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ORIGINAL ARTICLE
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Abstract

Objectives: In multiple myeloma, heparanase (HSPE) is involved in myeloma cell growth, angiogenesis,

osteoclastogenesis and shedding of syndecan-1, a key player in myeloma pathophysiology. Different single

nucleotide polymorphisms (SNPs) in the HSPE gene with effect on gene function have been described,

and some are associated with haematological malignancies. Methods: In this study, we evaluated four

SNPs rs11099592, rs4364254, rs4693608 and rs6535455 in the HSPE gene in 348 newly diagnosed

multiple myeloma patients with focus on bone morbidity (lytic bone disease and vertebral fractures) and

outcome after high-dose chemotherapy with stem cell support (HDT). Results: We observed that

homozygous carriers of the rs4693608 wild-type A-allele had a higher frequency of vertebral fractures

compared to carriers of the variant G-allele, P = 0.02. In multivariate analysis, homozygous carriers of

the rs6535455 variant T-allele had a longer survival than homo- and heterozygous carriers of the wild-type

C-allele, hazard ratio 0.3 (95% CI 0.1–0.7, P = 0.002). Conclusion: The SNPs rs4693608 and rs6535455 in

the HSPE gene may influence bone morbidity and outcome in multiple myeloma. Our results are an

interesting observation but can be chance findings and need confirmation in studies exploring the

functional role of SNPs in the HSPE gene in multiple myeloma.
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The heparanase (HSPE) gene is located on chromosome
4q21.3 and expressed in a variety of normal cells, including
endothelial cells, as well as haematopoietic cells (1, 2). Dif-
ferent single nucleotide polymorphisms (SNPs) in the HSPE
gene have been described, and some are associated with
increased mRNA expression (3). Recent studies have exam-
ined the potential relation between SNPs in the HSPE gene
and malignancies. Comparison of genotype frequencies
revealed an association between the SNPs rs4364254 in
acute leukaemia and rs4693602 in multiple myeloma, while
in ovarian cancer, one specific haplotype was associated
with disease stage (3, 4).

HSPE is an endoglycosidase that cleaves heparan sul-
phate proteoglycans into heparan sulphate side chains and

core proteoglycans. Expression of HSPE is rare in normal
tissue, while in tumours, it becomes evident and increases
the angiogenic and metastatic potential of malignant cells
(5, 6). HSPE promotes angiogenesis by releasing heparin-
binding angiogenic growth factors such as fibroblastic
growth factor 2 (FGF-2) and vascular endothelial growth
factor (VEGF) that is trapped in the extracellular matrix
(7). HSPE is present in bone marrow plasma from mye-
loma patients, and high HSPE activity is associated with
angiogenesis (8). HSPE enhances osteoclastogenesis
through syndecan-1 and may influence bone resorption (9).
Bone marrow microenvironment expression of HSPE is
described as a negative prognostic factor in myeloma
patients (10).
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The heparan sulphate proteoglycan syndecan-1 (CD138) is
a major regulator of the bone marrow microenvironment that
supports myeloma cell growth (11). Cell surface syndecan-1
mediates adhesion of myeloma cells to collagen and other
myeloma cells and transmits intracellular signals (12–14).
Recent studies on myeloma cell lines have shown that HSPE
promotes expression and shedding of syndecan-1 which
stimulates endothelial invasion and angiogenesis (10, 15). In
vivo, high serum levels of syndecan-1 are associated with
bone marrow angiogenesis and poor prognosis in patients
with multiple myeloma (16, 17).
SNPs in the HSPE gene may alter HSPE expression and

the influence on syndecan-1 regulation, angiogenesis and
osteoclastogenesis. Factors involved in multiple myeloma
pathophysiology and associated with prognosis. In this
study, we describe four SNPs in the HSPE gene in a group
of multiple myeloma patients treated with high-dose chemo-
therapy with stem cell support (HDT) with focus on bone
morbidity and outcome.

