resonant frequency of the 



regulators was kept constant in 50 Hz. Fig. 14 and Fig. 15 
show the steady-state currents and errors for ideal and non-
ideal PR regulators without and with voltage decoupling. It is 
clear that the effect of voltage decoupling has a significant 
impact on the performance of the closed loop system, 
reducing significantly the error. Furthermore, the sensitivity 
of the ideal PR to frequency variations is bigger than the 
sensitivity of the non-ideal PR. For this last regulator the 
zero steady-state error with voltage decoupling depends on 
the value of 𝑘𝑖𝐼 . Fig. 16 shows an experimental result for the 
non-ideal PR with 𝑘𝑖𝐼 = 11. For small values of this gain, 
the regulator does not provide zero steady-state error, even 
with voltage decoupling.  
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Fig. 14. Steady-state currents and error for ideal PR: (a) without voltage 

decoupling;  (b) with voltage decoupling -𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 311 
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Fig. 15. Steady-state currents and error for non-ideal PR: (a) without 

voltage decoupling;  (b) with voltage decoupling -𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 311 
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Fig. 16. Steady-state currents and error for non-ideal PR: (a) without 

voltage decoupling;  (b) with voltage decoupling -𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 11 
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Fig. 17. Steady-state currents and error for Compex vector PR with voltage 

decoupling - 𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 11: 

Fig. 17 shows the results for the complex vector PR. 
This controller produces zero steady-state error even for 
small values of 𝑘𝑖𝐼 . 

VI. CONCLUSIONS 

This paper shows the design and a detailed analysis of the 
inner current loop for power converters, based on resonant 
controllers. The benefits of applying capacitor voltage 
decoupling are evidenced by the lower steady-state error and 
independence from the load impedance. 

Complex vector PR controller, which is stable only if 
voltage decoupling is performed, shows the lowest 
sensitivity to integral gain and frequency deviation, thus it 
can be preferred in microgrid applications. 
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