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Abstract— Inner current and voltage loops are 

fundamental in achieving good performance of microgrids 

based on power electronics voltage source inverters. The 

analysis and design of these loops are essential for the 

adequate operation of these systems. This paper investigates 

the effect of state feedback coupling in the design of 

proportional resonant controllers for these inner loops in 

voltage source inverters operating in islanded microgrids. It 

is also shown that the state feedback coupling has an 

important effect in the performance of the control loops by 

increasing the steady-state error. A comparison between 

different types of proportional+resonant controllers is 

done. Experimental results verify the theoretical 

assumptions done. 
 

Keywords—voltage and current regulation; 

proportional+resonant (PR), complex vector PR 

I.  INTRODUCTION  

Voltage and current regulation play an important role in 

modern applications of power electronics, such as variable 

speed drives, active power filters, and microgrids [1],[2],[3]. 

The general power processor unit used in these applications is 

the Voltage Source Inverter (VSI) operating in current or 

voltage control depending on the application. The inner loops 

are responsible for controlling torque in AC machines, 

harmonic compensation in active power filters and microgrids, 

and voltage regulation in isolated microgrids. Hence, accurate 

control of current, voltage or both is required for the VSI to 

succeed in implementing the desired feature of each 

application. It is expected from any current or voltage regulator 

to [3],[4]: i) achieve zero steady-state error; ii) accurately track 

the commanded reference during transients; iii) bandwidth as 

higher as possible; and iv) decrease or minimize low order 

harmonics. 

Linear regulators suit very well for analysis with classical 

control theory. Among linear controllers the synchronous 

reference frame proportional integral (PI) [4], and proportional 

resonant (PR) [5] are the most common regulators used in these 

applications. Due to the importance of these regulators, there has 

been substantial research activity in the subject throughout the 

years [6-9].  

PR controllers avoid the rotations used in synchronous PI 

regulators and can be used in single-phase systems. The PR 

controller [5] is derived from two synchronous frame PI 

regulators [4], but it is implemented in the stationary reference 

frame. In some applications, non-ideal PR is used to avoid 

implementation problems in low cost processors. Another 

implementation, called complex vector PR was initially applied 

in sensorless AC drives [10]. It is derived from two complex 

vector PIs [11] and is implemented in the stationary reference 

frame. 

This paper addresses different current control 

implementations based on resonant controllers for VSI 

connected in isolated microgrids. Even though extensive 

research has been done in systems with a strong electromotive 

force (emf), the isolated microgrid structure has not been 

previously discussed in depth. In such cases, the coupling 

between the capacitor voltage and inductor current plays an 

important role in the performance of PR regulators. The aim of 

this paper is to analyze the performance of PR regulators, the 

effect of voltage coupling in the performance of these regulators, 

and the fundamental differences between the PR controllers.  

II. SYSTEM DESCRIPTION 

The control of parallel-connected VSIs in isolated 

microgrids is based on droop control strategy that provides the 

voltage and frequency references for the inner loops [3]. In 

isolated microgrids the VSI operates in voltage mode where the 

capacitor voltage and inductor currents are the controlled states. 

The block diagram including three-phase three-legs inverter 

with its respective inner loops is presented in Fig. 1. The goal 

of the inner current loop is to track the references provided by 

the secondary loops. Whenever the current regulators are 

unable to perform properly this goal the system performance 

degrades. Therefore, analyzing the behavior of the inner current 

loops is important to understand and propose solutions to 

improve their performance.  
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Fig. 1. Block diagram of a three phase VSI with voltage and current loops 
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The simplified control block diagram of closed-loop system 

is shown in Fig. 2, where 𝒗𝛼𝛽
∗  and 𝒊𝛼𝛽

∗  are the reference voltage 

and current vectors, 𝒊𝑜𝛼𝛽 is the output current vector, Lf is the 

filter inductor, Rf is the equivalent series resistance of the 

inductor, and Cf is the filter capacitor. 𝐺𝑖(𝑠) and 𝐺𝑣(𝑠) represent 

the current and voltage regulators transfer functions, and 

𝐺𝑝𝑤𝑚(𝑠) = [1 − (𝑇𝑑/2)𝑠]/[1 + (𝑇𝑑/2)𝑠]  is the transfer 

function related to computation and PWM delays. 𝐺𝑑𝑒𝑐(𝑠) is the 

transfer function related to the decoupling between the capacitor 

voltage and inductor current. It must be designed to compensate 

for the delay introduced by the control and PWM, otherwise the 

decoupling will not be ideal.  
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Fig. 2. Simplified block diagram of the closed-loop system 