Material and methods

Patient’s clinical data, response criteria, eligibility criteria
and treatment have previously been described (18). Briefly,
patients diagnosed with multiple myeloma and treated with
HDT from August 1994 to August 2004 were recruited from
four hospitals in Denmark. A total of 348 patients were
included in the study. Of these, 185 patients were included
in the high-dose treatment protocols implemented by the
Nordic Myeloma Study Group (NMSG no. 5/94, 7/98 and
11/00) (19–21), whereas the remaining 163 patients were
treated with similar treatment regimens off protocol.
Bone morbidity was assessed from skeletal surveys at

diagnosis. The patients were divided into two groups
depending on the degree of lytic bone disease: (i) no lytic
bone disease and (ii) lytic bone disease. Furthermore,
patients were divided into two groups defined by presence
of vertebral fractures or not. Due to the retrospective design
of the study, skeletal surveys for assessment of bone mor-
bidity were not available for all patients (Table 1).
Time to treatment failure (TTF) and overall survival (OS)

were calculated from date of stem cell infusion to date of
progression after HDT or death, respectively. Definition of
progressive disease has been described previously (18).
The study was approved by the Danish Ethical Committee

(01-158/03).

Human tissue samples, DNA purification and
detection of single nucleotide polymorphisms

Peripheral blood mononuclear cells (PBMCs) were purified
from 292 leukapheresis products by buffy coat preparation.
From 56 patients, 10 times 10-lm sections were collected
from paraffin-embedded bone marrow samples.

DNA for analysis was purified from PBMCs by salting
out method (22) or from paraffin-embedded tissue by phenol
extraction (23).
The SNPs rs11099592, rs4364254, rs4693608 and

rs6535455 in the HSPE gene were determined on an ABI
7900HT using allelic discrimination and predeveloped assays
(Applied Biosystems, Birkerød, Denmark). Reactions of 5 lL
contained approximately 50 ng DNA, 2.5 lL mastermix
(Applied Biosystems, Birkerød, Denmark) and the predesigned
primer and probe mix. DNA from heparin-containing blood
samples was treated with heparanase for one hour at 35°C.
DNA was precipitated and resuspended in TE. Controls were
included in each run, and repeated analysis of 10% subset of
samples yielded 100% identical genotypes. Moreover, for 10
patients, DNA from both bone marrow and leukapheresis
products was genotyped with identical results.

Statistics

The statistical data were obtained using R statistical software
(version 2.9.2, 2009, The R Foundation for Statistical Comput-
ing, Vienna, Austria). All tests were two-sided, and P-val-

Table 1 Patients’ characteristics at the time of diagnosis

Number of
patients
(percentage) Median Range

Sex

Male 204 (59%)

Female 144 (41%)

56 (28–69)Age (yr)

<60 247 (71%)

≥60 101 (29%)

Βeta-2-microglobulin (mg/L) 249 (72%) 3.9 (1.2–57)

Creatinine (lM) 332 (95%) 98 (47–833)

Albumin (g/dL) 297 (85%) 3.5 (0.25–5.3)

Bone morbidity

No osteolytic lesions 80 (23%)

Osteolytic lesions 253 (73%)

No vertebral fractures 146 (42%)

Vertebral fractures 185 (53%)

ISS

I 56 (16%)

II 94 (27%)

III 89 (26%)

NA 109 (31%)

Durie–Salmon stage

I 35 (10%)

II 77 (22%)

III 228 (66%)

NA 8 (2%)

TTF (months)1 27.7 (23.4–30.8)

OS (months)1 69.8 (60.5–81.6)

ISS, international staging system; TTF, time to treatment failure; OS,

overall survival; NA, data not available.
1Only censored patients, exclusion of patients with occurrence of sec-

ondary malignancies and death without progression.
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ues < 0.05 were regarded as statistical significant. Fisher’s
exact test was used to compare categorical variables. The
Kaplan–Meier method was used to make survival curves, and
the Cox proportional hazards model and log-likelihood
statistics to compare differences in TTF and OS between
groups.

Results

The characteristics of the patients are summarised in
Table 1. The median follow-up of all censored patients was
93.4 months (range 54.6–174.2 months), and the median OS
was 69.8 months (range 60.5–81.6 months).
The allele frequencies and genotype distributions of the

four SNPs in the HSPE gene examined in this study are
comparable to the limited published data in previous studies
(3, 24). The SNPs rs4364254 and rs6535455 in the HSPE
gene were determined in all 348 patients, while the geno-
types for rs11099592 and rs4693608 were missing for 1 and
3 patients, respectively (Table 2).

Association between HSPE genotypes and bone
morbidity

At diagnosis, 23% of the patients had no lytic bone disease
and 73% had one or several osteolytic bone lesions. Forty-

two percentage had no vertebral fractures, and 53% had ver-
tebral fractures (Table 1).
There was no association between the different polymor-

phisms in the HSPE gene and osteolytic bone disease
(Table 3).
The SNP rs4693608 was associated with the incidence of

vertebral fractures at diagnosis (Table 3). Homozygous carri-
ers of the wild-type A-allele had a higher frequency of verte-
bral fractures compared to all carriers of the variant G-allele
(genotypes AG and GG), P = 0.02.
No association was seen between vertebral fractures and

the other examined SNPs in the HSPE gene.

SNPs in the HSPE gene, response, time to treatment
failure and overall survival after high-dose treatment

The SNP rs6535455 was associated with overall survival.
Homozygous carriers of the variant T-allele lived longer than
carriers of the wild-type C-allele. The median survival for the
genotypes TT, CT and CC was 117.7, 65.9 and 69.6 months,
respectively (Table 2). In univariate analysis, there was a
borderline significant difference in overall survival between
the genotype TT and the genotypes CT and CC, P = 0.07
(Fig. 1). In a multivariate analysis adjusting for beta-2-micro-
globulin, creatinine and Durie–Salmon stage, well-known
prognostic factors in multiple myeloma, homozygous carriers

Table 2 Uni- and multivariate analyses of the association between different genotypes in the HSPE gene, time to treatment failure (TTF) after

high-dose treatment and overall survival (OS). Heterozygous and homozygous carriers of the variant allele are compared with homozygous carri-

ers of the wild-type allele either alone or together

Number (%)

TTF (months) OS (months)

Median HR (95% CI) P-value Median HR (95% CI) P-value

rs11099592

CC 204 (59%) 26.2 1 64.6 1

CT 126 (36%) 28.7 0.7 (0.7–1.2) 0.60 75.1 0.9 (0.6–1.1) 0.9 (0.6–1.3) 0.30 0.68

TT 17 (5%) 17.7 1.5 (0.9–2.6) 0.11 65.7 1.2 (0.7–2.1) 1.0 (0.4–2.1) 0.58 0.91

CT+TT 143 (41%) 28.6 1.0 (0.8–1.5) 0.91 70.1 9.9 (0.7–1.2) 0.9 (0.7–1.3) 0.42 0.69

rs4364254

TT 130 (37%) 27.7 1 70.1 1

CT 153 (44%) 26.2 1.0 (0.7–1.3) 0.83 65.6 1.0 (0.7–1.3) 1.0 (0.6–1.6) 0.83 0.97

CC 65 (19%) 28.6 0.9 (0.7–1.3) 0.61 69.8 1.0 (0.6–1.4) 1.2 (0.8–2.0) 0.79 0.36

CT+CC 218 (63%) 27.6 1.0 (0.7–1.2) 0.71 69.8 1.0 (0.7–1.3) 0.8 (0.6–1.2) 0.79 0.24

rs4693608

AA 95 (28%) 29.9 1 70.1 1

AG 135 (39%) 29.9 1.0 (0.7–1.3) 0.92 75.1 0.9 (0.7–1.3) 0.8 (0.5–1.3) 0.63 0.39

GG 115 (33%) 23.3 1.1 (0.8–1.3) 0.41 65.7 1.1 (0.8–1.5) 1.0 (0.7–1.6) 0.63 0.85

AG+GG 250 (72%) 26.2 1.1 (0.8–1.4) 0.71 69.7 1.0 (0.7–1.4) 0.9 (0.6–1.4) 0.98 0.71

rs6535455

CC 175 (50%) 27.8 1 69.5 1

CT 146 (42%) 25.1 1.0 (0.8–1.2) 0.80 65.9 1.1 (0.8–1.4) 1.2 (0.9–1.7) 0.73 0.28

TT 27 (8%) 44.6 0.7 (0.4–1.1) 0.15 117.7 0.6 (0.3–1.1) 0.4 (0.1–0.8) 0.10 0.02

CT+TT 173 (50%) 27.6 0.9 (0.7–1.2) 0.48 69.8 1.0 (0.7–1.3) 1.0 (0.7–1.4) 0.81 0.96

HR, hazard ratio; CI, confidence interval. In the multivariate analysis (italics) adjusted for beta-2-microglobulin, creatinine and Durie–Salmon stage.