The first loop to be considered is the current one. If the cross-

coupling decoupling is not performed, the block diagram used 

for tuning the current loop is presented in Fig. 3. The parameters 

of the system used to perform the analysis are presented in 

TABLE I. The system is implemented using a VSI operating 

with regular sampling symmetrical PWM. As a result the delay 

introduced by the PWM update and control is 𝑇𝑑 = 1.5𝑇𝑠 =
150 𝜇𝑠. 
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Fig. 3. Block diagram for the design of the current regulator 

TABLE I.  SYSTEM PARAMETERS 

Parameter Symbol Value 

Line to line voltage 𝑣𝑔𝑙𝑙  380 V 

Fundamental frequency 𝑓𝑔 50 Hz 

Rated power 𝑃𝑛𝑜𝑚 2.2 kW 

Rated current 𝑖𝑠𝑛𝑜𝑚 3.33 A 

Switching frequency 𝑓𝑠𝑤 10 kHz 

Sampling period 𝑇𝑠 100 s  

Filter inductance 𝐿𝑓 1.8 mH 

Filter capacitance 𝐶𝑓 27 F 

Inductor ESR 𝑅𝑓 0.1 Ω 

Rated load resistance 𝑅𝑙 68 Ω 

 

As a benchmark for comparison and due to its simplicity, the 

proportional controller is used. In addition, a bandwidth for the 

inner current loop equal to 1 kHz is considered. The general 

approach to design this loop is to neglect the capacitor cross-

coupling that can be treated as a disturbance. This is the basic 

assumption in AC drives and grid connected application, as the 

emf is strong, and acts as disturbance to the current regulator. 

However, due to the cross-coupling between the capacitor 

voltage and inductor current, the assumption that the voltage 

can be treated as a disturbance does not hold true anymore. 

Therefore, the root locus of the system is presented in Fig. 4. 

This root locus shows that due to the right half plane zero (non-

minimal phase zero) introduced by the delay the system can 

become unstable for certain gain values. The open loop 

dominant poles (see Fig. 4b) are complex conjugate due to the 

coupling of the capacitor voltage. Therefore, no matter the 

bandwidth of the system is, the closed loop system will always 

have low damping.  For the chosen bandwidth of 1 kHz the 

regulator gain is approximately 𝑘𝑝𝐼 = 5.61.   
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Fig. 4. Root locus for the inner current loop with P regulator and without 

voltage decoupling: x – open loop poles; ■ closed loop poles for 𝑘𝑝𝐼 = 5.61; o 

– zeros – (a) complete; (b) zoom  

The frequency response (FR) for the inner loop with 

proportional regulator is shown in Fig. 5.  It is difficult to 

determine the bandwidth of the system because the low 

frequency behaviour is changing as a function of the frequency, 

and it is not possible to have a specific value for the gain at low 

frequencies. However, at short circuit (blue line) the system 

behaves as an RL load. At this condition, it can be seen that the 

system bandwidth is approximately 1 kHz, as designed. 
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Fig. 5. Closed loop FR for the inner current loop: P regulator without voltage 

decoupling: effect of the load – arrows indicate increasing in load (from low 
load to short circuit) 



The main conclusions of this analysis are: i) The capacitor 

coupling produces a load dependent dynamics; ii) Even with a 

proportional regulator the resulted closed loop system has a 

very low damping exactly because of the capacitor voltage 

coupling; iii) The P regulator is unable to achieve zero steady-

state error at 50 Hz.  

To improve the performance of the inner current loop it is 

possible to modify the regulator topology and decouple the 

capacitor voltage cross-coupling. The current regulators 

analyzed in this work are: i) ideal PR; ii) non-ideal PR, and iii) 

complex vector PR. The transfer functions of each regulator are 

presented in TABLE II. , where 𝜔𝑜 = 2𝜋50  rad/s is the 

resonant frequency, 𝑘𝑝𝐼  and 𝑘𝑖𝐼  the proportional and integral 

gains of the regulators, and h is the harmonic order to be 

controlled. 