Bold value indicates P < 0.05.
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of the variant T-allele had a significant longer overall survival
than homozygous carriers of the wild-type C-allele [hazard
ratio 0.4 (95% CI 0.1–0.8), P = 0.02 (Table 2)]. Similar result

was seen comparing homozygous carriers of the variant
T-allele with all carriers of the wild-type C-allele [hazard ratio
0.3 (95% CI 0.1–0.7), P = 0.002].
In accordance with this finding, homozygous carriers of

the variant T-allele seemed to have a longer TTF after HDT
than carriers of the wild-type C-allele 44.6 vs. 26.6 months,
respectively. The hazard ratio was 0.7 (95% CI 0.5–1.1,
P = 0.13). Furthermore, the percentage of patients achieving
complete response after HDT seemed to be higher for homo-
zygous carriers of the variant T-allele than carriers of the
wild-type C-allele 57% vs. 39%, P = 0.12.
None of the three other examined SNPs in the HSPE gene

were associated with response, time to treatment failure or
overall survival after HDT.

Discussion

In multiple myeloma, HSPE is involved in myeloma cell
growth, angiogenesis and osteoclastogenesis through release
of angiogenic cytokines as well as shedding of syndecan-1.
In this study, we have described four different SNPs in the
HSPE gene, and one of our observations was that homozy-
gous carriers of the variant A-allele in the SNP rs4693608
had a higher frequency of vertebral fractures at diagnosis.
Moreover, we observed that homozygous carriers of the var-
iant T-allele in the SNP rs6535455 lived longer than hetero-
and homozygous carriers of the wild-type C-allele.
Osteolytic bone disease and vertebral fractures are one of the

important manifestations of multiple myeloma. Animal models

Table 3 SNPs in the HSPE gene and bone mor-

bidity in patients with multiple myeloma. The

differences between the three genotypes and

between homozygous carriers of the wild-type

allele and hetero- and homozygous carriers of

the variant allele are tested

Osteolytic bone disease Vertebral fractures

No Yes

P-value

No Yes

P-value
Number
(percentage)

Number
(percentage)

Number
(percentage)

Number
(percentage)

rs11099592

CC 52 (27%) 142 (73%) 0.32 81 (42%) 114 (58%) 0.55

CT 26 (21%) 96 (79%) 56 (47%) 63 (53%)

TT 2 (12%) 14 (88%) 8 (50%) 8 (50%)

CT+TT 28 (20%) 110 (80%) 0.19 64 (47%) 71 (53%) 0.31

rs4364254

TT 31 (25%) 93 (75%) 0.78 48 (39%) 76 (61%) 0.27

CT 33 (22%) 115 (78%) 71 (49%) 75 (51%)

CC 16 (26%) 45 (74%) 27 (44%) 34 (56%)

CT+CC 49 (23%) 160 (77%) 0.79 98 (47%) 109 (53%) 0.14

rs4693608

AA 20 (22%) 70 (78%) 0.57 30 (34%) 59 (66%) 0.05

AG 36 (27%) 95 (73%) 66 (50%) 65 (50%)

GG 24 (22%) 85 (78%) 49 (45%) 59 (55%)

AG+GG 60 (25%) 180 (75%) 0.67 115 (48%) 124 (52%) 0.02

rs6535455

CC 41 (25%) 126 (75%) 0.26 72 (43%) 96 (57%) 0.89

CT 30 (21%) 111 (79%) 63 (46%) 75 (54%)

TT 9 (36%) 16 (64%) 11 (44%) 14 (56%)

CT+TT 39 (23%) 127 (77%) 0.90 74 (45%) 89 (55%) 0.66

Bold value indicates P < 0.05 .

Figure 1 Overall survival for multiple myeloma patients treated with

high-dose chemotherapy and stem cell support (HDT) divided into homo-

zygous carriers of the variant T-allele and hetero- and homozygous carri-

ers of the wild-type C-allele for the SNP rs6535455 in the HSPE gene.

© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 63
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have shown that enhanced HSPE expression by myeloma cells
upregulates their spreading to bone and stimulates systemic
osteoclastogenesis and osteolysis, thus mimicking the osteo-
lytic bone disease seen in multiple myeloma. The osteolytic
process is partly driven by HSPE-induced expression of recep-
tor activator of NF-jB ligand (RANKL), while no change was
seen in expression of the RANKL inhibitor osteoprotegerin
(OPG) (25, 26). In bone marrow biopsies from multiple
myeloma patients, a positive correlation has been observed
between myeloma cells expression of HSPE and RANKL (26).
Recently, a study has shown that HSPE may have an inhibitory
effect on osteoblast differentiation and mineralization. HSPE
shifts the differentiation from osteoblastogenesis to adipogene-
sis partly through increased secretion of Dickkopf1 (DKK1) by
osteoblast progenitors and myeloma cells (27).
In this study, we observed that homozygous carriers of

the variant A-allele in the HSPE gene SNP rs4693608 had
a higher frequency of vertebral fractures, while no differ-
ence was observed for the degree of lytic bone disease. Pre-
vious studies have found that healthy individuals carrying
the SNP rs4639608 genotype AA had a higher mRNA
expression of HSPE than individuals with the genotype GG
(3). An increased expression of HSPE in carriers of the
rs4639608 genotype AA may stimulate osteoclastogenesis
and osteoclast activity through RANKL activation and inhi-
bit osteoblastogenesis thereby augment the risk of vertebral
fractures as seen in this study. Even though HSPE may
affect the differentiation of osteoblasts and osteoclasts, sev-
eral other factors have influence in the complex process that
leads to the characteristic lytic bone lesions in multiple
myeloma. This may explain why no association between the
rs4639608 genotype AA and the degree of lytic bone dis-
ease was seen in this study. Indeed, osteopenia and osteope-
nic vertebral fractures may be seen in myeloma patients
without lytic bone lesions (28).
In myeloma cell line studies, high HSPE expression is

associated with increased level of VEGF, syndecan-1,
RANKL and hepatocyte growth factor (HGF), and all factors
are reported to be involved in myeloma pathophysiology
(15, 26, 29). Intercellular communication through exosomes
is stimulated when expression of HSPE in a human mye-
loma cell line is enhanced or tumour cells are exposed to
exogenous HSPE (30). Furthermore, through increased shed-
ding of syndecan-1 and expression of proteases, that is,
matrix metalloproteinase 9 (MMP-9), it seems as HSPE
facilitates a more aggressive tumour phenotype in multiple
myeloma (31). In vivo, a recent study has demonstrated that
HSPE involvement in multiple myeloma progression may be
due to downregulation of the chemokine CXCL10 (32).
In multiple myeloma, HSPE is primarily expressed by

cells in the bone marrow microenvironment, that is, T cells,
monocytes and osteoclasts and rarely by myeloma cells (10).
High bone marrow HSPE expression is associated with
shorter event free and overall survival after HDT, and HSPE

mRNA expression level is higher among multiple myeloma
patients than healthy controls (3, 8).
Our observation that homozygous carriers of the variant

T-allele of the HSPE gene SNP rs6535455 had an OS nearly
twice as long as carriers of the wild-type C-allele may sup-
port the hypothesis that homozygous carriers of the variant
T-allele have a less aggressive or more chemo-sensitive
myeloma disease due to a lower HSPE expression. Unfortu-
nately, there is limited published data concerning the SNP
rs6535455 and no information about the possible influence
on HSPE expression.
More knowledge about the functionality of HSPE and the

influence of SNPs on HSPE expression in multiple myeloma
and other malignancies is warranted, especially, as clinical
phase I studies now test the modified heparin SST0001 in
patients with advanced multiple myeloma and antiheparanase
compounds such as PI-88, M402 and PG545 in pancreatic
cancer and hepatocellular carcinoma (33, 34).
In conclusion, our observations indicate that specific SNPs

in the HSPE gene may affect bone morbidity and survival in
multiple myeloma patients. As our results may be chance
findings, our study can only indicate a possible association
and support the hypothesis that SNPs in the HSPE gene are
involved in myeloma pathophysiology. It is necessary with
further experimental studies including immunohistochemis-
try, gene expression profiling and angiogenesis examination
to explore the functional effect of SNPs in the HSPE gene
in multiple myeloma.
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