The design of the coefficients for the fundamental frequency 

of a PR controller can be made starting from the design of a PI 

regulator employed in the dq-rotating reference frame. The PR 

regulators are just implementations of two of these controllers 

in the stationary reference frame. The current regulator was 

tuned by selecting a controller zero approximately equal to the 

break frequency of the RL load, i.e., 𝑘𝑖𝐼 𝑘𝑝𝐼⁄ ≅ 𝑅 𝐿⁄ . The 

regulator gain was selected to achieve the desired bandwidth 

(𝑓𝑏𝑤).  These will be considered the nominal values in this 

work. For the bandwidth of 1 kHz these parameters are 

presented in TABLE III.   

TABLE II.  INNER VOLTAGE/CURRENT LOOP CONTROLLERS 

Non-ideal PR  Ideal PR  
Complex vector 

PR 

𝑘𝑝𝐼 +
2𝜔𝑐𝑘𝑖𝐼𝑠

𝑠2 + 2𝜔𝑐𝑠 + (ℎ𝜔𝑜)2
 𝑘𝑝𝐼 +

𝑘𝑖𝐼𝑠

𝑠2 + (ℎ𝜔𝑜)2
 

𝑘𝑝𝐼𝑠2 + 𝑘𝑖𝐼𝑠

𝑠2 + (ℎ𝜔𝑜)2
 

 

TABLE III.  REGULATOR NOMINAL PARAMETERS VALUES 

Parameter Symbol Value 

Proportional gain 𝑘𝑝𝐼 5.61 

Integral gain 𝑘𝑖𝐼 311 

Damping term 𝜔𝑐 5 rad/s 

 

III. FREQUENCY RESPONSE ANALYSIS WITHOUT VOLTAGE 

DECOUPLING 

The frequency response (FR) for each PR regulator was 

analysed for different values of the integrator gain 𝑘𝑖𝐼  to see its 

influence on the performance. The gain 𝑘𝑖𝐼  was varied from 11 

to 511 to see its effect on the closed loop frequency response. 

The variation range was chosen based on the values around the 

one that produces ideally zero-pole cancelation (𝑘𝑖𝐼 = 311). 

The effect of the load is neglected by considering a very high 

value of load impedance in the design (no load condition). For 

each case, the proportional gain was tuned for a 1 kHz 

bandwidth. 
Fig. 6 shows the closed loop FR for the inner current loop 

using the non-ideal PR as current regulator. It can be observed 
that:  

1) The ability to produce zero steady-state error at the 

desired resonant frequency (50 Hz) is dependent of the 

integrator gain (𝑘𝑖𝐼), the smaller its value the bigger will 

be the error at 50 Hz; 

2) Changes in the resonant frequency (reference of the 

regulator), while the resonant gain 𝜔𝑜 is kept constant at 

the tuned resonant frequency, can have a significant 

impact in the steady-state error, especially if the parameter 

𝜔𝑐 is small; 
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Fig. 6. Closed loop FR of the inner current loop with non-ideal PR regulator 

and without voltage decoupling: 𝑘𝑝𝐼 = 5.6; 𝑘𝑖𝐼 = 11 − 511 (arrows indicate 

increasing of 𝑘𝑖𝐼). 

Fig. 7 shows the closed loop FR for the inner current loop using 
the ideal PR as regulator. It can be observed that: 

1) The regulator is able to produce zero steady-state error at 

the desired resonant frequency (50 Hz); 

2) The system FR is very sensitive to frequency variations 

(reference of the regulator) around the fundamental 

frequency. Small changes in frequency (reference of the 

regulator), while the resonant gain 𝜔𝑜 is kept constant at 

the tuned resonant frequency,  can result in very high 

steady-state error; 

3) The smaller the integrator gain ( 𝑘𝑖𝐼 ) the bigger the 

sensitivity to frequency variation around the resonant 

frequency (50 Hz) will be.  
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Fig. 7. Closed loop FR of the inner current loop with ideal PR regulator and 

without voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511  (arrows indicate 

increasing of 𝑘𝑖𝐼). 



 
When the complex vector PR is used as the current 

regulator the system is unstable for any value of 𝑘𝑝𝐼 𝑜𝑟 𝑘𝑖𝐼. 

As an example, the root locus of the inner current loop for 

𝑘𝑖𝐼/𝑘𝑝𝐼 = 𝑅/𝐿 is shown in Fig. 8. The root locus is shown 

just for the dominant poles. As can be seen, the poles are on 

the right half plane. Therefore, this regulator cannot be used 

for the case where no decoupling is performed. 
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Fig. 8. Root locus of the inner current loop with complex vector PR 
regulator without voltage decoupling: x – open loop poles; o – zeros;  

𝑘𝑖𝐼/𝑘𝑝𝐼 = 𝑅/𝐿 

The reason why the system (Fig. 3) is unstable is due to the 

capacitor voltage cross-coupling. Therefore, if a voltage 

decoupling is performed the complex vector PR can also be 

used in this system. 

IV. FREQUENCY RESPONSE ANALYSIS WITH VOLTAGE 

DECOUPLING 

If the cross-coupling decoupling is performed ideally by 

the correct design of the decoupling transfer function 𝐺𝑑𝑒𝑐(𝑠), 

the equivalent block diagram of the system is shown in Fig. 9. 

As result, the load does not affect the current loop anymore. 

The open loop poles are real, resulting in a closed loop system 

with bigger damping than for the case without decoupling.  
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Fig. 9. Simplified block diagram when perfect decoupling is performed. 

By using the same bandwidth of 1 kHz, the closed loop FR as 

a function of 𝑘𝑖𝐼  is shown in Fig. 10 for the case when the 

non-ideal PR is used. From this figure, it can be observed 

that: 

1) The controller is almost able to produce zero steady 

state error at the desired resonant frequency (50 Hz); 

2) The smaller the integrator gain (𝑘𝑖𝐼) the bigger will be 

the error at 50 Hz. However, the error is very small and 

is fundamentally in the phase, much smaller than the 

case without voltage decoupling; 

3) The system FR has low sensitivity to frequency 

variations around the resonant frequency. However, 

the smaller the integrator gain (𝑘𝑖𝐼) the bigger will be 

the sensitivity around 50 Hz; 

4) The corrective effect of the non-ideal PR regulator 

around the resonant frequency is just 2%;  

5) The effect of voltage cross-coupling decoupling is 

more important than the use of the resonator. 
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Fig. 10. Closed loop FR of the inner current loop with non-ideal PR 

regulator, and with voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511 

(arrows indicate increasing of 𝑘𝑖𝐼). 

Fig. 11 shows the closed loop FR of the inner current loop 
when the ideal PR regulator is used with output voltage cross-
coupling decoupling. The same conclusions as for the case of 
ideal PR regulator without voltage decoupling can be drawn, 
except that in this case the variations around the resonant 
frequency are much smaller. Again, the effect of voltage 
decoupling is significant.  
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Fig. 11. Closed loop FR of of the inner current loop with ideal PR regulator, 

and with voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511 (arrows indicate 

increasing of 𝑘𝑖𝐼). 



Fig. 12 shows the closed loop FR of complex vector PR 

controller with output voltage cross-coupling decoupling. It 

can be observed that: 

1) The controller is able to produce zero steady-state error 

at the desired resonant frequency (50 Hz); 

2) The system FR has low sensitivity to frequency 

variations around the resonant frequency. Indeed, this 

sensitivity is smaller than for the cases of ideal and 

non-ideal PR controllers; 

3) The system FR has low sensitivity to the integrator gain 

(𝑘𝑖𝐼) variations; 

Comparing this controller with the others analysed in this 

paper it is clear that it is the one that presents the lowest 

sensitivity to frequency variations around the fundamental 

frequency. Therefore, it is the most indicated for use in 

applications where the resonant frequency changes as in 

droop controlled microgrids. 
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Fig. 12. Closed loop FR of of the inner current loop with complex vector PR 

regulator, and with voltage decoupling: 𝑘𝑝𝐼 = 5.61; 𝑘𝑖𝐼 = 11 − 511 

(arrows indicate increasing of 𝑘𝑖𝐼). 

V. EXPERIMENTAL RESULTS 

The power system of Fig. 1 was tested in the laboratory to 
check the analysis presented in the previous sections. For this 
purpose, a 2.2 kW power converter, driven by dSpace DS1006 
platform, was used. Therefore, the regulators compared in this 
work were implemented in discrete time domain. 

One important aspect that was not analyzed in previous 

sections but is relevant when dealing with discrete time 

systems is the discretization method used for the PR 

regulators.  As an example, one of the possibilities to 

implement the ideal PR regulator is by using two integrators, 

as shown in Fig. 13(a) in the continuous time domain and in 

Fig. 13(b) in the discrete time domain using forward and 

backward Euler as discretization methods. The main 

advantage of this structure is its simplicity when frequency 

variations occur: it is not necessary to calculate online the 

regulator gains to do frequency adaptation. Another 

possibility is to use any other discretization method for the 

transfer function of the regulators (see TABLE II. ).   

Fig. 14 shows the steady-state currents and errors for ideal 

PR regulator without and with voltage decoupling for a 5th 

harmonic reference (250 Hz). The regulator was implemented 

using two integrators with forward and backward Euler as 

discretization methods. It can be observed that the regulator 

does not produce zero steady-state error. Furthermore, the 

error is bigger when the capacitor voltage is not decoupled 

(See Fig. 14(a)). On the other hand, Fig. 15 shows the results 

at the same conditions but with the transfer function of the 

regulator discretized using impulse invariant method. It is 

clear the zero steady-state error achieved. This mean that the 

discretization method is very important when using resonant 

regulators at high frequencies as is the case when it is desired 

to perform harmonic compensation. 
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Fig. 13. Block diagram of ideal PR implemented using two integrators: (a) 

in the continuous time domain; (b) in the discrete time domain using forward 

and backward Euler as discretization methods 
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Fig. 14. Steady-state currents and error for ideal PR when implemented with  
two integrators using forward and backward Euler - 5th harmonic reference 

tracking: (a) without  voltage decoupling;  (b) with voltage decoupling 
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Fig. 15. Steady-state currents and error for ideal PR when the transfer 

function of the regulator is discretized using impulse invariant method - 5th 
harmonic reference tracking: (a) without  voltage decoupling;  (b) with voltage 

decoupling 

As expected from the FR analysis all the three controllers 

produce approximately zero steady-state error when designed 

to have exactly the same resonant frequency as the one of the 

reference current, and with sufficient high 𝑘𝑖𝐼  as the one 

presented in Table III. It must be remarked that they should be 

discretized using the correct method. 

To analyze the sensitivity of the PR regulators to frequency 

variations the reference current frequency was changed to 49 



Hz, while the resonant frequency of the regulators was kept 

constant in 50 Hz. Fig. 16 and Fig. 17 show the steady-state 

currents and errors for the ideal and non-ideal PR regulators 

without and with voltage decoupling. It is clear that the effect 

of voltage decoupling has a significant impact on the 

performance of the closed loop system, reducing significantly 

the error. Furthermore, the sensitivity of the ideal PR to 

frequency variations is bigger than the sensitivity of the non-

ideal PR. For this last regulator the zero steady-state error with 

voltage decoupling depends on the value of 𝑘𝑖𝐼 . Fig. 18 shows 

an experimental result for the non-ideal PR with 𝑘𝑖𝐼 = 11. For 

small values of this gain, the regulator does not provide zero 

steady-state error, even with voltage decoupling.  
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Fig. 16. Steady-state currents and error for ideal PR: (a) without voltage 

decoupling; (b) with voltage decoupling -𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 311 
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Fig. 17. Steady-state currents and error for non-ideal PR: (a) without voltage 

decoupling; (b) with voltage decoupling -𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 311 
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Fig. 18. Steady-state currents and error for non-ideal PR: (a) without voltage 

decoupling; (b) with voltage decoupling -𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 11 

Fig. 19 shows the results for the complex vector PR. As 

expected from FR analysis, this controller produces zero 

steady-state error even for small values of 𝑘𝑖𝐼 , and frequency 

variations. 
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Fig. 19. Steady-state currents and error for compex vector PR with voltage 

decoupling - 𝑓𝑟𝑒𝑓 = 49 𝐻𝑧 , 𝑘𝑖𝐼 = 11 

VI. CONCLUSIONS 

In this paper, an analysis and design of the inner current 

loop for power converters based on PR regulators has been 

carried out. The benefits of applying capacitor voltage 

decoupling are motivated by the lower steady-state error. 

Complex vector PR regulator, which is stable only if voltage 

decoupling is performed, shows the lowest sensitivity to 

integral gain and frequency deviation, thus can be preferred 

in microgrid applications.  
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